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ON MOEMOGOROV QUASHMAR'FINGALE PROPERTY 

BERNARD W E  INK E L (STRASBOURG) 

Abstract. Let (Xh be a Sequence of real-valued random variables 
(r.v.), which are centered, square integrable and independent. 
A well-known result, due to Kolmogorov, states that if 

then (SJn) converges almost surely (as.) to 0, where S, = X, + ... 
... +X,. 

This paper is devoted to the interpretation of condition (i). For 
instance, it is shown that if the r.v. X, are weighted Rademacher r.v., 
then (i) is equivalent to the fact that ((S,/n)', %A is a quasimartingale 
(9, being the natural filtration associated with the sequence (X,)). 

The problem of the interpretation of (i) for Banach space valued 
r.v. X, is also studied. 

0. Kolmogorov's theorem is the most famous strong law of large numbers 
(SLLN) for a sequence of not identically distributed r.v., it is stated as follows: 

THEOREM 0.1 (Kolmogorov 171). If (Xd is a sequence of real-valued random 
variables (r.v.), which are independent, centered, square integrable and such that 

then (XJ satisfies the SLLN: 

Hypothesis (0.1) appears as a tool which measures how fast the sequence 
( S j n )  converges to 0; this can - for instance - be seen by applying the 
Hajek-Rknyi inequality 141 for bounding 
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From this point of view, (0.1) seems only to be a - rather technical and 
rough - bound for O,(t). A more satisfactory interpretation of assumption 
(0.1), as, say, an intrinsic property of the sequence (S,/n), would be welcome! 

Intuitively, as (SJn) is derived by Kronecker's transform from the 
martingale (S,, Y,), where 3, = a (XI, . . . , X,), the expected "intrinsic proper- 
ty" would be that (Sdn)  has some "generalized martingale" property. We are 
going to try to guess which one, using a few informal lines and naive discussion. 

Suppose that the assumptions of Theorem 0.1 are fulfilled. For every 
integer n, we denote by 9, the @-field generated by XI,  ..., X,. First observe 
that-(Sn/n,' 3,) is not a martingale. The first classical less restrictive "generalized 
martingale" property is the quasimartingale property (see, e.g., [2], p. 323). We 
recall briefly its definition: 

DEFINITION 0.2. Assume that (X,) is a sequence of integrable r.v., and (2,) 
is an increasing sequence of a-fields. Then (X,, 8,) is a quasimartingale if the 
following hold: 

(i) Vn s N*, X, is %-measurable; 
(ii) sup E IX,I < + rn ; 

Remark.  Notice that if the r.v. Xn are positive, then property (ii) follows 
from (iii). A very small amount of information on quasimartingales we will need 
in the sequel can be found in [I] or [2]. 

If (S  Jn, 9,) were a quasimartingale, we would have 

which is more restrictive than (0.2). However, an easy computation shows that 

and so (0.3) seems closer to (0.1) than we would think at first glance! 

This remark makes reasonable the hope that for some p > 1 the sequence 
(ISn/nlP) - which for large n is small with large probability - will have a good 
"generalized martingale" property. 

From this naive discussion we will now get an intrinsic explanation of 
assumption (0.1), the explanation which will be complete for scalar valued r.v. 
and partial in the infinite-dimensional setting. 

Before stating the main definition we need some notation. 
We denote by (B, 11 1 1 )  a real separable Banach space, equipped with its 

Bore1 a-field a. In the sequel, (E,) always stands for a sequence of independent 
Rademacher r.v. ( P ( E ~  = 1) = P (ck = - 1) = 4). For every integer n, by F,, we 
denote the 0-field generated by r , ,  ..., E,. 



DEFINITION 0.3. (1) We say that the Banach space (B, ) I  11) has the property 
K1 if, for every sequence (x,) of elements of B such that 

( 1 1  S,11 2/n\ Fn) is a quasimartingale, where S, = XI k s n  E~ xk .  
(2) We say that the Banach space ( B ,  11 1 1 )  has the property KZ if for every 

sequence (x.) of elements of B such that (ll~,/n11~, Fn) is a quasimartingale 
- - 

(0.5) holds .true. ' 

(3) A Banach space (3, 1 )  11) having both the properties K1 and K2 is said 
to have Kalmoga~.ov's quasimartingale property (in short, Kqm-property). 

The present paper is devoted to the study of these three properties, which 
shed a new light on the nature of hypothesis (0.1). In Section 1, it is shown that 
the real line has the Kqm-property. In Sections 2 and 3, the case of 
infinite-dimensional space valued r.v. is considered; for instance, it is shown 
that a Banach space has the property K1 if and only if it is of ty$e 2 and that 
an infinite-dimensional Hilbert space does not have the Kqm-property. 

Finally, in the Appendix, an exponential lower bound (which will be 
a crucial tool in Section I), due to Ledoux and Talagrand [10] and 
Montgomery-Smith [l 11, is recalled. 

