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Abstract. For a symmetric a-stable random vector (X4, ..., X,, Xs+1)
with 1 < « <2 and spectral measure I, we find a necessary and
sufficient condition in terms of I' for the conditional variance
Var(X,+: | X;,..., X,) to be finite. We express the conditional vari-
ance in terms of I', and we develop an additivity property when
X,,..., X, are independent. These results are then applied to stable
processes: scale mixtures of Gaussian processes, harmonizable and
moving averages.

1. INTRODUCTION

For jointly normally distributed random variables, conditional expec-
tations are always linear and conditional variances are always constants
(i.e., degenerate random variables). Here, we consider random variables
X5 ..e5 X, Xp+1 that are jointly symmetric a-stable with a <2 (x =2
corresponds to the normality). In this case, conditional expectations do not
always exist (when 0 < a < 1), and when they do, they are not always linear.
Existence (when 0 < a < 1) and linearity (when 0 < a < 2) of conditional
expectations have been considered for the bivariate case n = 1 in [4], [5]1, [9]
and for the multivariate case n = 2 in [2], [7]. Here, we consider conditional
variances, which are not always finite and when they are, they are not generally
constant (i.e., degenerate); we focus on the case where 1 <o < 2.

We give a necessary and sufficient condition for E(X2,; | X,, ..., X,) to
be finite, and we express the conditional second moment in terms of the joint
spectral measure (Theorem 1). The bivariate case n = 1 was considered in [3],
[9], [10]. We also relate the finiteness of E(X2Z,, | X,, ..., X,) with that of
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E(X2::1X), k=1,...,n (the Corollary). When the random variables
X,, ..., X, are independent, we show that Var (X, | X,, ..., X,) is a sum of
n terms, each depending on X, and proportional but not equal to
Var(X,+1 | X3, k=1,...,n '

Several examples of stable processes are considered in Section 3. For scale
mixtures of Gaussian processes, conditional variances are shown to be always
finite and they are expressed in terms of a fixed functional form (Theorem 3).
Harmonizable stationary processes are also shown to always have finite
conditional variances (Theorem 4); this extends a more special result in [6]
which was established for all 0 < « < 2. Finally, for moving averages, necessary
and sufficient, and, simpler, sufficient conditions are given for finiteness of
conditional variances, and they are shown to be satisfied by the two-sided
Ornstein—Uhlenbeck process (Theorem 5). ‘

All proofs are collected in Section 4.

Throughout the paper, points in R are denoted by x*® = (x, ..., x,), the
usual inner product by {(x®, y™» =3 x.¥, and the Euclidean norm by
™2 = {x™, x™>. We will also denote points in R"** by x**V = (x, x,, ,),
where x™eR". If X"*Y is a symmetric o-stable (SaS) random vector with
0 < a < 2, then its characteristic function is of the form

(1.1) Oxes 0 (tT V) = Eexp (i (t"+ 1, X+ Dy)

— exp{— j‘ |<l'("+1), y(n+1)>|ur(dy(n+1))}’

Sn+1

where I' is a finite Borel measure on the unit sphere S,.; = {s"*VeR""1:
fs®* V) =1} of R"*Y, called the spectral measure of X™*1. -

We also use the bracket power notation x<?> = |x|?sign (x) for xeR'; and
the symbol ¢ for a generic finite positive constant' whose value may change
_ from expression to expression, while ¢, denotes a specific constant.

2. RESULTS -

When X, , is independent of X™, or when its conditional distribution
given X™ is stable with index o, then E(X,;?|X™) < o as. only for
0<p<a, so Var(X,+1|X™) = co. Here are some specific examples.

INDEPENDENCE. When X, is independent of X™, then .

<, O0<p<a,

E(1X,:1/7] X®) = E(1X,44|P) =
(X1 X) = E (X, 11) {OO’ i<

AR (m) Process. X,— 0, Xy—1— ... =0, Xy-m = Z,, Where {Z,; neZ} is
an independent SaS sequence of random variables. Then, for n > m, X®*1 is
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an SoS random vector and
E( X417 | X® =x®) = E(jayx,+ ... +0,Xp+1-m+Zn+1l7)

<o, O<p<a,
00, xa<p,

a.s.

