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- Abstract. The paper gives unbiased and biased invariant quad-
ratic estimators for variance components in unblanced nested clas-
sification Tandom models. The estimators, as well as their quadratic
risk functions, have simple closed forms that are easy to calculate, the
estimators are admissible in their classes and the unbiased estimators
reduce to best unbiased estimators in cases when all cells are filled and
the variance of the error terms is set to zero. Numerous numerical risk - -

- comparisons of the given estimators with MINQE(U, I) as well as with
the lower bounds of the mean squared ercor of unblased estimators are
also mcluded

1. Introduction. Let us consider the following model
Ly , X = AB+e,
- where A4 is an-(n x g)-matrix,  is a g-dimensional vector, 1e ﬁe.@“ The

n-vector gisa random vector with expectation zero and covariance Z o;V,
=1
where the ¥, are n x n n.n.d. matrices with ¥, being the unit matrix and o, ’
i=1,..., p, are nonnegative numbers called variance comporients. We assume
that the fourth moments of the vector X are as-under normality: The vectors -
B and 6'=(oy,... ,0,) are unknown. In the literature model (1.1) is called
a random model when A=1, 1, being an n-vector of ones. Otherwme, it is
“called a “mixed model. SRS
In this paper we are concerned thh the problem of estlmatlon of the vector
6 of- thc variance components only. There is an extensive literature on this
topic, and the reader may refer to a recent monograph of Rao and Kleffe (1987)
for further details. Most research has been done on estimating ¢ by invariant:
quadratic estimators, ie., by estimators of the form :
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(1.2) X'ML,MX,..., XML, M XY,

where L,, ..., L, are symmetric n X n matrices, while M is the projection

‘matrix on the subspace of #£" orthogonal to % (A), under the quadratic risk

function. As usual 2(-) denotes here the range of a matrix argument.
There are several methods currently available (see for example Seatle (1987))

to derive estimators for . However, most of them ensure no optimal properties.*

A complete characterization of all admissible estimators, unbiased and biased, is

known only in the case where the matrices M M WM,...,M,=MV,M

commute. S

In this paper we give adm1ss1ble unbiased and blased estlmators for the
vector ¢ of the variance components in model (1.1) in terms of the matrices
M,,..., M, under the additional assumption that

13  RMYE ... RM,).

\ As well known, this condition is fulfilled by all nested classification models.
The_calculation of the proposed estimators requires finding general inverses of
a number of matrices. However, for the unbalanced (p—1)-way nested
classification random model the proposed: estimators can be expressed in
simple closed forms by using techniques of the same nature as in the work of
Swallow and Searle (1978). '

The construction of the admlsmble estimators for the variance components
presented in this paper is based on the well khown step method (see Klonecki

(1980), LaMotte (1980), and Klonecki and Zontek (1985)). The formulae for the

model (1.1), subject to (1.3), are given in Section 3, and the explicit formulae for
the unblanced nested classification random model in Section 4, where we also
give the risk functions for some of the estimators. Finally, in the last section we
present numerical results demonstrating the behaviour of the suggested
estimators for a selected unblanced 2-way nested classification random model.
There are admissible estimators that have more flat risk functions than other

"estimators and admissible estimators that become the best unbiased estimator

(if such one exists) when the variance of the error terms is set to zero.

In a second paper of this series we shall present similar results for the .

unbalanced (p— 1)-way crossed class1ﬁcat10n ‘model.

2 Preliminaries: To characterize admis3ible invariant quadratic estimators
under the- quadratlc loss one can apply the theory of linear estlmatlon for hnear
models in finite-dimensional vector spaces

~In fact,: introducing the notation:Y=MX X'M estimator - (1 2) can be

wntten as L# Y, Where L isa hnear operator mappmg 9?" mto the space L of ’

nx n symmetnc matrlces and deﬁned by 2 ,L, for every a= (al, cees G )’e.%” o

i=1

-while L* is the adjoint operator to L under the usual inner products in 9?” :
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and &, (to be denoted by (*,-) and [, -], respectively). Let 2 stand for the set of
all l}nea:r operators mapping #%* into &,

‘The vector & to be estimated can be also presented as C*E Yw1th C being
a linear operator mapping #” into &, and associated with matrices C, ... C,
such that [C;,M;] = 6,,,1 j=1,...,p, where M;= MV,M. Assuming that
such an operator exists -is equivalent.to assume that o is estimable in the
considered model. ‘ '

The quadradic risk function E(L# Y—cr L# Y— a) becomes

(2.1) - Z ([L,,W LY+[L— C,,w (L C)])

i=1

where W, =2M, ®M,, w, =M, ®M,,, while

M,=EY= Z oM
. . i=1
‘ As usual, (B ® B,) and (Bl ®B2) denote for B, and B2 in &, linear
operators mapping &, into itself and are for any matrix B, in &, deﬁned by

(B, ® B,)B; = B, 1B3B, and (B, ® B 2)By =(B,,B;]1B,, respectlvely.

