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MOMENTS AND GENERALIZED CONVOLUTIONS. 1

BY

" K. URBANIK (WROCLAW)

Abstract. For any positive number g a g-equivalence of general-
ized convolutions is defined in terms of moments of order g. The aim
" of this paper is to prove that under some natural restrictions on the
order g g-equivalent generalized convolutions are identical.

This paper is a continuation of the author’s earlier work [8]. We adopt the
definitions and notation given in [4] and [8]. In particular, P will denote the
space of all Borel probability measures defined on the half-line [0, c0). The
space P is endowed with the topology of weak convergence. For any ae(0, ),
T, will denote the scale change (T,u)(E) = u(a™'E) for ueP. Further, 8, will
denote the probability measure concentrated at the point c¢. Two measures
u and v from P are said to be similar if y = T,v for a certain ae(0, ).
A continuous commutative and associative P-valued binary operation o on
P is called a generalized convolution if it is distributive with respect to the
convex combinations of measures and the operations T, d, is its unit element
and an analogue of the law of large numbers is fulfilled: T, 63" —y # 6, for
a choice of a norming sequence c, of positive numbers. The power 47" is taken
here in the sense of the operation o. The limit measure y = y(o) is called

a characteristic measure of the generalized convolution in question. It is clear

that the characteristic measure is un1que1y determined up to the s1m1lar1ty
relation. '

The set P with the operation o and the operations of convex combinations
is called a generalized convolution algebra. Generalized convolution algebras
admitting a non-constant continuous homomorphism into the algebra of real
numbers with the operations of multiplication and convex combinations are
called regular. All generalized convolution algebras under consideration in the
sequel will tacitly be assumed to be regular. For regular convolution algebras
by Proposition 4.5 in [6] there exists a positive constant x = %(o) such that

(1) Tyo Ty = Typany?
for any pair a, be(0, o), where g(x, a, b) = (a* +b")1/" The constant » does

not depend upon the choice of a characteristic measure and is called the -
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characteristic exponent of o. Moreover, by Proposition 44 in [6], every
solution y of equation (1) for all a, be(0, ) is a characteristic measure of o.
Notice that, by Theorem 4.3 in [6], the pair %(0), y(o) determines the
generalized convolution o.

We say that the generalized convolution o admits a characteristic function
if there exists a one-to-one correspondence p— i between measures pu
from P.and real-valued bounded continuous functions i defined on the
half-line [0, o) commuting with convex combinations and scale changes, i.e.
(T,w)~(t) = ji(at) for ae(0, ). Further, the key condition postulates
(nov)” = it and the convergence u, — u is equivalent to the uniform conver-
gence fi, — fi on every compact subset of [0, c0). It has been proved in [4]
(Theorem 6) that a generalized convolution admits a characteristic function if
and only if it is regular. By, Theorem 2.1 in [5] the characteristic function is
unique up ito a scale change and is represented by an integral transform

(r) = I () u(d)

with a contlnuous kernel Q fulﬁllmg the condltlons |2(0)] < 1 for te[0, o0) and
Q(t) = 1 —*L(t), where x is the characteristic exponent of o and the function
L is slowly varying at the origin.

. Many examples of generalized convolutions are to be found in various
branches of probability theory ([10], [11]). We shall quote some of them. It is
clear that every generalized convolution o is uniquely determined by the
expressions 6,09, with a, be(0, ).

ExAMPLE 1. a-convolutions #, (a.> 0): J,%,0, = 5g(aa,,) These convolu-
tions' correspond to the operations (X*+ Y“)l/" on independent random
variables X and ¥ Fora=1 we get the ordinary convolution. For any o > 0
we have x(x)=a and y(x,) = x

"ExamMpLE 2. Kingman convolutlons *,p (00> 0 B> 1) 0, *,,ﬁé,, is the
probablhty measure with the density function equal to

4 1 —3b 3B(1/2 ﬁ/z)—l[xu—1x2a(a2a+b2a) (2:: bZa)Z_x4rx](ﬁ 3)/2

in the interval |a*— bV < x < (a*+b%)'* and vanishing otherwise, where B is
the beta-function. These convolutions have been introduced by Kingman in [3]
for the study of spherically symmetric random walk in Euchdean spaces Here
we have #(%,,p) = 200 and ~ -

@ Plap)dx) = ad TPT(B—1/2)" x5 exp(—x™4)dx.
ExampLE 3. Convolutions o,, (x> 0, n=1,2,..). for 0<a<b,
84040 05(dx) = (1—a*b™ )0, (dx) + }, Ol(n+1)(n)( i )
T | ! 3 k=1 k k—l

X azx(n+1 —k)bak(xa_au)k— l(xa_ba)n—kx—Zan— 1 l[b,w)(x)(dx),
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where 1, ) denotes the indicator of the half-line [b, o) ([5], Example 1.6).
Here we have %(o,,) = o and

@) P(Oa,n)(dX) = ot(n')_*x_l_"“"“’exp(—x_“)dx*

The case o« =n =1 is relevant to work [2] of D. G. Kendall on statlonary
random closed sets. :
leen a number ge(0, o), for any ueP we put

m.,(u) = £ xp(dx).