ORNSTEIN-UHLENBECK PROCESs. X (f) = jt_we“‘(““’dz (u), teR, where
Z has independent SaS stationary increments. For any fixed ¢, < ... <t,
< t,+1, WE can write

tn th+1

X(tur) = | oD {~Alas1—}dZ@+ | oxXp{—2(tns1—1)}dZ()

= CXp { _.;['(tn+1 —tn)}X(tn)+exp {_/1 tn+ 1} _[ eil.udZ(u)’
tn
so that the (nonstationary) sequence Y, = e*~ X (t,) satisfies Y,y = Y,+Z, 44,
where Z,., = _[::“ e ™dZ(u) are independent SaS. It follows that
E(Y,+ P Y®) <00 as. for 0 <p<a and = + o0 as. for «a < p, and thus

<o, O<p<a,

E(|X[1n+1)|p|X(t1):"-s X(tn))={w a<p

ONE-SIDED LINEAR PROCESSs. A slightly more general example with
the same kind of behaviour is provided by X,= Zz oDiZn-i, Where
{by=1,b,; neN} is a sequence of constants with Zf=°|bj|“<oo and
{Z,;neZ} is a sequence of independent and identically distributed SaS
random variables. It may easily be seen that

E(Xp+1P1X™) = E{E(Zss1+ Y, b;Z0s1-}" | Z;, j < m) | XV}
i=1 :
_ <00, O<p<a,
N + o0, o <p,

On the other hand, when X,., is dependent on X®, then
E(X,+17] X™) < o0 as. for all p. So the question arises under what type of
weaker condition of dependence of X,.; on X® is it possible to have
Var(X,4+:]X™) < o0 as. This question is answered in Theorem 1.

We will assume that X, ..., X,, X,4+, are linearly independent. As in
Lemma 2 (due to Samorodnitsky and Taqqu [9]), this implies that

Py (@) < exp {—c|t™ V||7}

for all t"*VeR**! and some positive, finite constant ¢, and thus ¢ (t"*1)
e} (R"*Y) and X®*D has a continuous probability density function
frm+n(x®"TV). The regular conditional second moment of X,., given
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X® = x™ js then given for all xX™eR" by

1 o0
2 (n)
fT(n)(x—‘")) _Iw Xa+ 1 Sxens 0 (X", Xp i 1) dXy 14,
where fye (x™) is the density of X™, Throughout, whenever we write
E(X2:, | X™ = x™), we mean this regular version. We first give a necessary
and sufficient condition for the finiteness of the second conditional moment,
and we express it explicitly in terms of I

E(X7 | X® = x®) =

. .THEOREM 1. Let X,, ..., Xn+1 be linearly independent and Jjointly SaS
random variables with 1 <o <2. Then E(X2,, | X" =x") < o for all
x"eR" if and only if C

2 (n+1)
2.1) _‘.(]sx('ﬂ (™) _‘. yn+1r(dy, )dt(,,) < .
R"

seq 1K, Y270
Also, for all xX™eR", '

2

x n . n n n
m,{" dt! )exp(_l<t( ), xt )>) bxom (t( )

1 y3+1r(dy("+ 1)) ) . 2
1 - T o~ —a {n) M\ (a—1> F (n+ 1) ]
X{< a)SLKt‘"’, yose (S S Ty

When n =1, ¢x,(x,) =exp(—a5lt;|*) and the necessary and sufficient

condition (2.1) becomes equivalent to jsz ly.[*~ %I (dy,, dy,) < oo, as in [10].
When X,, ..., X, have a spherically symmetric distribution:

¢)X(n+l) (t(n+1)) — exp(—az ”t(n+1)“a) .

22) EXZiq | X7 =x") =

and I is surface measure on S,., then E(X2,, | X™ = x™) < oo for all
x®eR" if and only if

2
2.3) | M r(dy+D) < oo,
smed 1V -

as follows from Lemma 3. Since I is surface measure and 2—a < 1, condition
(2.3) is satisfied. Thus, if in addition to the assumptions of Theorem 1, the r.v.’s
X, .... Xu+1 have a spherically symmetric distribution, then E(X2,,| X®
=x") < 00 for all xeR". '

It follows from Lemmas 2 and 3 that condition (2.3) is sufficient for
condition (2.1). '

A stronger sufficient condition than (2.3) is obtained from [y™| > |y,l,
k=1,...,n:

2
(2.4) | y";ful"(dy("“)) <o for some k=1,...,n
' Sn+1 kal :
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This is slightly stronger than the necessary and - sufficient condition for
E(X2,1 | X, = x) < o0 for all x, = R', which is expressed below in terms of
the spectral measure I' of the full vector (X,,..., X,+,) for comparison
' purposes. :

COROLLARY. Let X, ..., X,, X,,+1 be lmearly zndependent and ;omtly SaS
with 1 <o <2, and let k—1

(@ E(X%:,] X, —x,,)<oo for all x, €R! if and only if
(2.5)

j - y";:r(dyf"“}) <o and [ DplT@) =0
Sn+ 10{p#0) kal Sn+ 10 (=0}
(b) If, in addition, n> 1 and X,,...,X, are independent, then
E(X2:1| X, = x;) < oo for all x,eR" if and only if X,,,, is independent of X ;,
j#k, j=1,...,n, and o