Consider expression (2 1) as a functional R(-,-) defined on the product
L x[T], where [F] is the smallest closed convex cone containing
T ={(W,, w,):6€R%}. .

Estimator L¥ Y'is said to.be locally best at pomt Tin [7] among a subset
Z, of £ if Le#, and iff :

R(L T)= min R(L*,T).
. ‘L*e Zo

One can show (LaMotte (1982)) that whatever be point T in [7 ], there is
an estimator admissible within a given affine subset %, of % in the class of all
locally - best estimators at T among %,. Since a necessary and sufficient
condition for an estimator L* Y'to be locally best within .#, at every point T in
[Z°] is available, LaMotte’s result provides, at least theoretically, a straightfor-
ward multi-step method for constructing admissible estimators. The simplest
situation ‘occurs when admissibility of an estimator can be shown in a single -
step — this being equivalent in establishing that the estimator is unique locally
best. It is the purpose of this paper to show that the step method can be
successfully applied to construct a large class of admissible estimators, not
being unique locally best, for the model defined by (1.1) and (1.3). More
precisely, we shall show that one:can construct for such models explicit
" formulae of admissible estimators, unbiased and biased, resultmg from s steps,
' 2< 5 < p, with the i-th point being T,w, 6® = (011, . 64,0, ... 0y e R,
with 1 <u, < U, <...<u,=p and 6;, = 1. For convenience we. present the \
coordinates of points a‘” ..., 6 in the form of an s x p matrix (to be denoted
henceforth by- X). w1th the i-the row being ‘.. Moreover, let. e

(22 M; = Za‘,-jM,., i=1,...,s.

i=1
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In the case of unbiased estimation the corrcsponding equations, deter-
mining uniquely the admissible estimator assoc1ated w1th the matrix 2, say
L§ Y, can be written as :

23) R ELfY=o,

© (24 VI{,(,Lx(a)Eca‘+,/V(H, )NR(T,) for all ae®® (i=1,...,s),

| where é"’=span{M1,..;,, M)}, Iy = M®M, IT,= M@ M—M, M ® M, M;;
for i=1, —1, while #°(-) stands for null space. L

For estlmatlon without the condition of unblasedness the s equatlons
determmmg the admissible estimators L# Y associated with matrlx 2 are

(29 _ ;o (Woir+Wew) Ly = II;_y Wen C, i =" 1,

"The solutlons Ly to equatlons (2.3) and (2.4) as well the solutlons L‘E to (2.5)
for matrices X of the considered type will be presented in the next section. We
close this section with some formulae that we will require in the sequel.

For the evaluation of the risk performance of the presented estimators we
shall need the lower bounds of the quadratic risk functions for unbiased and -
biased estimators of the vector of the varlance components. They are given for
all o€ %%, respectively, by

@6) B =2u(W ), A)
and '
@.7) B(o) = __ 200
' ? = 2 irtank M, .
~ We shall also need the following formulae throughout the péper;_ _
1 .
Let B,, 32 and B, be n x n nonnegative matrices and lct M I— 1,, 1.
- If aeZ(B,), then ’
, 1
. : + + F Bt ad B}
(2.8) ' (By +aa) B —1 TaBla B{ aa Bf,

provided the denominator is not zero.
If 1e#(B,), then

@) (MB M)* = B} — — B 11'B}.

l’B+ 1
If legf(Bl) and Q?(Bl) c Q?(BZ) then

: (2 100 MB,[MB, (MBZM)““ B;M]" B,M = MB, (B, B} 1)+B M.

Formulae (2:8) and (2.9);- whlch are well' known, entail (2.10).
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If ®(B,) = #(B,) and if #(B,) = #(B,), then
2.11) B, [B, (B, +Bs)+ B;]+B1 = B, (B, Bi B))" B1 +B;.
This formula may be verified by simple matrix algebra.

3. The main results. We now establish some results that can be used to
obtain the linear operators L, determined by (2.3), (2.4) and (2.5). To formulate
them, we need to introduce the following definition and notation.