Denote by P, the subset of P consisting of all u with m,(u) < co. Further,
denote by Q, (o) the subset of P, consisting of all u fulfilling the condition
preP for n=1, 2 LIt s clear that both sets P, and Qq(o) are invariant
under the maps T, (a > 0) and d,€Q,(0). ‘

Two generallzed convolutlons 0, and 0, are said to be g- equwalent in
symbols o, » 0,,if Q, (01) Q,(0,) and m (u“”‘) =m, () foralln=1,2,.
and peQ,(o,). The aim of this paper is to study the g-equivalence of
generahzed convolutions. We begin with properties of the sets P, and Q,(c).

LemMmA 1. If poveP,, then peP,. :
Proof. For g3 x(c) we have, by Theorem 1 in [8], the inequality

m,(uov) > m,(u)+m,(v), which yields the assertion of Lemma 1. Suppose that
q < %(0). Then, by formula (15) in [8], we have for AeP

@ 'm(,1):cq?(l-?l(t))t“‘l‘ldt,

where ¢, is a positive constant. Consequently, to prove the relation ueP, it
suffices to.show that the integral fo (1—A(x)t~97*dt is finite. Since, by Lem-
ma 4.3 in [6], 4(0) = 1, we can find a positive number ¢, such that ji(t) > 0 for
te[0, t,]. Moreover, by Lemma 44 in [6], lA() <1 for te[0, o), which
implies the inequalities

) - 'ojo(l—ﬁ(t))t‘.‘l‘H <o

to
and L
1—(pov) () = 1— A +A@(1 —V(t)) - — ()
for te[0, t,]. Hence and from (4) we get the inequality
=A@y tdt < c; 'my(nov),
! ‘ ,

which together with (5) completes the proof.
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As a consequence of equation (1) we get the following statement:
ProrosITION 1. y(0)€Q,(0) if and only if y(0)eF,.
PROPOSITION 2. If either g <x(0) or q > x(0) and Q,(0) # {0}, then

7(0) € Q,(0)-

Proof. It has been proved in [1] (Lemma) that y(o)eF, for q < (o).
Consequently, by Proposition 1, y(c)eQ, (). In the case g > x(o) and
Q,(0) # {J,} we have, by Theorem 2 in [8], y(o)eP which, by Proposition 1,
ylelds the assertion of the proposition.

By Corollary 1 in [8] the set P, is closed under the convolution o for
q < %(0). This yields the following proposition:

"ProposITION 3. If g < %(0), then Q,(0) =F,

PRrOPOSITION 4. If (k—1)x(0) < g < kx(o) for a certain k=2, 3,. d
Q,(0) # {do}, then Q,(0) = {p: m(W* V)< 0} -

- Proof. First consider the case k = 2. Then, by Proposition 2, y(c)e P,
which, by Theorem 3 in [8], shows that the set P, is closed under the
convolution o. This yields the equality Q, (o) =F,

Now suppose that k> 3. The inclusion Qo) < {u: m(u**™ ") < o0}
is evident. In order to prove the converse inclusion we assume that u°*~ e P,.
Hence in particular it follows that y°*~ e B, where r = (k—1)x(c). Applying
Theorem 4 from [8] we conclude that p®*eP. and, consequently, by
Corollary 6 in [8], u*eP,. Applying Theorem 4 from [8] again we
get the relation p™eP, for n=1, 2, ... Thus pueQ, (o), which completes the
proof.

Tueorem 1. If x(o,) = x(0,) = g, then o, 3 0,.

Proof Obseérve that, by Proposition 3, Q (o,) = Q,(c,) = F, and, by
Theorem 1 in [8], m ,(1o; v) m, (1) +m,(v) for j=1,2, which yields the
assertion of the theorem. '

THEOREM 2. If q > %(0)) and y(0)¢F, for j=1, 2, then o,  0,.

Proof By Proposition 2 we have the equality Q,(o,) = Q,(0,) = {d,},
which yields the assertion of the theorem.

