DIFFERENTIAL TOPOLOGY - EXERCISES LIST 6. Morse functions

- 0. Construct a Morse function with precisely 4 critical points on manifolds $S^1 \times S^2$ and $S^2 \times S^2$. What are the indices of the critical points of these functions?
- 1. [Reeb] Justify that an *n*-dimensional closed manifold which admits a Morse function with precisely two critical points is **homeomorphic** to the sphere S^n . BEWARE: Milnor has discovered examples of manifolds as above which are **not diffeomerphic** to S^n .
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function.
 - (a) Show that if p is a critical point of f then the Jacobian at p of the gradient function ∇f of f coincides with the Hessian of f at p.
 - (b) Show that f is a Morse function if and only the zero vector $0 \in \mathbb{R}^n$ is a regular value of the gradient function ∇f .

Try to generalize the above two observations to the case of arbitrary smooth manifold equipped with a Riemannian metric.

- 3. Is it true that any Morse function on a closed manifold M can be realized as the height function for some embedding of M in some \mathbb{R}^N ?
- 4. Let M be a smooth (n-1)-dimensional oriented submanifold of \mathbb{R}^n , and let $p \in M$. Let L be a line in \mathbb{R}^n orthogonal to M at p, which we will view as a copy of the reals. Let $f : M \to L$ be the restriction to M of the orthogonal projection of \mathbb{R}^n to L. Show that p is a nondegenerate critical point of f if and only if p is a regular point of the Gauss map $G : M \to S^{n-1}$.

Hint: Recall that the Gauss map associates to any point x of M the unit vector orthogonal to M at x oriented consistently with the orientations of M and \mathbb{R}^n . Express M, locally near p, as a graph of a function $\mathbb{R}^{n-1} \to \mathbb{R}$.

5. Let $U \subset \mathbb{R}^n$ be an open subset, and let $f : U \to \mathbb{R}$ be an arbitrary smooth function. Prove that the set of all these $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ for which the modified function

$$f_a(x) = f(x) + \sum_{i=1}^n a_i x_i$$

is not a Morse function has measure zero.

- 6. Let M be a smooth closed submanifold in \mathbb{R}^n . Show that:
 - (a) the set of all vectors $v \in \mathbb{R}^n$ for which the function $f_v : M \to \mathbb{R}$ given by $f_v(x) = \langle v, x \rangle$ is a Morse function is open and dense in \mathbb{R}^n ;
 - (b) the set of points $u \in \mathbb{R}^n$ such that the function $f_u : M \to \mathbb{R}$ given by $f_u(x) = ||u x||^2$ is a Morse function is open and dense in \mathbb{R}^n .

Will the assertions (a) and (b) still hold true if instead of being a Morse function we demand that f is a Mortse function with pairwise distinct critical values?

- 7. Find all closed surfaces which admit a Morse function with
 - (a) precisely three
 - (b) precisely four

critical points with pairwise distinct values.

- 8. Using the fact that adding an r-handle we change the Euler characteristic by the value $(-1)^r$, justify the following two facts:
 - (a) each Morse function on a closed orientable surface of genus g has at least 2g + 2 critical points;
 - (b) the Euler characteristic of any closed manifold of odd dimension is 0 (hint: consider two Morse functions f and -f on M).
 - 1