Let 5 = (J{L(@):ac %%} n (M, ® M), where the sum extends over all
solutions L of the relation-(2.4) for the given matrix X. :

For every i=1,...,s let W,=M,®M,, G,=F,®F, where M,
defined by (2.2) while F,=M;_,(M;;M;" M;_ 1)* i-1» Mg =0, _and let
H, =W} -W}GW;.

LEMMA 3.1. The set &y is a p-dimensional subspace The matrices

(WG, Wy Gy ... WiGHM,  i=1,...,u,
W G,  WiGH,M,  i=u+1,...,u,
Bl A=< e e
WiGH,_ M, i=u_p+1,.., us_lv
L ' HM, i=u_(+1,...,u

form a basis for F.

Proof. This lemma can be proved by induction. We do not give the details.

Now a somewhat surprising result shall be established. It states that
without any additional assumptions imposed on the considered model the
solutions to (2.4) span the same subspace for all p x p matrices E of the
.considered type. : -

LEmMMA 3.2. For every p X p matrix X Sformulae (3.1) present the same basis
which is given by

A1 =Q2M1+Qz,
A2=Q3[M;"M;F2M;]Q3,

(3.2) ‘ I
Ay =Q, M} —M; F, 1M, 10,
Ap = Mp“Mp—1M;-1,

where, for 2 <t <p, Q= Mj F, M F,_...F,M;’, while
N F: ='Mt—1{Mt—1 Msz—l)Jr Mt—l‘
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Proof. The assertion follows by noting that (3.2) presents the basis (3.1) for
X =1, and from formula (2.11) given in Section 2.

The following lemma states that the solutions of (2.4) span the same
subspaces also for a class of s x p (2 < s < p) matrices X. However, it goes only
for some special models.

Rewrite expression (1.1) in the form

y

63 x=,. u) (1)

where U,,U, and A* are known matrices, while ¢* and v are uncorrelated
p*
random vectors with expectation 0 and covariance matrix equal to ) o, V¥
- i=1
et
and ) o, V#, say, respectively. Under this assumption
i=p*+1
{UlV,*U’l- for i=1,..., p*,
i . '
U,V¥U; fori=p*+1,...,p.

The projection matrix on the space orthogonal to #(A4*) will be denoted by

~ M*. Moreover, let X be any matrix of the cons1dered type such that u,, = p* for

some index 1 < s* < p*, and let

<211 0 )
221 222

be a partition of X such that Z,; is an s* x p* matrix.

LemmMa 3.3. Assume that U, is of full column rank. The subspace &y spanned
by the solutions to (2.4) does not depend on X, if and only if there exists a best
unbiased estimator for ¢* = (64, ..., 0,) in the submodel X* = A* B+ &*.

Proof. Suppose that L* Y is an unbiased estimator of ¢. The matrices
"Ly, ..., L

» associated - with L fulfill then the condition [M,, L] = 6,

G.j=1,...,p.
S1nce A=U,A* and since U, is of full column rank, it follows that

M* =(MU,)* M U,. Thus these equations can be rewritten as
[M*VIM*, UUMLMU,]1 =6, ij=1,...,p*

This clearly shows that the linear operator L*, associated with the matrices
UiML,MU,, ..., UiML,MU,, provides an unbiased estimator of &*
within the submodel X*. Moreover, since Z(M;) &2 (M) fori=1, ..., p* and
j=p*+1,..., p, equations (24) with i=1, ..., s* are equivalent to

M¥U MLMU M¥e&*+ N (ITE ) N R(M* @ M*),

fori=1,...,s* and j=1, ..., p*, where
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pt
M{= Y oyM*ViM*, II}=MU Q@MU) I
i=1
while &* = span {M*ViM*, ..., M*V¥M*}. Now the assertion is evident.
LemMma 34. If Ly is the solution to (2.5), then -

{Ly(a):aeR?} =« .

Proof. Since this result can be established analogously as Theorem 6.5 in
Klonecki and Zontek (1985), we omit the proof.
~ We shall now present the basic results of the paper — explicit formulae for
unbiased and biased admissible quadratic invariant estimators for the mixed
model (1.1) fulfilling (1.3).

For any nxn symmetric matrices 4,,..., 4, define a p-vector Z by
Z =([4,,Y],...,[4,,Y]), and a p x p matrix K by K = {[4;, M]}’. With
this notation :
EZ=K'e¢ and covZ=2{e'V;0c},

where V; = {[A;, M, A;M ]} for i,j=1,...,p.
THEOREM 3.1. The admissible unbiased estimator associated with matrix X is
given by

(3.4) | (K)tz,

where K and Z can be computed w.r.t. any basis of Fy.