1. The real line has the Kqm-property. In this section we will give 
a complete explanation of Theorem 0.1 in the case of weighted Radema- 
cher r.v.: 

THWREM 1.1. The space R of the real numbers has the Kqm-property. 

Proof.  Let us start with the easy part: 

LEMMA 1.2. The space R has the property KI. 

For showing that if x,,, x:/k2 < +a, then (IS Jn12, Pn) is a quasimartin- 
gale, we have to verify that 

It is easy to see that 

Thus, by the assumption made on the sequence (x,), it remains only to show 
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An easy computation gives 

and this completes the proof of Lemma 1.2. 

For the proof of Theorem 1.1, it remains to show the following more 
interesting lemma: 

LEMMA 1.3. The space R has the property K2. 

Let (x& be a sequence of real numbers such that ((S,Jn)2, S,,} is a quasi- 
martingale. The first technical tool that will be needed later is the following 

LEMMA 1.4. There exist a sequence (6,) of positive numbers and a positive 
constant C, such that 

(i) C,,,J, < +m; 

(ii) Vk, x;/k2 6 C2 sup(l/k, SE). 

P r o  of of L emrna 1.4. For every integer n, we denote by p, a median of 

By the quasimartingale convergence theorem (see [l], 4 VI.38), the sequence 
( ( ~ , / n ) ~ )  converges a.s. to a random variable 2, which, according to Kol- 
mogorov's 0-1 law, has to be a constant. Consequently, there exists a positive 
constant C, such that, for all n, p, < C,/n.  By assumption, we have 

so, by a well-known property of the median, 

and also 

Thus Lemma 1.4 follows immediately from property (1.4). 

Let us define 

where, as usual, [ 1 denotes the integer part of a real number, and C is the 
constant involved in Theorem 4.2 below. Denote by M the integer t2.  
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The next step in the proof of Lemma 1.3 is the following 

LEMMA 1.5. F w  every integer n > no = sup(M, 3)  we define the following 
sets of integers: 

U ( n )  = {I,  .,,, n}, 

ul (4 = U (n )n{k :  sup (l/k, d,) = I/k), U, (n) = U (n)\U, (n) 

Denote by a ,  (n), . . . , a, (n) (respectively, PI (n), . . . , f lM  (n)) the non-increasing 
rearrangement of the sequence (Ix,], k E U, (n)) (respectively, (Ixkl, k E U ,  (n))) 
stopped at th.e index M. Then the following conditions hold: 

O C;lanon -3(a:(n)+ . . .  +a&(n)) < +m; 

(ii) Cn3n,n-3(fl:(n)+ ... +B&(n) )  < +a. 

Proof  of Lemma 1.5. Let us first prove (i). By the definition of U ,  (pa), we 
have 

F I - ~ ( ( X ? ( ~ ) +  . . .  +cr&(n)) G CJn2,  

so (i) holds. 
To see (ii) observe that 

Property (ii) then follows easily from the inequalities 

From Lemma 1.5 we get 

LEMMA 1.6. For every n we denote by zl (n), . . . , z, fn) the nun-increasing 
rearrangement of the sequence (lxll, . . . , Ix,]). Then for every n 2 no we have 

where u, is the general tern of a convergent series. 

By the application of the Ledoux and Talagrand and Montgomery-Smith 
exponential lower bound (see the Appendix), we get 

From Holmstedt's result (4.2) recalled in the Appendix and from Lemma 1.6 it 
follows that 



Now we consider two cases. 
Case 1. We have 

Then it follows from (1.5) that 

Denoting by I the set of integers n for which (1.6) holds, we get from (1.3) the 
relation 

2 
% + I  C --- < +OD. 

nsi ( n +  'I2 
Case 2. First observe that, by the choice made for t, for each n € I C  we 

have 

Now denote by A the set of elements of I" for which 

and by B the set P\A. It follows immediately from (1.3) and (1.7) that 

Finally, un being the general term of a convergent series, we also obtain 

This completes the proof of Lemma 1.3 and, consequently, the real line has the 
Kqm-property. 

Several authors have extended Theorem 0.1 to r.v. taking their values in 
a real separable Banach space (B, ( 1  (1) equipped with its Bore1 a-field 93 (see 
[ 5 ] ,  [8] and [lo], Chapter 7 and the references given therein). Their results 
incite to study the connection between the geometric properties of a Banach 
space (B, 1 1  11) and the properties K1, K2 or Kqm-property! The sequel of this 
paper is devoted to that connection. 



2. The type 2 property and the property MI. In this section we will study the 
connection between the property K1 and the type 2 property. Let us recall 
the definition of the type 2 (and also that of the cotype 2, which will be used in 
the next section): 

DEFINITION 2.1. Let (B ,  1 1  1 1 )  be a real separable Banach space and let, as 
above, ( E ~ )  be a sequence of independent Rademacher r.v. 