) v
2.6) | Yatl pdye+ 1) <co.
Sn+1nbi+y3+l=1Jk$0ﬂyk
(© If in addition n>1 and X, ..., X, are independent but X, ..., X,,
X,+1 are not independent, then at most one of

.7 {(E(XZ2, | X, =x) <o for all x;,eR'}, k=1,...,n,

may be true, while if X, ., depends on more than one of X, ..., X, u» then none of
(2.7) is true. -

It is clear from this Corollary that E(X2,; | X™ = x™) < oo for all X" ¢ R"
does not necessarily imply that E(X2,, | X, = x;,) < oo for all x, € R and some
k=1,...,n (Of course, in the converse direction, E(X2,, | X, =x,) < ©
for all x, e R and some k = 1, ..., n always implies that E(X2;, | X® = x") < a0
for all x™eR", since E(X,,+1 | X, = %) = [fo, ()] f g EXZ4 | X
= x™) fyw (<) [T; 1j#x9%;) When X 1» --+» X, are spherically distributed, in
view of the Coroﬂary, we have E(X2,, | X"" =x") < oo for all xX™eR" and
E(X%:;| X, =x) < oo for all x,eR' and k=1, .

Whenever the conditional second moment is ﬁnite, so is the conditional
variance whose expression can be found from Theorem 1 via

Var (X,+11X®™) = E(XZ4 1 | X®)+{E (X, 11 X")}2,

and the expression of the regular conditional mean, which is given likewise for
all x"eR" by

(28) EXper | X® =x™) = (n)) § e exp (—idt™, x™) pyem (£7)

Jgoe
C{ § @, YOy, Tyt )

Sn+1
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and is not necessarily linear [2]. In general, this is a complicated expression,
and it would be interesting to know if it can ever lead to a (degenerate)
constant value; this is never true when n = 1, as is clear from [10]. Now we
show that when X, ..., X, are independent, then Var (X, ., | X,, ..., X} is
a sum of n terms, each of which depends on X;, k=1,...,n and is
proportional but not equal to Var(X,., | X))

THEOREM 2. Let X ,, ..., X, X+, be linearly independent, jointly SaS r.v.’s
with 1 <o <2, and let X,, ..., X, be independent. ‘
. (@) EX241 | X =x™) < o0 for all x"eR" if and only if

9) T (Sar1n{Vass = £1}) =0
and ' : ' '
yz
(2.10) Lrdy™ <o, k=1,...,n.

I lz—a
Sn+1n2+y2, =120} Vi

(b) If E(X2,, | X® =x") < o0 for all X eR", then
(211) Var(Xpq | X, =x4,..., Xp=x,) = Z D3+1|k(°‘)si (i/ay; )
: k=1
for all xX™ € R", where the universal “standard deviation” function S, (x; o) is up to
Jactor a(a—1) as in [10]:

Df cos (xt)exp(—t7) * " 2dt
(2.12) S3(x; o) = a(@—1)2— :
| cos(xtyexp(—t*)dt
0

and the coefficients D}, depend on the joint distribution of X, and X, as
follows: - - :

afe—1) ' ' .
@13 Drs () = = {0 ] Dl Yhea T (@Y )
Ok  Sar1n02432,, =10}

—( [ ¥ O ypss Tdy™* )

Spn+1

and 6§ = js..n [el*T (dy*™*Y) is the scale parameter of X,: &x, () = exp(—a|t]).

Note that the dependence coefficients D2, (o) differ crucially from
the dependence coefficients CZ, ;. (x) in the expression of Var(X,., | X))
= C21 1k (@) S, (X,/o,; o) given in [10] only by the constraint y, s 0 in the first
integral within brackets. This is crucial because, according to the theorem,
without the constraint y, # 0 we obtain the coefficients C2, . («) whose value
is infinite!
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3. APPLICATIONS TO STOCHASTIC PROCESSES

3.1. Scale mixtures of Gaussian processes. These are defined by X (¢)

= AY2G(t), te T, where A is totally right skewed (a/2)-stable, 0 < a < 2, i,

positive with Ee™"4 = exp(—u*?), u > 0, independent of the Gaussian pro-

“cess G(f), te T, with mean 0 and covariance function R(t, s). With X*"+V
=(X(t,), ..., X (ta+1)), We have

(3'1) E ¢X(n+ l)(s("+'1')) = Eexp {i (s("+ 1)’ X(n+1)>} v
= Eexp {iAllz (s"'"' 1), G(n+1)>}

= Eexp{—%A (st D, Z',,“s"'“’)} '

1.
= exp{—"z_ml_z <s(n+ 1)9 zn+ 15("+ 1)>a/2},

where Z, .1 = {R(4, t)}7521, so the finite dimensional distributions are SaS.
We will assume, without loss of generality, that X (¢,), ..., X (¢,) are linearly
independent, i.e., the covariance matrix X, is positive definite. It was shown in
[2] that, for all 0 < & < 2, multiple regressions exist:

E{X (s )l | X(t1), ..., X ()} < © as,
and are linear:
E{X(@tn+1) | X (), ..., XD} = 0, X (t,))+ ... +a,X(t,),
and the regression coefficients are those of the Gaussian process:
E{G(tn+1) | G(ty), ..., G(t)} = a,G(t)+ ... +4a,G(t,).