Proof. Since (3.4) is evidently an unbiased estimator, we need only to show
that it fulfills relation (2.4). But this is also obvious, because it can be written in
the form of

where each L; belongs to ;.

The next theorem gives a formula for the admissible biased estimator
associated with a given matrix 2. It will be stated under the assumption that
the vector Z and the matrix K are calculated w.r.t. the basis 4, .. , A, given
in Lemma 1.1. To present the formula we need to 1ntroduce addmonal
notation.

For any matrix X of the above considered type let

....................................
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TueOREM 3.2. The admissible biased estimator associated with matrix X is

given by
(3.5 : , [QI+ZKZ*)~ LX) (%Y Z.

Proof. Suppose that Ly fulfills (2.5). By virtue of Lemma 2.2 the matrices
L,,..., L, corresponding to Ly are linear combinations of matrices (3.1). This
means that there exist uniquely determined numbers y” that can be obtained
from (2.5) such that

) p
T L= ) w4,

j=1

In fact, substituting these expressions into (2.5) and noting that

(¥, ® M) 4 {Mf’ bsisu,
P, +1<j<u
05 Isj.gut;la
(M@ M)A; =< II,_sM;, wu_+1<j<u, 2<1<s—1,
0, w1 <j<uy,

{ 1<]< Us—1,
Hs—le us—1+1<j<u

we obtain the following linear equation in the coefficients y;;:
QI+Z*ZK){y;}' = Z*Z. Its solutions is {y;}' =QRI+Z*ZK) 1Z*ZX
= Z*(ZI-{-Z‘KZ*) 12, Hence Lf Y= {y;} Z=[QRI+ZKZ*) '] (Z*/Z as
asserted.

If Z and K are calculated w.r.t. an arbitrary bas1s B, ..., B, of ¥y and if
a = {oy;} is a (p x p)-matrix of coefficients such that

Hs—l(Ms®Ms)Aj =

A = Z o:: B. i=1,...,p,

where A4,, .. A is the basis of & given by (3.1), then the adm1ss1b1e biased
est1mator (3 5) assoc1ated with matrix X, takes the form

(3.6) [QI+ZKaZ*) 2] @ Z* Z

Remark 3.1. Put model (1.1) in the form of (3.3). If vector Z is calculated
w.r.t. the basis (3.1) associated with a matrix ¥ of the considered type, then
clearly Pr(Z,.+1=0,...,Z,=0)=1 when Pr(r=0)=1 and, moreover,
under the assumptions of Lemma 3.2, the estimator (3.4) becomes the best
unbiased estimator of ¢* in the relevant submodel X* = A* g+ ¢&*.

Remark 3.2. Admissible unbiased and biased estimators which are not

. unique locally best within their classes are called limiting estimators, for

sl



‘indices i;i,...i,. Finally, let E, = e,e, for the above defined vectors e
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they are limits of unique locally best estimators. All the new admissible

_ estimators presented in this paper are limiting estimators, but not every
- limiting estimator can be obtained in the described manner. It may be worth to

recall (see Zontek (1988)) that under very general assumption the class of
unique locally best estimators and their limits forms the minimal complete
class. :

Remark 3.3. For the unbalanced (p— 1)-way nested classification random
model with all subclasses filled the Henderson’s estimators are not admissible
among unbiased estimators. In fact, for such models they can bé presented as
(K'Y~ 'B* Y, where B is associated with matrices B, = M, M{, B, = M, M7 —
M,M{,...,B,=M,—M,_;M;_,, while K = {[B;, M;]}’ and estimators of
such a form can be neither unique locally best estimators nor limiting
estimators.” '

4, Exémp_les. We shall now apply the theory developed in Section 3 to
obtain admissible estimators for the unbalanced (p—1)-way nested clas-
sification random model. The defining formula of this model is

“an o Xigigip = pt+& + &+ ---’+€i1i2...ip,

where 1 < i; < n, while for any 2 < ¢ < p and any i,i,...i,—, the index i, goes
from 1 to my,;,...5,_,, While n;;, ;,_, > 1 for at least one i;i, ... i, . As usual
@ is an unknown parameter, while &, &, ..., 5,1,2 .i, are mutually
uncorrelated random variables with zero means and variances o, 0, ..., 6,,
respectlvely The problem consists in simultaneous estimation of the vector & of
variances a,, ..., g,

To express the basis (3.2) correspondmg tothepx p un1t matrix in a simple
form we need to introduce the following notation. Let . stand for a set

~ defined by

=iy gy e, i, 00 1<y S, o, VS oy Smyyg i, 00

Now, for 1 £t < p—1 and for any a = i,1i, .._.i,eJr and any 1 <i;,, <n,
let ai,yq =1i,i,...1,4+,. Clearly, ai,,, €5 for t <p—1. Next we define by
a recursive formula a sequence of vectors denoted by e with labeling indices.

