
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

MOMENTS ANHP GENERALIZED CONVOLUTIONS. 11 

K. U R B A N I R  (WROCLAW) 

Abstract. For any positive number q a q-equivalence of general- 
ized convolutions is defined in terms of moments of order q. The aim 
of this paper i s  to prove that under some natural restrictions on the 
order q q-equivalent generalized convolutions are identical. 

This paper is a continuation of the author's earlier work [8]. We adopt the 
definitions and notation given in [4] and [8]. In particular, P will denote the 
space of all Bore1 probability measures defined on the half-line [O, 00). The 
space P is endowed with the topology of weak convergence. For any a ~ ( 0 ,  a), 
T,  will denote the scale change (T,p)()(E) = p(a-'E) for p E P. Further, 6, will 
denote the probability measure concentrated at the point c. Two measures 
p and v from P are said to be similar if p = T,v for a certain a ~ ( 0 ,  a), 
A continuous commutative and associative P-valued binary operation o on 
P is called a generalized convolution if it is distributive with respect to the 
convex combinations of measures and the operations T,, 6 ,  is its unit element 
and an analogue of the law of large numbers is fulfied: T,,Syn + y # a0 for 
a choice of a norming sequence c, of positive numbers. The power anis taken 
here in the sense of the operation o. The limit measure y = y(o) is called 
a characteristic measure of the generalized convolution in question. It is clear 
that the characteristic measure is uniquely determined up to the similarity 
relation. 

The set P with the operation o and the operations of convex combinations 
is called a generalized convolution algebra. Generalized convolution algebras 
admitting a non-constant continuous homomorphism into the algebra of real 
numbers with the operations of multiplication and convex combinations are 
called regular. All generalized convolution algebras under consideration in the 
sequel will tacitly be assumed to be regular. For regular convolution algebras 
by Proposition 4.5 in [6] there exists a positive constant ~c = ~ ( o )  such that 

(I) X Y  0 %Y = q ( x , a , b ) ~  ' 

for any pair a, b ~ ( 0 ,  m), where g ( x ,  a, b) = (ax+bX)llx. The constant x does 
not depend upon the choice of a characteristic rnedsure and is called the 
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t, \ z  :: 
characteristic exponent of o. Moreover, by Proposition 4.4 in [6], every 
solution y of equation (1) for all a,  b ~ ( 0 ,  oo) is a characteristic measure of o.  
Notice that, by Theorem 4.3 in [6] ,  the pair x(o), y(o) determines the 
generalized convolution o. 

We say that the generalized convolution o admits a characteristic function 
if there exists a one-to-one correspondence p+f i  between measures p 
from P ,  and real-valued bounded continuous functions f i  defined on the 
half-line [0, m) cornmuti& with convex combinations and scale changes, i.e. 
(T,p)*( t )  = ji(at) for a ~ ( 0 ,  m). Further, the key condition postulates 
(pov)- = jiij and the convergence p,, -t p is equivalent to the uniform conver- 
gence f in + fi  on every compact subset of [0, a). It has been proved in [4] 
(Theorem 6) that a generalized convolution admits a characteristic function if 
and only if it is regular. By Theorem 2.1 in [ S ]  the characteristic function is 
unique up to a scale change and is represented by an integral transform 

m 

P(t )  = j Q(tx)p(dx)  
0 

with a continuous kernel D fulfilling the conditions IO(t)( < 1 for t~ [O, a) and 
n(t) = 1 - tXL( t ) ,  where x is the characteristic exponent of o and the function 
L is slowly varying at the origin. 

, Many examples of generalized convolutions are to be found in various 
branches of probability theory ([10], [ l l ] ) .  We shall quote some of them. It  is 
clear that every generalized convolution o is uniquely determined by the 
expressions SaoJb with a, b E (0, a). 

. EXAMPLE 1. a-convolutions *, (a  > 0): 6 ,  *, 6, = 8g(a,a,b1. These C O ~ V O ~ U ~  

tions correspond to the operations (Xa+Ya)lIa on independent random 
variables X and I: For a = 1 we get the ordinary convolution. For any a >  0 
we have x(*J = a and ~(43 = d l .  