Here, we show that multiple conditional variances are also. finite when
1 < a <2 and we derive their expression. The case n = 1 was considered in

[10].
Tueorem 3. With the notation above, when 1 < a < 2, we have
E{X?(ty+1) | X(t) =%(5 ..., X(t)=x,} <oo ~ for all x"eR"

and

(B2)  Var{X(tys1) | X(t)) = Xy, --» X (&) = X,}
| = [R (tn+19 tn+ 1)'_En+ l.nz;lz:l+ .l,n] Sv% ((x('", zn_lx(n)>1/2; ﬁ),
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where Z,,H‘,,, =(R(n+1>ty)s -ovs R(tpa1s o) and, for n =2,

. o) j e 3e:xp( —7% drj(sm())" cos (\/5 xr cosf) do
(33) Si(x;o0) =32 ,
[ texp(—r9dr j'(sinﬂ)"'zcos (/2 xr cos6) de
5 5 oW

whereas S (x; o) is as in (2.12).

Notice that the conditional variance in (3.2) is proportional to the
corresponding conditional variance of the Gaussian process G and depends on
x™ via the quadratic form (x™, X x®™> and the fixed function SZ(-; a).

3.2. Harmonizable stationary processes. These are represented by
(349 X(@)=Re | e*dZ(l), —oo<t<oo0,

where Z has complex, independent, rotationally invariant, a-stable increments
and finite control measure m, and thezr finite dlmensmnal characterlstlc
functions are given by

n+1 w nt+1

(3.5) Eexp{ Z s X (tk)} =exp{— ]' [ Z skexp(ltkl)l }dm(,l)

=exp{— I KT, 2,0 (A)s®H N2 dm(2),

where X, (1) = {cos [(t,—t) A]}:_Lll. It was shown in [2] that for all
0 < a < 2 multiple regressions exist: E{|X (t,+ )| | X (¢,), ..., X (t)} < c0 as.;
however, their (nonlinear) expression is not currently known when n > 2. Here
we show that multiple conditional variances are also finite when 1 < a < 2.
- The case n = 1 was established in [10], and the case n = 2 with special times
t,—t; =t3—t, and all 0 <a <2 was established in [6].

- THEOREM 4. With X (1), as in (3.4)3.5), and 1 <a <2, we have
Var {X (t,+1) | X (), ..., X (t,)} < 0 as.

At present, the functional form of the conditional variance is not known
when n > 2. The case n =1 was developed in [10].

3.3. Moving average processes. These are stationary SaS processes of the
form

(3.6) X(@) = oj?f(t—u)dZ(u), —0 <t < oo,

where the process Z has stationary independent SaS increments and feI2,
so that the finite dimensional characteristic functions are, with X®*V
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= (X(tl)’ ey X(tn+1))’

3.7 +
Pxems (8" V) = Eexp {i s+, X"'“’)} = exp (=1 Zlf(tk u)| du}.
—-—w k=1

THEOREM 3. For a moving average process as in (3.6)—(3.7), with 1 < a < 2
and {X (), k=1, ...,n+1} linearly independent, we have

E{Xz(t,,ﬂ)'l X(t)=xy,....X(@t)=x,} <o for all x"eR"
if and only if

+ d
09 [amen(- T |5 st | pf:—(tfa—)T
or if
< f*(u)du :
(3.9 _jm {ZZ:lfz(tk_tn+1+u)}1_“/z < 0.

Specifically, for t;, < ... <t, <ty and the stable two-sided Ornstein—Uhlen-
beck process X (f) = [~ _e **~"dZ (u), we have

Var {X (t,+1) | X (¢;) = x4, ..., X({t,) =x,} < o0 - for all X" eR".
The functional form of the conditional variance, when it is finite, is not
known even for n = 2.
4. PROOFS

Proof of Theorem 1. This follows the line of the proof in [10]. The
regular conditional ch.f. of X, given X ™ = x‘"’ is expressed in terms of the
joint ch.f. @ywm+n (V) as follows:

V(tns1s x(")) = E(EXP(itnanH) | X™ = x™)

- B T L (1, 203} e €9, )

for all t,,,eR' and x™eR" (Zabell [11]). It follows that
E(X2,, | XP =x™ <o for all xPeR"
if and only if '

{2 ‘I/(tn+1a x(")) ‘//( tn+1: x( ))}

lim
th+1—0 tn+1

exists and is finite for all xX™eR".
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We can write
1