‘Let e;,4,..:,= 1, for.all possible indices i,i,...i,, and let

1

Rgay eal

1
eann
ang

for every ae.#, where, for the convenience of notation, ;;,..;, =1 for all

a
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The basis (3.2) can then be presented in the following way:

o moi no
[P PRTE PO 1
Ap+1—t= ('D P @ 2 Eiliz..-it“ @ ot
=1 =1 Riyis...ip i1=1
M 1
172 t-1
Eiiiz...itfp lstgp'
n;
ii-1=1 itiz. . de—1

First we shall give explicit formulae for the relevant vector Z and its
expectatlon for the unbalanced 2-way nested classification random model. The
expressions will be given in terms of the familar notation with n,, n;, and
m;, i, replaced, respectively, by a, b;, and n;; They are

B TS )

i=1\P j=1Mjr=1 i=10 j=1 Mijy
4.2 Z = a b o1 0w 2 a /1 ¥ 1™ 2
“2) Z 2 ( Z uk) - Z bl(_i — Z Xijk
=1j=1\Mjr=1 =1\ =imi=
a nit a b 1 niJ - 2
q Z Z Z Xh— 2, Z "ij(‘,‘; Z xiik> J
i=1j=1k=1 i=1j=1 l]k=1.
and
a— 1 ~‘(a 1)1;1 E(a l)lglbz l( 1)
- . « 1
(43) EZ 0 Z bl_—a Z <1_F)Si(_1) | o,
i=1 i=1
L 0 0 Z bt
’ i=1 .
. bi a
where S;= ) nf;and §'= ) S; (t= £1, +2, 3).

] :r . . -
Also the covariance of the Z can be written in a closed form expression

(4.4)

where

=1

i=1

o' Vi,6 &Vi,0o 0
covZ =2 | a V6 &' Vya 0 ,
0 0 0"V330'
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s N
a—1 21 a—1 2 1
-1 —_— ) — _
¢ a 1;1’: a f;bzzS'( X
Vu= | _ a=2¢1 1/&1\a-2¢1 ¢l ;
a i=z1bi2+az ;1bz a i=21bl?Sl(_1)+aziglbliglblzla(_.n
a—2 41 2 178 1 2
IR - B —a_i=21b_?Si(_l)+P(i_=z1 bE.Si(_l)) J
(0 0 0
V= |- 0 0 :
a—1[ & 1 a 1
L_ " a |:i§1 b? Sic-2) 12‘1 b? Sl(_l{l;
r ) .1
0 0 0
a i a 1 .
Vaa= | — Z b,.—a ) Z (l—g)si(—n »
_ i=1 - i=1 i/ .
a 2 a1
- a igl (1_3:')&.(_2)—'— :;1 b} Si-n
00 0
Va=1— 0 0

If Z and K are defined as above, then (K1) Z is the unbiased admissible
estimator associated with every 3 x 3 matrix X by Theorem 3.1 and Lemma 3.2.
Moreover; in view of Theorem 3.2, '

@5) | [QI+2K)X1Z,

where £ may be any 3 x 3 matrix, furnishes then the biased admissible
estimator associated with the matrix Z.

When the considered model is partially unbalanced, i.c., when all b; are
equal to b, then (K'Y Z is also an unbiased estimator associated with every
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2 x 3 matrix of the form

4.6) A 2=(a“ ! 0)

Gy1 033 1

by Lemma 3.3.
The biased admissible estimator associated with this matrix has a form that
differs from (4.5). It is given by [(2I+ZKK,) !XT K Z, where
b/(0'11b+1) 10 '
K, = ,
0 01

while Z and K are given by (4.2) and (4.3), respectively. The matrix K, could be
obtained from (3.6), but in this case it is easier to get it directly from (2.5).
Next we give the formula for vector Z and its expectation for the partially
unbalanced 3-way nested classification random model with n, = a, n; = b and
n;.,=c for all 1<i; <a and 1<i,<b. The vector Z is given by
e : 2
1 b c Riji 2 1 a1 b
(b Z Z:1”111:1 1 um) a( Z b ;1
c 1 nijk a 1 ¢ 1 nx 2.
zz(z}—zmQ—ZbQ ;z;ZMQ
i=1 j=1b%k=1"ijki=1