EXAMPLE 2. Kingman convolutions *,,@ (a > 0, B >  1): So *,,@ 6, is the 
probability measure with the density function equal to 

in the interval la" - ballla < x < (a" + ba)lia and vanishing otherwise, where B is 
the beta-function. These convolutions have been introduced by Kingman in [3] 
for the study of spherically symmetric random walk in Euclidean spaces. Here 
we have x(*a,b) = 2a and 

(2)  ~ ( * ~ , ~ ) ( d x )  = ~ 4 l - V ( f l -  exp ( -x2"/4)dx.  
EXAMPLE 3. Convolutions o,,, (a > 0, n = 1, 2, . . .): for 0 < a < b,  
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where 11,,,, denotes the indicator of the half-line [b, co) ([5], Example 1.6). 
Here we have x(o,,*) = m and 

(3) y(oaqn)(dx) = ~ ( n ! ) - ~ x - ~ - ~ [ ~ + ~ )  exp ( -x - " )dx .  

The case a = n = 1 is relevant to work [2] of D. G. Kendall on stationary 
random closed sets. 

Given a number 4 E (0, CO), for any p E P  we put ' 

91 

P ~ , ( P )  = S X ~ C L ( ~ X ) .  
0 

Denote by P, the subset of P consisting of all p with m,(p) < m . Further, 
denote by Qq(o) the subset of P, consisting of all p fulfilling the condition 
pon E Pq for n = 1, 2, . . . It is clear that both sets Pq and Q,(o) are invariant 
under the maps T, (a > 0) and 80~Qq(0) .  

Two generalized convolutions o, and o, are said to be q-equivalent, in 
symbols 0, 7 o,, if Q,(ol) = Q4[o2) and m,(pDi") = m,($'") for all n = 1,2 , .  .. 
and p~Q,(o,). The aim of this paper is to study the q-equivalence of 
generalized convolutions. We begin with properties of the sets P, and Q,(o). 

LEMMA I. If ~ o v E P ~ ,  then P E P , .  

Proof.  For q 2 x(o) we have, by Theorem 1 in [S], the inequality 
m,(pov) 2 m,b) + m,(v), which yields the assertion of Lemma 1. Suppose that 
q < x(o). Then, by formula (15) in 181, we have for AEP 

m 

(41 m,(A) = c, l ( 1  -j(t))t-4-1dt, 
0 

where c, is a positive constant. Consequently, to prove the relation p~ Pg it 
suffices to show that the integral j," (I -jl(t))t-q-ldt is finite. Since, by Lem- 
ma 4.3 in [6],  @(O) = 1, we can find a positive number to such that &(t) > 0 for 
t E [O, to]. Moreover, by Lemma 4.4 in [6],  I@(t)l d 1  for t E [O, a), which 
implies the inequalities 

m 

(5)  j (1 -@(t))t-4-5 < Oo 
to 

and 

1  -(pov)-(t) = 1-fi(t)+@(t)(l-v"(t)) 2 1-@It) 

for t~ [0, to]. Hence and from (4) we get the inequality 

which together with (5) completes the proof. 
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As a consequence of equation (1) we get the following statement: 

PROPOSITION 1. y(o) E Q,(O) if and only $ y(o) E 4. 
PROPOSITION 2. If either g < x(o) or g > x(o) and Q,(o) # { G o ) ,  then 

~(0) E Qq(0). 

Proof. It has been proved in [I] (Lemma) that y(o)~P, for q < x(o). 
Consequently, by Proposition 1, y (0) E Q,(o). In the case q > x(o) and 
QB(o) # (do) we have, by Theorem 2 in [8], y ( o ) ~ P ,  which, by Proposition 1, 
yields the assertion of the proposition. 

By Corollary 1 in [XI the set P, is closed under the convolution o for 
q < x(o). This yields the following proposition: 

PROPOSITION 3. If q < x(o), then Qq(o) = Pq. 

PROPOSITION 4. If (k- 1)x(0) < g < kx(o) for a certain k = 2, 3, . . . and 
Qq(o) # (do}, then Qq(o) = {p: mqlpo(k-l)) < a). 

P r o  of. First consider the case k = 2. Then, by Proposition 2, y (0) E 4, 
which, by Theorem 3 in [8], shows that the set P, is closed under the 
convolution o. This yields the equality Q,(o) = 4. 

Now suppose that k 3 3. The inclusion Q,(o) c ( p :  n ~ , ( ~ " ~ ~ - ~ ' )  < 4 
is evident. In order to prove the converse inclusion we assume that pO(k-l)~ Pg ,  
Hence in particular it follows that ,U*(~-~)EP,,  where r = (k- l)x(o). Applying 
Theorem 4 from 181 we conclude that pok€C and, consequently, by 
Corollary 6 in [8], pok€P,. Applying Theorem 4 from [8] again we 
get the relation pon E < for n = 1, 2, . . . Thus )U E Qq(o), which compIetes the 
proof. 