4
I(tysy; x™) £ 2
t)_|+1

{2—¢(tn+1; x‘"’)—!l’(—t._.ﬂ; x("))}

1
= O e ) i!ﬂ exp { —i (t™, x™3}

1
-

—Oxesn (1™, —t,44)}dt™

: .
= W “t[. exp {~—l <t("), x‘"’)} ¢X(n+ 1) (t("), 0) {Jl (t("+ 1))

+J, (")} de™

21, (twr 15 X415 (L 15 X™),

X

{2¢x(n+ 1) (t("), 0)— ¢x(n+ 1 (t("), Lyt 1)

i where
1 ‘
J () = pp) {1-4(", t,+1)—exp{—A(™, t,, V}

n+1
i : : +1_A(t("), - n+1)_exp{_A(t(”)’ _tn+1)}}a
1

2
tn+1

J2 (t("+1)) = {A (t(n)’ tn+ 1)+A (t(n)a - n+1)}a

A(t(n+1)) = -“ {Kt("+1), y(n+1)>'z__|<t(n), y"")l“}l’(dy"'“’).

Sn+1

We first show that the limit of I, (¢,+1; x*™) as t,, , =0 always exists and is
finite for all xX™eR". By Taylor’s expansion, we have

1= A( ) —exp {— A"+ D)) = —3 47 (= D) exp {— 0+ )},

where |0+ V)| < |4 (" * V). Also, by Lemma 1, we have for |t,+,] < 1, say,

[4E < f {ltns 1 el +KE, YO gy 1 Yo} T(y™HD)

Su+l -

<c(l+[ ™Y,

and using Lemma 2 we obtain the following upper bound:

2
|xens (™, 0)J; (¢"* V)| < exp{—c; IIt""Il“}% A+ 171 exp{c( + (™"~ 1)},
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which is in I! (R") as a function of ™, The elementary argument on pp. 90-91
of [10] gives

lim J ("*Y) = lim

th+1—0 th+10 n+

{Az (™, ty )+ 42 (™, —ty1 1)}

= a2 { [ <, Iy Dy, Ty

Sn+1

Thus, the dominated cbnvergence theorem gives

lim I, (tys1; x™) = fexp{—it™, x™>} ¢X(n+l) (t( " 0).

tn+1-0 (Zﬂ)"fx (x‘”))

<{ § <o, y‘"’><"">y,.+1r(dy‘"+“)}’dt‘"’.

sn+l

Since this limit -exists and is finite for all x""eR" it follows that E(X 201 X®
= x™) exists and is finite for all x™ e R" if and only if the hmlt of I, (ty+1; ™)
as t,4+; —0 exists and is finite for all x™eR"

Assuming first that lim,_, oI, (t,+1; x™) exists and is finite for all x”eR",
we obtain by Fatou’s lemma (since, by Lemma 1, [x+y[*+[x—y[*—2|x[* = 0
for all x, yeR?Y),

®© > (21" fx (0) lim Iz(t,,+1,0)

th+1*

P Idt(")ff’x(rﬁl) (") , 0 j F(dy

Sn+1 the1™>

<D, YOY — byt Yar 1 F =217, YOOI}
= a(a—1) [ At s (t™, 0) [ Ty V)|, yOXF 22 g,

Sn+1

s Y™+ tas1 Vsl

Thus, condition (2.1) follows.
Now assume that, conversely, condition (2.1) is satisfied. Usmg Lem-
ma 1 (ii) with r =2, we have

W™ ) <e § |<t("’ Yy zy,,“F(dy(""'l)),
Sn+l
so the integrand of I,(t,+; x™) is upper-bounded in absolute value for all
tn+1 DY
Cchyosn (1™, 0) [ [, y™H*72 +1F(dy("+”)

Sn+1

which is in I! (R") as a function of t™ in view of condition (2.1): Thus, the
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dominated - convergence theorem gives

)" fxeo (x™) lim I 5 (tas1; x™)

tht1

I exp { —i (t7, XD} Pyenen (£, 0){ lim (e 1)} e

tn+1

=a(x—1) [ exp{—it™, xM>} dxm+n (™, 0)
Rn

x{ 1K™,y =2y, T (dy™* V) de®,

Sn+1

ie., this limit exists and is finite, leading to E(X2,, | X™ = x™) < co. In this
case we have -

E(X,.HIX""—X‘"’)— Hm I(ty+y;x™)= lim {1 (tn+ 15 XY+ Iy (tg 15 x™)},

th+1— n+17*

which gives the final expression (2.2).
Proof of the Corollary. (a) From Theorem 1 or [10] we know that