7 = i=1j=1\Cx=1Mjki=1

iy iz

nl»—-

Mn
'Ma-

zzz(

i=1j=1k=1

c

1 m
Z‘ Xij 1kl>

nljk 1=1

Rijic

=]

)

c
P=1j=1 (ckz

1 Mk

1 iki=1

—z@

Z Z )3 qum Z Z Z ljk(r: "tZﬂCXijkl)Z

i=1j=1k=11=1 i=1j=1k=1 ijk1=1 ~

It is written in this way so as to imitate formula (4.2) By replacing in the
above expression a, b, ¢ and n;; by ng, n;, n;, 5, and n,4,45 respectively, and i,
j and k, by i, i, and i,, respectively, we obtain the corresponding formula for
Z for the completely unbalanced 3-way nested classification random model

The expectation of the vector Z 1s given by

ra—l a—1 a—1 a—lS )
' b bc ab*2 V|
. ab-1) b-—1
0 a(b-1) “(c )’FS(_l,
EZ = e—1 - G,
’ [ 0 0 able—1) —Scy |
0 0 0 §,—abe
- J
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a b [ .
where now S,= Y Y > niy, t=+1
i=1j=1k=1
As for the case of the 2-way nested class1ﬁcat10n random model the
expressions for the admissible unbiased and biased estimators are obtained
from Theorems 2.1 and 2.2, respectively.

Now we shall give for the partially unbalanced 2-way nested classification
random model with all b, equal to b the admissible unbiased estimator and the
admissible biased estimator associated with matrix o

T 1 00
@7 - = .
021 023 1

For this case formulae (3.1) give the following basis:
A, =M3;F,M{F,Mf
(4.8) A,=M3M,M3—-M3F,M3F,M7,
| Ay = (M3)2— M3 Fy(M3)*F, M3
Formulae for these matrices in terms of a, b and ny; can be easily denved

from (2.8)~2.10).
When o0,, and o,, are set to zero, expressions (4.8) reduce to

Ay =M{, A;=M,—M,M{M,M{M,, Ay =M;—M,M{.

The corresponding vector Z becomes

i)

49) Z=|3 Y mey-x)—3 (e-x. )P m

i=1j=1 i=1 i=1

nij
Z, Xijk—

"Ma
Ile

. L ;
and its expectation is

1 .
a—1 a’ 1) Z Sll S12 s _(a 1) Z Sll
i=1 i=1
EZ=| 0 S2—§—(Ss—— Z Sia'Sh)— ZSi]lS,-zz S,— Z Si'Siu | e.
1 i=1 i=1 i=1 .
0 85— ¥ SitS, " S,-a
i=1
\ | J
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Having this formulae we can write down the expression for the admissible
unbiased estimators as well as for the admissible biased estimator. To get the
formula for the biased estimator observe that if 6, = g5, =0, then

(100)
2* = .
001

Thus in view of (3.4) it has the form [(2I+2 K Z*) 1x7 Z*, where
Z* = ¥*Z while Z is given by (4.9). -

The expectation and the covariance of Z* have s1mp1e forms in terms of the
n’s. These are

a—1 —(a 1)Zs,123,2 —(a 1)23,1

EZ*= i=1 i=1 P
0 S;— % Sa'S S;—a
and =l
. U'Vlld 0 :
covZ* =2 ,
0 dV,o

where V;, is given by

r .
1 a 1 a4
a—1 ;(a—l) Z SEZS,-Z zl(a—l) Z S,Il W
i=1

i=1

- i(a—z)isﬁ (Z SI].ZSI.Z)Z —(a 2)2 SSL2+azzsll Zsu S|’
. i=1

=1

- - - —(a 2)Zs.ﬁ+ (ZSu‘)2 J
while V,, by
0 0 0
V= | — S2—2_i Salsis+_i Sis* Stz S—.i Sit' Siz
_ T Si—a

5, Risk comparison. The expressions for the risk functions of the different
estimators given in Section 3 are too complicated for a throughout analytical
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comparison and, therefore, an evaluation of their performance must be made on
the basis of numerical comparison. We make a risk comparison only for an
unbalanced 2-way nested classification model with all subclasses filled. To begin
with we would like to make the following introductory comments.