THEOREM 1. If x(ol) = 40,) = q, then o, 7 0,. 

f roof. Observe that, by Proposition 3, Q,(o,) = Q,(o,) = P, and, by 
Theorem 1 in [8], m&ojv) = m,(p)+m,(v) for j = 1, 2, which yields the 
assertion of the theorem. 

THEOREM 2. If q > x(oj) and y(oj) 4 4 for j = 1, 2, then o, 7 0,. 

P r o  of. By Proposition 2 we have the equality Qq(ol) = Q,(o,) = {So}, 
which yields the assertion of the theorem. 

EXAMPLE 4. From (3) we get the formula m,(o,,,) = ao if q 2 a(n+ 1). 
Since x(o,,) = a, theFabove theorem yields the relation o,,, y o,,, whenever 
q 3 max(a(n+ I), B(m+l)). 

THEOREM 3. If q = 2x(01) = 2x(02), y(ol), ~ ( o ~ ) E $  and 

then o, y 0,. 
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Proof. As an immediate consequence of Propositions 1, 3 and 4 we get 
the equality Qq(ol) = Q,(o,) = 8. Denoting by a, the expression (6) we have, 
by Lemma 2 and Theorem 1 in [8 ] ,  the formulae 

mqCu ojv) = m q b I +  mqCv) + aqmq/2 b)mq,,(v) 
and 

for j = 1, 2, which yield the recurrence formula 

for j = 1,2, n = 1, 2, . . . and p E <. Using the above formula we obtain the 
equality mq(pDi") = mq(po2")or a11 n = 1, 2, . . . , which completes the proof, 

EXAMPLE 5. From Examples 2 and 3 we get the formula x(*,,,-~/~) 
= x(oz,,) = 2a. Setting q = 4a and n 2 2 we get from (2) and (3), by a standard 
calculation, 

I 

! 
mqI*a,n- 1/21 = 16ntn- 11, m q / ~ ( * , n -  112) = 4(n-11, 

It is easy to show that condition (6) is fulfilled. Consequently, by Theorem 3 we 
have the relation y 02a,n for D: > 0 and n 2 2. 

THEOREM 4. If o1 y o1 and y(o,)~P,, then x(ol) = x(o,). 

Proof. Setting, for simplicity of the notation, y = y(0,) and r = x(o,) we 
have, by Proposition 1, y E Qq(ol) and, by (I), 

naq(yo'n)=nqirmq(y) ( n = l , 2 , . . . ) .  

Consequently, 

Further, denoting by m*bj the greatest median of p we have the inequality 

which, by (7), yields n-1irm*(yo2n) S $"(n~,(~))'~ for all n = 1, 2, . .. Applying 
the theorem from [73 on limit behaviour of medians we get the inequality 

(8) x(ol) = r < ~ ( 0 ~ ) .  

, Since y E Qq(02), we conclude, by Proposition 2, that y (0,) E 8 for q # ~ ( 0 ~ ) .  
I Consequently, by the first part of the proof, replacing 0, by 0, we have the 

inequality 40,) < 40,) for q # x(o,), which together with (8) yields the 
I assertion of the theorem in the case q # ~(0,) .  In the remaining case q = x(oz) 
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we have, by Theorem 1 in [8], m,(y 02") = nm,(y) for n = 1,2, . . . , which, by (7), 
implies the formula q = r = x(o,). The theorem is thus proved. 

LEMMA 2. Ifp,o,p,o ,...~,,u,EQ,(o,) and 0, 7 o,, then 

mqbl O l  p2 O l  * .  . O1 ~ k u , )  = m q ( ~ l  O2 p2 O2 ' ' O2 ~ k ) '  

Proof. By the assumption we have the relation 

for every n = 1, 2, . . . Consequently, by Lemma 1, 

for every k-tuple r,, r , .  . ,: , r, of non-negative integers. Given an arbitrary 
k-tuple a,, a,, ... , a, .of non-negative real numbers f u l F i g  the condition 

k g.L=14 = 1 we put i = zs=,qis. Since 

(10) RaJ"= n!(rl!r2!...rk!)-1ui'a~... 
rl +r2+... + r k = n  

. . . a F p F  oj piJr%j. . . or pLjFk 

for j = 1, 2 and n = 1, 2, . . . , we conclude, by (9), that 2'" E P, for every 
n = 1,2, ... or, equivalently, h~Q,(o,). Thus we have the equality 
na,(AOlk) = m4(A02k), which, by the arbitrariness of a,, a,, . . . , a, and formula 
(lo), yields 

for any k-tuple r,, r,, . . ., r, of non-negative integers fulfilling the condition 
r, +r, +.. . +r, = k. Taking r, = r, = . .. = r, = 1 we get the assertion of the 
theorem. 