E(X2,|X,=x)< o for all x,eR?
if and only if

@.1) I|u|2 Ty 1 (du, dv) < o0,

where I ., is the spectral measure of the joint distribution of X,, X, , in

Eexp {i(t X +1tn+1 X0+ 1)} = exp {— § [tyt+ tas 1 0* Ty 41 (du, dv)}.
S

The relationship between I'y,,, and I is
Tipey=Toh™!, where Fay™ V) = (2 +y2, )2 (dy™* D)

and h maps S,.;n{yi+y3+1>0} onto S, by K™ V)= (y, yi+r1)
X (¥ +y2+1)" Y2 (=(u, v). Now condition (4.1) is equivalent to '

O0=Typs1 (Szn{“ = 0}) = f(sn+1n{yk = 0}) = I [Yas+ 12T (@dy®™+ D)
Sn-l-lnb'k:o)
and
v ya
0 > ——Tinr1(@u,dy)= | L M(dy"t ).
S2nfu# 0} ful Sn+1n{p#£0} VA

(b) Note from Miller [7] that X, ..., X, are jointly independent if and
only if they are pairwise independent, if and only if the joint spectral mea-
sure I' of X, ..., X,,, X,+, is concentrated on the n circles y?+y2,, =1,
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k=1,...,n, of §,,1. Then the second condition in (2.5) is written as

)y f [Ya+1*T dy®* D) =0,

= 2492 =
fiﬂlc Sn+1niyl+y 1L,y;#0}

nt1t

which is equivalent to saying that on each punctured circle y?+y2,; =1,
y; # 0, we have y,,, = O ae. [I'], ie, that X; and X, are independent. Also,
the first condition in (2.5) is equivalent to (2.6).

Proof of Theorem 2. (a) Assume that E(X7,, | X*™ = x™) < oo for all
x™eR", so that condition (2.1) in Theorem 1 is satisfied. It follows that for
almost every " eR"

f J’f+1r(dy("+1))

¢2) o K,y
Thus,
FSpr1n{y1=-..=y,=0}) <0, Iie, F(S"ﬂn{y,,ﬂ = t1}) < 0.

Then in view of the independence of X, ..., X, the integral in (4.2) over
Sn+10{y™ # 0} may be partitioned into U:=1S,,+1n{yf+y,f+1 =1,y #0},
leading to

- 1 y3+1 n+1)
Y f I (dy™*") < oo,

2- 5=
k=1'tk| asn+1n(y'1‘+y,2‘“=1.yk#=0} kal *

and thus to the conclusion.
Conversely, if (2.9) and (2.10) hold, then the double integral in condition
(2.1) of Theorem 1 equals

z": I(ﬁxcn)(t(n)) 1 4@ _ J‘ Vas1 rdy®+v),

2- 2=
- k=1Rm 6575 sarinpzesz, = 1m0y D 7°

(b) Using the independence of X |, ..., X, we can simplify the expressions
appearing in (2.2) of Theorem 1 as follows: . -

-‘- J’fﬂr(dy("“))_ - 1 Y+t

2—a 2- 2-
s,,“Kt(")sy("))l_ * k=1ltkl ﬂ!S...+1n(yl,2¢-!~,v'zﬁ_l=1.yh.-?*0)kal i

r@dy™*v)
4 3 |t 2b,,
k=1

J e,y g T@ ) = 3§y Oy Py
k=1 :

Sn+1 Sn+1’

n
4 -
£y t* Va,.
k=1
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Also, using the inversion relation:
w0
~——— | exp(it,x)exp(—oilt,|9dt, = 1
znka(xk) _jﬂo k"Vk kl¥g k

- and Py (t™) = H;=1exp(—aj-‘|tjl°‘), we can write (2.2) of Theorem 1 in the
form '

. . b
E(X2,,| X®=x") = g(0—1 —k
( +1 I ) ( )kgl 2ank (xk)

w , o
X _“ exp(_ithk)exp(—a'ﬂtkl“)|t,‘|°‘_2dtk

n 2
2 a

* k§1 27 fx, (xy)

[e4]
x | exp(—ityx)exp(—ofle ) e Vs,

-0

2y ¥ &4
LY e )

X [ exp(—it,x,)exp(—a*|t, )2~ dt

a0
x | exp(—it;x)exp(—ast|? e dt;.