If ¥ is a 2 x 3 matrix such that u, = 2 or if it is a 3 x 3 matrix, then the risk of
the corresponding unbiased estimators-at points ¢ = (¢,,1—0¢,,0y, 0 < 0, < 1,
depends only on the number of levels a and b, and at point (1, 0, 0)’ on a alone.
Moreover, the variances of the unbiased estimators coincide with their relevant
lower ‘bounds at these points. When a and b are fixed and if the-number of
replications n;; increases, 4:¢;; if more observations are added, then the risks of
all the considered estimators as well as the lower bounds (2.6) and (2.7) decrease
at all points ¢ with ¢; >0, and, as numerous numerical results show, the
largest decreases are at points nearest to (0, 0, 1). As one might also expect, the
larger a and b, the smaller the dissimilarities between risks of unbiased and
biased estimators. Our numerical results show that similarly as for the one-way
classification model (sce Swallow and Searle (1978)) the estimators benefit far
more from adding observations in the form of more groups that from
increasing group sizes. ,

For the numerical study we selected the following N = {n;;} pattern

622
N=1]252
222

with 25 readings. The values of ¢ were selected similarly as in Zontek and
Klonecki (1988), i.., the risks have been calculated for ¢ = (6, 6,, 1 —a, —0,)
and for ., 0, = 0(.2) 1.0, 0 < ¢, +0, < 1. There is no loss of information in
using this format, because the risk is a function of the variance components
through being a function of the ratios ¢,/0;, 6,/0, and ¢5.

The following numerical results are provided. The entries in Table 1 present
lower bounds of variances for unbiased estimators. Table 2 lists variances of
the best unbiased estimator at point (1/3, 1/3, 1). Tables 3 gives risks of the
unbiased estimator associated with matrix (4.7) with ¢,; = 6,, = 1/3 and
Table 4 the risks of the unbiased estimator associated with every 3 x 3 matrix
as well as-with every matrix of form (4.6). The latter has a slightly larger risk at
the specified point (1/3, 1/3, 1)’ than the corresponding best unbiased estimator,
but this disadvantages is outweighted by other desirable properties. In
particular, when o, =0, its risk reaches the lower bound for unbiased
estimators. It might be a reasonable choice when no a priori information about
a is available.

When biased estimators are allowed for considerations, a remarkable
reduction in the mean square error, as presented by Table 5, takes place. Table
8 shows that the admissible biased estimator corresponding to the unit matrix
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is at every point of the parameter space better than any unbiased estimator. Its
efficiencies w.r.t. the lower bounds given in Table 1 are, as it is shown in
Table 9, never smaller than 13% and are above 50% over a large range of the
values of the underlying variances that are most likely to be met in practice.

If the degree of unbalancedness is high, then there may exist unbiased
estimators better than the admissible biased estimators corresponding to the
unit matrix in some neighbourhood of (0, 0, 1)’. As one might expect this may
occur as a result of a combination of three factors-number. of total readings,
number of levels and the degree of unbalancedness. For balanced nested
classification random models (see Klonecki and Zontek (1981)) the admissiblé
biased estimator corresponding to the unit. matrix is better than the best
unbiased estimator. '

e TABLE 1

Lower-bound of mean squared error for unbiased estimation

o 2| 00 02 04 0.6 0.8 1.0

00 | 01894 02165 02526 03072 03831 04815
02 ] 02105 02447 02936 03631 04548

0% | 02951 03442 - 04082  0.4933

0.6 | 04539 0.5180 0.5970

0.8 | 0.6887 0.7659

1.0 | 1.0000

TABLE 2

Mean squared error of the unbiased estimator corresponding vto
’ rX=(1/3,13, 1 .

02z 00 02 0.4 0.6 08 . 10
- 1 . .

00 | 02137 02201 - 02556 03202 04139  0.5367
02 | 02193 ~ 02447 02992 . 03827 04954

04 |.03011 03454 04188 05213

0.6 | 04589 . 0.5222 0.6146

0.8 | 06929 07751
1.0 |- 1.0029

TABLE 3

. ' 100\
Mean squn;red érror of the unbiased estimator corresponding to X = <1/3_1/3 1)-

o2l 00 - 02 04 06 08 10

00 | 02142 02205 0.2559 03202 04135 0.5359
02 | 02200 02451 02991 03822  0.4542

04 | 03015 03453 04180  0.5198 -

0.6 | 04587 05211 --0.6126 - - --

0.8 | 0.6915 07727 -

1.0 | 1.0000
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TABLE 4

. 010
Mean squared error of the unbiased estimator corresponding to X = (001)

o 2| 00 0.2 0.4 0.6 0.8 1.0

00 | 02397 02388 02626 03110 0.3839 04815
02 | 02392 02562 02978 03640 04548

04 | 03150 0.3499 04093  0.4933

06 | 04671 05198  0.5970 '