ExaMpLE 4. From (3) we get the formula m(o,,) = o if ¢ = a(n+1).
Since %(0,,,) = o, the above theorem yields the relation oy, 3 Op,» Whenever
g > max(a(m+1), f(m+1)).

THEOREM 3. If q = 2%(0,) = 2%(0,), y(04), y(0,)€E, and
(6) my(v(01))my3 (y(01)) = my(y(02))myZ(v(02),

then 0, 7 O,.
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Proof. As an immediate consequence of Propositions 1, 3 and 4 we get
the equality Q,(o,) = Q,(0;) = F,. Denoting by a, the expression (6) we have,
by Lemma 2 and Theorem 1 in [8], the formulae .

my(no;v) = my(u)+my(v) +a,my; ()my 5 (v)
and
’mq/2 (10;v) = myp () +my, (v)

for j=1, 2, which yield the recurrence formula

my (") = my (") +m () +m () +a,(n—mlp ()
forj=1,2,n=1,2,... and peP, Using the above formula we obtain the
equality m (u°'") = m (u°*") for all n =1, 2, ..., which completes the proof.

ExaMpPLE 5. From Examples 2 and 3 we get the formula (%,,-1/2)
= %(02q4,n) = 20 Setting g = 4a and n > 2 we get from (2) and (3), by a standard
calculation,

My(kgn-12) = 16n(n—1), My (¥ep—1/2) = 4(n—1),

mq(OZa,n) = 1/(n2_n)a . mq/Z(OZz,n) = 1/n.
It is easy to show that condition (6) is fulfilled. Consequently, by Theorem 3 we
have the relation #,,_/, 3 Ozqs for « >0 and n > 2. 4
THEOREM 4. If o, 0, and y(o,)eF,, then #(0;) = %(0,). :
Proof. Setting, for simplicity of the notation, y = y(o,) and r = %(0) we
have, by Proposition 1, yeQ,(o,) and, by (1),
m(°") =n""my(y) @m=1,2, ....).
Consequently, '
7 m,(°") =n"m(y) (m=1,2,..).

Further, denoting by m*(u) the greatest median of u we have the inequality

m) > [ x*u(dx) =27 (m* W),
m*(u)
which, by (7), yields n~ " m*(y°>") < 2v1/“(mq(y))1/" foralln=1, 2, ... Applying
the thgorem from [7] on limit behaviour of medians we get the inequality

®) %(0) = < #(0)-

Since y€Q,(0,), we conclude, by Proposition 2, that y(o,)€ P, for g # x(0,).
Consequently, by the first part of the proof, replacing o, by o, we have the
inequality x(o;) < x(0,) for gq # %(0,), which together with (8) yields the
assertion of the theorem in the case g # %(0,). In the remaining case g = %(0,)
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we have, by Theorem 1 in [8], 'mq(y"'z") =nm,(y) forn =1, 2, ..., which, by (7),
implies the formula. g = r = %(o,). The theorem is thus proved.

LeMMA 2. If p, 0, 4,04...0, i, €Q,(0,) and o,  0,, then

mq(ﬂ1 Oy #1301 -+. 0y ty) = My(lty Oy 1t O3 ... Oz hy).

Proof. By the assumption we have the relation
P30y U3 0. O " ER,
for every n=1, 2, . Consqquently, by Lemma 1,
© S Mo p3to; ..o wt™e R

for every k-tuple r,,r,, ..., r, of non-negétive integers. Given an arbitrary
k- tuple a,,dy,..., a of non- negatlve real numbers fulfilling the ‘condition
Zs L8,=1 we put A= Zs u,. Since.

(10) A" = Y n!(rl!rz!...rk!)‘la'i‘a'zl..;

ri+rzt..tre=n
r ogra (o3 5
Lapps’t oy ua"? 04, . 0 "

for j=1,2 and n=1,2,..., we conclude, by (9), that ,1°"'qu for every
n=1,2,... or, equivalently, AeQ,((o,). Thus we have the equality
m, (l°"‘) =m (A°2") which, by the arbitrariness of Ay Gy, -ees B and formula
(10) y1elds ' :

my(H3i" 04 B30, . olmi"”‘)—m(#f"ozumoz -Og ™)

for any k-tuple ry, r,,..., r, of non- negatwe integers fulfilling the condition
ri+r,+...+r. =k Takmg ry = r2 =...=r,= 1 we get the assertion of the
theorem.