In order to simplify further, note that from (2.12) we have

[+o}

1 ) B .
27 fx, (0) .“ exp(—it, x,) exp(—oflt | |t)* 2 dt, = S, (x/o,; @)aE %,

1
a(x—1)

- Using (exp (—o*[t|) = —exp(—o*|t|") 2o*t*"*> and integrating by parts, we
obtain

1 ’ [+ o] . ' o . - ) X,
I fy. (o) _.fw exp (—itx)exp(—oflt|) ' dt, = -l;f.;-
Also, integrating out (exp (—o*|f])" = exp (—a*[t]%) a262" 12~ D — exp(— a*|t%)
xa(@—1)6®Jt)*~2 and using integration by parts twice, we find
a2 0 2a—1)
——— | exp(—it,x,)exp(—oit|*) 2=~V dt
27 fr (%) _Iw p(—ityx;)exp( ) ti k
_ale—1) 1

o anfe () 3 P (i) exp (—aflnf) 1512 dt— xE /o

= Uf_zas1 (xi/oy; “)—xl%/"'l%a-
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It follows that

(43) EXZ2:1 1 XM =xM) = bt ™S, (x,/04; @)

k=1

1 X
2),.2-2 k.o
- Z a;qor S| — a
k=1 Oy

= Z (bkak *—atop 2“)31(_ “)‘*‘Z z": X a;X;

ki=1 Ok aj

X, 4;X;

~dliy 3

a
ktj=1 Ok ‘71'

Likewise, the exprcssmn (28) for E(X,+; | X™ = x™) can be 51mp11ﬁed as
follows: :

44) By | XP=xM) =iq ¥ — B
( ) ( +1 I ) | kgl zank(xk)

x | exp(—ityx,)exp(—oflf) tf* " dt,

k=1 dk .
Now (4.3) and (4.4) imply (2.11) and (2.13).

Proof of Theorem 3. From (3.1) we have

j‘ Ks(n+1) y(n+1)>|u1-v(dy(n+1)) — a2 <s(n-.f-1)’ Z"+1s(n.+1)>a:/2”

Sn+1

and differentiating twice with respect to s,.,, we find:

j“ (s("+ 1), y(n+ 1)><“_1>y;,+11"(dy("+ 1))

Sn+1

= 27D, X DY (04D, 3L,

where 2,.,, is the (n+1)-st row of Z,,,, and

21/2 y3+lr(dy(n+1))
.f KS("+1), y(n+l)>|2—a

Sn+1
= —Q2—a) (s, By (sOTDHHT2(OHD, B D2

+ <s("+1)a z:n+1s("-'-1)>a/2_1 R(tn-i- 1s tn+ 1)

R(tn+19 tn+1)
= <s(n+1), zn+ls(n+1)>1—a/z-

14 — PAMS 15
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Putting s,+; = 0, we find that the left-hand side of (2.1) is upper-bounded by

1 : :
2_1/2R (tn+ 1 bnt 1) I ¢Xp {_21/2 <s(n), Z‘"S(n)>a/2} <S(")5 Zns(n)>“/2 -1 ds(n),
Rn

which is shown to be finite as in (4.3) of [2]. This establishes (2.1). .
"~ To find the expression of the conditional second moment and variance in
this case, we may use a direct argument as follows, instead of (2.2). We have

~ E(X?(ts+1) | X®) = E{E(AG® (t,;+1)| 4, G™)| XM}

- = B{AE(G? (ts+1)| G")| X}
and for the Gaussian process.G: -

E(G?(ta+ )1 G™) = Var (G (ta+1)| G®)+[E (G (ta+ )| G™)] ?

= [R(tns 15 tas 1) —Zns 1,020 ' Zns 1,0l +<a™, G2
Thus,
E{X?(ty+1) | X"}
= [R(tas 1> tas )= Zn+ 1020 " Zns 1,a]E(A] XP)+a®, XO)2

and
(4.5) Var{X (t,+ )| X™} = [R(ty+1, tar )= Znt 1020 Znr 1] E(A] X®).

To find E(4|X™) we now use a standard argument. For all u > 0 and v™eR"
we have

Eexp{—ud+i{v™, X™)} = Eexp {—ud +iA'? (™, GM)}
= Bexp {—ud—3 4o, 2,0} = exp {~[u+§ (o7, 2,051},

Differentiating with respect to u and putting u =0 we obtain
E {Aexp {i o, Xy} = 2[5 o, Z,00)]2 exp (~[4 <o, £,07)]%}.

Since the left-hand side can also be written as E {exp {i (v, X™>} E(4 ]| X™)},
it follows that

1

E(A|X®" =x") = ——7-—— [ exp{—i®™, x

“] )= @Y o) LR )

o - — & n n\a, n
X o o™, Ty 2" Lexp {—27%2 (o™, X, 0™)2} do™.
Likewise,
1 .
Sxe (x) = J exp{—i o™, xM)}exp {—27%2 o™, Z,v™)%2} d®,

7Y gn
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so, finally,
E(4 | X™ = x™)
& [on€Xp {¥i (o™, XMy — 292 (y) | 3 W)y T dNel2=1 gyn)
e frn€xp {—i (o™, xy — 2742 (Y| 5 ynryeiz} gy

Now let 4%, =B'B be a full rank factorization and put u™ = Bv™ and
r = [[u™|. The above expression is then written as follows:

o fgnexp{—i{B~? U™, x %} pa=2 gy
2" [prexp (—1<B~ T, X0y 7} du®

E(A ] X" = x®) =

Changing variables from u”eR" to r > 0 and v™ e S,, we have, with 7, being
surface measure on S§,,,