08 | 06954  0.7659

1.0 | 10000

TABLE 5

Lower bound of mean squared error for biased estimation

o 2| 00 0.2 04 06 0.8 1.0

00 | 00769 00523 0.0400 0.0400 0.0523  0.2000
02 [ 00523 0.0338 0.0277 0.0338  0.1360

04 | 00400 0.0277 0.0277 0.1040

0.6 | 00400 0.0338 0.1040

0.8 [ 0.0523  0.1360

1.0 | 0.5000

TABLE 6

Mean squared error of the biased estimator corresponding to
Z=(1/3 13,1

o 2| 00 0.2 04 06 08 1.0

00 | 02509 01152° 0.1182 0.2600 - 0.5406  0.9599
02 [ 01155 0.0338 0.0909 0.2867 - 0.6213

04 | 01182 0.0906 . 02017 04515

0.6 | 02590 0.2853  0.4505

0.8 | 05377 0.6182

1.0 | 09546

TABLE 7

110
Mean squared error of the biased estimator corresponding to X = (001)

Tl 00 02 04 0.6 0.8 1.0

0.0 | 02165 02245 0.2858 04005 0.5686  0.7900
0.2 | 012407 70.1001 " 0.1295 "7 0.21237 ~70.3484"

04 | 01352 00793 - 00768 0.1276

06 | 02499 01621 01276

0.8 | 04681  0.3484

1.0 | 0.7900

1+ — Probability 10.2
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TABLE 8

Mean squared error of the biased estimator corresponding to X =1,

o221 00 0.2 04 0.6 0.8 1.0
1

00 | 01651 0.1445 01462 0.1701 02163  0.2847 -
02 | 01368 01248 0.1350 0.1675 02222

04 | 01562 01527 01715 02125

06 | 02231 02282 . 02556

08 | 03377 03514 , ‘ )
1.0 | 0.5000 -

TABLE 9%

Efficiencies of the biased estimator corresponding to X = I,
w.r.t. the lower bounds given in Table™l™™

o 2| 00 0.2 04 06 08 10

0.0 12.82 33.25 4213 44.61 43.53 40.87
0.2 35.00 49.00 54.02 53.87 51.14

0.4 47.08 55.64 57.99 56.93

0.6 50.84 5595 57.20

0.8 50.96 54.12

1.0 50.00

Numerical risk comparisons for N-patterns having greater degree of
unbalancedness than the one here considered are available in Klonecki and
Zontek (1988). : -

6. Conclusions. Since there is now available a large class of admissible
estimators for nested random unbalanced models, the problem arises which of
them to apply in practice. This problem requires further detailed, throughout
investigation. The numerous numerical results obtained by us seem to suggest
the following.

When unbiased estimation is preferred and when no a priori information

about o is available, the admissible estimator associated with unit matrix
appears to be the best choice. It becomes, in the submodel obtained by setting
in the original unbalanced model the variance of the error terms to zero, the
limiting admissible estimator (see Zontek and Klonecki (1988)) which coincides
with the best unbiased estimator when all cells are filled. For that reason it is

" very efficient for experiments (see Ahrens et al. (1980)) where the variance of the

error terms is small in comparison with the other variances. This estimator is
also distinguished for its flat risk function over the set of all possible parameter
values. It is also a fortunate situation that of all the known admissible
estimators, it and its covariance, are the easiest to compute. When there is
available some a priori information about the estimated parameters, one
can use either the MINQE(U,I) or the admissible estimator associated with
matrix (4.7).
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‘It is not as clear as above which one of the proposed admissible biased
estimators to apply. When no a priori information is available, the estimator
associated with the unit matrix appears again to be reasonable. Since it is
better than all unbiased estimators under balanced nested classification
random models, one might expect that when the unbalancedness of the
accepted model is not to severe it is indeed the best choice. On the other hand,"
if we have some information about ¢ alternative possibilities provide the
estimators associated with a 1 x 3 matrix or a 2 x 3 matrix of form (4.6), and in
case all b; are equal, also with a 2 x 3 matrix of form (4.7).
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