For p, , p,, . . . , pk E P with p1 o p , ~ . .  .opk E Pq we introduce the notation 

where the summation C. . . runs over all r-element subsets (i,,  i,, . . . , i,) of "'" ,...,$) 
the set of indices (1,2, . . ., . 

As a simple consequence of Lemma 2 we get the following statement: 

LEMMA 3. If v, 0, v , ~ , . .  .olvsol p201 .. .o,p,~Q,(o,) and 0, y o,, then 

Now we are in a position to prove a rather unexpected result: 

THEOREM 5.  If q + nx(ol) for n = 1,2 ,  . . . , y(0,) E P, and 0, 7 o,, then 
o1 = 02. 
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Proof. Notice that, by Theorem 4, x(o,).= ~ ( 0 , )  = x. For simplicity of 
the notation we put y = y(ol). Further, denote by k the positive integer 
fulfilling the condition (k - l)x < kx. Given a, b E (0, oo) we put c = g(x, a, b) 
and A, = A, = . . . = II ,  = y. By formula (1) we have 

Since, by (1) and Proposition 1, T,, y o, . . . 0, T,.y 0, i12 0, . . .ol  Ak E Q,(o~) for 
any a,, . . . , a, E (0, m), we conclude, by Lemma 3, that 

(11) M,,(~,,T,Y~,T,Y,I,,-.-,J,)-~~~,~(~,,T,~~,T,Y~~T,~~~~,...,A~) 

I +Mq,k(02~ T Y O ~ ~ Y ' ~ ,  Ty02 &Y, 1 2 ,  - - a ,  A& 

= Mg,k(ol, Tj0l KY, 12, -.., Rk)-2Mq,k(o,, Tyo1 Tyo1 Ty, A,, . . - ,  1,) 

+Mq,k(ol, q ~ o l q ~ o ~ q y o , q A ,  L , , . - . , & ) = O .  

Let p -P fi  be the characteristic function of the convolution 0,. Applying 
Lemma 2 and formulae (15) and (17) from [8] we have 

whenever p, o, p, 0,. . . o, p, E P,. Comparing the above formula with (1 1) 
we infer that 

Since, by Lkmma 4.4 in [6], If(t)l < 1 and, by Lemma 2.1 in [9], f(t) # 1 for 
almost every t E [O, a), the integrand is non-negative almost everywhere. This 
implies the equality f(cat) j(bt) = f(ct) for almost every t E [0, a). By the 
continuity of the characteristic function the above equality holds for all 

i t E [0, a). Consequently,T,y o, T , y  = T,y, which together with the equality 
x(o,) = x(o,) = x shows that the probability measures y and y(02) are similar. 
Now applying Theorem 4.3 from [6] we conclude that o, = 0,. The theorem is 
thus proved. 

Notice that, by Theorem 1 and Examples 4 and 5, the assumptions 
q # x(ol), q # 2x(01) and y (0,) E P, of the above theorem are essential. The 
problem whether the assumption q # nx(ol) for n 2 3 may be omitted is still 
open. For a-convolutions the following theorem gives an answer to this 

1 question: 
THEOREM 6. ~f q # a and o 7 x,, then o = r,. 
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Proof.  Since x(*J = a, y(*J = 8, and, consequently, y ( * , ) ~ & ,  it suffices, 
by Theorem 5, to consider the case q = kol for integers k 3 2. It is clear that 

(12) Q k a f ~ )  = Qka(*a) = Pka, 

SF = T,I /~  61 ( n  = 1,2,  . . .) and Mka,k(*a, d l ,  a l r  . . . , S 1 )  = (- l ) k k ! .  

Applying Lemma 3 for s = 1, v, = p, = . . . = pk = 6, we get the formula 

(I3)  Mk,a,k[o, * * - ,  811 = ( - l l k k ! .  

Further, by Theorem 4, x{o) = a and, by Proposition 2, y(o) E QkJo), which, by 
(12) and Lemma 2 in [8], yields the formula 

Hence and from (13) we get the equality 

(14) mk, (r (0,) = m:(y (0)) . 
Taking into account the assumption k 2 2 we have the inequalities 

mka (~(0))"'~~'  2 mza (~(o))'"") 2 ma( y (o))~'~, 

which together with (14) yield m,,(y (0)) = m;(y(o)). Thus 

which shows that the characteristic measure y(o) is concentrated at the point 
m,(y (o))lia. Since y (0) # 6,, we conclude that the characteristic measures y (0) 

and y (*,) are similar. Applying Theorem 4.3 from [6] we get the assertion of the 
theorem. 
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