46) E(4|X®™ = x)
_a _f:: drr"** 3 exp (—r*) fg 7, (dv™)exp {—ir (B~ o™, x™)}
2 [Cdrr"texp(—r) fs, Ta(dv™)exp {—ir (B~ 1o™, x™)}
Finally, changing coordinates with y™ = r(B~1yYx™, we have for n=1

sf exp { —ivy} v, (dv) = cos (|y)),

leading to the expression of the conditional variance in [10] and in (3.2), (3.4),
and for n>2

@47  [exp{—i<v™, y™>}y,(dv™) = f exp {—i [|ly™| cos8} (sin6)"~2d0
Sn o .

= [ cos[|| ™| cos8] (sinB)*~2d0,
0

where [|y™|2 = 2r2(x™, 7 1x™). The final expression (3.2)—(3.3) in Theo-
rem 3 follows from (4.6) and (4.7).

Proof of Theorem 4. Following the same steps as in the proof of
Theorem 3 leads to

T :
Bl TAETD oman T oo, 5,090y am(d,
n+1 ’ T®

Then,. condition (2.1) of Theorem 1 may be shown by applying the same
arguments as in the proof of Theorem 3 in [2].
Proof of Theorem 5. By (3.7) we have

o nt+1

j- [(sO+D, ynt 1)>|¢r(dy(n+ l)) = j I Z skf(tk—u)ladu.

Sn+1 —w k=1
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Differentiating twice with respect to s, ; and plugging in (2.1), we obtain (3.8).
Now the linear independence of X (), k=1,..., n, by Lemma 2 implies

 Pxem (S™) < exp{—c|s™|*} for all s"eR".

Thus, a sufficient condition for (3.8) is

n n K f (t"+1 U)dU
jds‘fcxp{ c||s()||} f o [ 1skf(t,‘—v)|

and_ going to polar coordmates this reduces to (3.9).

When f(t) = e~ *", in order to check condition (3.9), it suffices to check the
finiteness of the integrals over( 00, ty+1—t,) and (t,4+—1t,, o), the remaining
integrals being clearly finite, But ’

) - 2}.udu

I,J 0 (Yoo 1exp{ 24(u—tys1+1)}}

= {Z exp {24 (tys 1 — 1)1} ]3 e *Mdy < oo,

tn+1—t1

1—a/2

and likewise for the 1ntegra1 over (—oo, tn+1—Ln)

5. AUXILIARY RESULTS '

Now we collect all the lemmas which are used in the proofs of the theorems

LemMA 1 ([2], Lemma 4). For all 1<a<2, a<r<2 and zeR the
Sfollowing inequalities are true: :

@ |14z =1 < alzP +al,

(i) O < [1+z*+|1—2*-2 < ¢4z,
where ¢, is’ a positive constant depending only on a.

The followmg property of multivariate SaS characteristic funcnons is
used. ‘

LEMMA 2 ([9] Lemma 2 1). If X 15 eees X,, are _linearly _independ_eni,_ ie., fdr

all t(")eR” '

f{s"‘)eS": ™, sy £ 0} > 0,
then for all "+ D) = (™ 1, )eR"*1, .
 Pxesn (V) < exp{—cz 1112} exp {c5 ltn+ 417}
for some positive constants cz, '¢4; and _[R"|¢xn+1(t" b+ 1)| dt™ < oo for all
tn+IER ‘
LEMMA 3. Let oce(l 2] and
I= ICXP( C||t(")||“) §

Sn+1

|yns+ o[ T (dy®"*1)
<™, y®HIre ’
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where ce(0, ). Then I < oofor‘ ref0, o]; I < oo for re(a, a+1) if and only if

j'. Iyn+1‘|r F(d ("+i))<00'
T e ’
n+1

and I = co for re[a+1, ).
Proof., Using Fubini-Tonelli’s theorem we can write

R G ad ) }
I= wral” dt™ I (dy™* ),
I ly +1| {‘{" l<t(")a y(n)>|r—¢ ( y )

Sn+1

Rotating the axes in R” so that one of them is along ™, and thus
™,y = @] [y cos (¢, y*™),

and using polar coordinates in the innerintegral over R", we obtain

(sin@)" 2 "

[Vn+1l" < l—rtag.f
I=¢ r (n+1) —rn® 1 r+ad .
¢ § (dy )E‘;EXP( ce)e. 'sz,lcos0|"“

P il

The ¢ integral is finite if and only if n—1—r+a> —1, and likewise the
0 integral is finite if and only if r—a < 1. Also the integral over §,;, is
automatically finite when 0 < r < a. The result then follows. =
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