For py, py, ..., y€P with g op,0...0p,€ P, we introduce the notation

k
M0, ey Bosoeos )= 2. (=1 Y, m(u,op,0...01),
r=1

i1482pe00sir

where the summation )|, .~ . runs over all r-element subsets {i,, i,, ..., i,} of

i1,i2,..

the set of indices {1, 2, . k}.
As a 51mp1e consequence of Lemma 2 we get the followmg statement:

LEMMA 3. If v,0,V;0;...0.% olyzo1 .04 ukEQ (04) and o, 0,5, then
M (01, V1010 01 Vg, fyy ovy i) = Myp(05, ¥105...0, Vg, oy oo 1)
Now we are in a position to prove a rather unexpected result:

THEOREM 5. If q # nx(o,) for n=1,2,...,y(c,)eP, and o, + 0,, then
= Q3. . ;
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Proof. Notice that, by Theorem 4, x(0,) = x(0,) = x. For simplicity of
the notation we put y = y(o,). Further, denote by k the positive integer
fulfilling the condition (k—1)» < kx. Given a, be(0, ) we put ¢ = g(x, a, b)
and A, =1, =...=4, =v. By formula (1) we have :

"Tyos Tyo; Tyo, Ty =T,y6, Tyyo, Ty =Tyo, .-

a

Since, by (1) and Proposition 1, T, 70,...0, T,.y0, 4,0, ...0, 4, €0, (o) for
any a,, ..., a,e(0, ), we conclude, by Lemma 3, that

(D). Myu(05, Ty o, Ty s -oos )= 2M.,k(oz, avozmozﬂv,lz,---,lk),
+Mgs(03s Ty0; Ty0 Ty 0y Ty gy ooy &) |

= M0y, TF0L Ty, Az o.s M) — 2Mq,‘(ol,'ayolmolTy,Az,...,zk)
+ M, a(01, T.y0, T,yo; Tyyo, T, Az,...,a,)=0. o

Let u—ji be the eharactenstlc function of the convolution o,. Applymg
Lemma 2 and formulae (15) and (17) from [8] we have '

o T -0

O'—-;S

Mq,k(oz,m,u‘z,...,uk)_'= XT(—q/0) m,(y(0)) | ¢

whenever p, 0, §,0,...0, i€ F,. Comparing the above formula with (11)
we infer that B ‘ C

§ 7= ariep (- Fop et de =0

Since, by Lemma 4.4 in [6], |§()] < 1 and, by Lemma 2.1 in [9], 7(z) # 1 for
almost every te [0, o0), the integrand is non-negative almost everywhere. This
implies the equality j(at)j(bt) = j(ct) for almost every te[0, o). By the
continuity of the characteristic function the above equality holds for all -
te[0, ). Consequently,T,yo, T,y = T,y, which together with the equality
#(0,) = #(0,) = » shows that the probability measures y and y(o,) are similar.
Now applying Theorem 43 from [6] we conclude that o, = o,. The theorem is
thus proved.

Notice that, by Theorem 1 and Examples 4 and 5, the assumptions
g # %#(0,), g # 2x%(0,) and y(o,)e P, of the above theorem are essential. The
problem whether the assumption g # nx(o,) for n > 3 may be omltted is still
open. For a-convolutions the following theorem gives an answer to this
questlon

THEOREM 6. If g # a and o ¥ *q» then o= x,.
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Proof. Since x(x,) = a, y(*,) = ; and, consequently, y(+,) € B,, it suffices,
by Theorem 5, to consider the case g = ka for integers k > 2. It is clear that

(12) 0k2(0) = Qual*,) = Pras

0" = Tawd, (n=1,2,...) and My, (*,, 6;, 04, ..., 8,) = (—1DFk!.
Applying Lemma 3 for s =1, Vi =l =...= =0, we get the formula
(13) _ M, (0, 64, 84, ...y 01) = (—1Fk!.

Further,' by Theorem 4, %(o) = « and, by Proposition 2, y(0) € Qx,(0), which, by
(12) and Lemma 2 in [8], yields the formula

_ (_l)kk!ma(?(o))_kmka(y(o)) = Mka,k(oa 515 511 seey 61)
Hence and from (13) we get the equality

(14) Mia(y(0) = mz(y(0)-

Taking into account the assumption k > 2 we have the inequalities

(YO > ma(y(0))2 = m,(y(0)) ",

which together with (14) yield m,,(y(0)) = mZ(y(0)). Thus

(x*—m,(y(0)))*7(0)(dx) = 0,

Ot 8

which shows that the characteristic measure y(o) is concentrated at the point
m,(y(0))'". Since y(o) # J,, we conclude that the characteristic measures (o)
and y(x,) are similar. Applying Theorem 4.3 from [6] we get the assertion of the
theorem. '
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