(1) The space (B, 11 1 1 )  is of type 2 if there exists a constant C, > 0 such 
that 

(2) The space (B, 11 1 1 )  is of cotype 2 if there exists a constant C, > 0 such 
that 

We refer the reader to [lo] (Chapter 9) for further information on type 
and cotype; we only recall the Hoffmann-J~rrgensen and Pisier theorem [S], on 
which the property K1 will shed some new light: 

THEOREM 2.2. Let (B ,  11 1 1 )  be a real separable Banach space and let ( E ~ )  be 
a sequence of independent Rademacher r.v. The  following two properties are 
equivalent : 

(1) (B ,  I I  Ill is of type 2. 
(2) For every sequence (x,) of elements of B such that 

the sequence SJn  = zlSkan xk/n converges a.s. to  0. 

This farnous result can be precised in the following way: 

THEOREM 2.3. For a real separable Banach space (3, 11 II), the following two 
properties are equivalent: 

(1) (B, 1 1  1 1 )  has the property K1. 
(2) (B, I I  I I )  is of type 2. 

(2)-(1). Suppose that (x,) is a sequence of elements of B such that (2.1) 
holds. As above, we denote by S, the sum E,x,, and by 9, the D-field 
generated by (E, , . . . , eJ .  Then, by the conditional Jensen inequality, 
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Consequently, 

Therefore, for every fixed integer N we have 

Applying now the type 2 property, we obtain easily 

which completes the proof of the implication (2) * (1). 
(1 )  3 (2).  Let (x3 be a sequence of elements of 3 such that (2.1) holds. By 

the property K1, (11 S,Jn 1 1  ', FJ is a quasimartingale; therefore the sequence 
(llS,,/n11 2, converges as. to a random variable Z (see [I], $ VI.38). It follows 
easily from (2.1) that there exists a non-decreasing sequence of strictly positive 
numbers (ol,), with lim,, + , a, = + m and such that if we put 

Yl  = x1, 

V n  > 0, Vk ~ l ( n )  = (2"+1 ,  ..., 2"+'), y, = a,x, ,  

then 

Here again the sequence ( 1 1  T,/nl12, Fn)  - = El ,,$, E, yk is a quasimartingale, 
and so there exists a constant C I 1  > 0 such that 

Let us notice now that, for every integer n 2 1, 

which implies 



On Kolmogorov's quasimartingale 121 

and therefore Z = 0 a.s. So we have shown that if (2.1) holds, then the SLLN is 
fulfilled for the sequence xk).  By Theorem 2.2, this implies that (3, /I 1)) is of 
type 2. 

3. The cotyp 2 property and the Hqm-property. Now we will study the 
connection between the cotype 2 property and the Kqm-property. 

THEOREM 3.1. A real separable Banach space ( B ,  11 11) having the 
Kqm-property is of cotype 2. 

Proof .  Let ( B ,  11 1)) be a real separable Banach space having the 
Kqm-property, but which is not of cotype 2. Then for every integer k 2 1 there 
exists a sequence (ui, . . . , erick1) of elements of B such that 

where, as usual, the (c,) are independent Rademacher r.v, Since there is no loss 
of generality in assuming that 

we work on this assumption in the sequel. Let us put 

Vk 2 1, m (k)  = sup (n (I),  . . . , n (k - 1), n (k)), 

and consider the following sequence of integers: 

We associate with the sequence (c,) two sequences of sets of integers: 

Using the (u;), (Ak) and {B,) we define now, for every integer k 2 1, a remarka- 
ble sequence (xj) of elements of B in the following way: 
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Let us examine the properties of the sequence (xJ. From the definition of the x j  
we get immediately 

Let us now consider the sequence 

and show that ( 1 1  ~ , / r s l l ~ ,  Fn) is a quasimartingale. The same computation as in 
the proof of Theorem 2.3 shows that 

Therefore 

Observe that ck < 2 ( c h - ,  + m ( k ) +  1). Consequently, by (3.3), we have 

Thus, showing that (llS,/n11 2, FJ is a quasimartingale reduces to proving the 
following 

LEMMA 3.2. xk, (E llSall ') /c: < + CO. 

Since B having the property K1 is of type 2 (see Theorem 2.3), for every 
integer k 2 1 we obtain 

(this follows from (3.1)). Notice that, by the definition of m(k),  if j < k1I4, then 
ck 2 (k3I4 - 1 )  cj. Consequently, 
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The last inequality implies Lemma 3.2. Hence (IIS,Jnl12, Fn) is a quasimartin- 
gale; it follows from (3.2) that B has not the property K2. Therefore our 
hypothesis on the geometry of B is wrong, and so (3, 1 1  11) must be of cotype 2. 

A famous result due to Kwapieli [9] states that if a Banach space (By jl 1 1 )  
is both of type and cotype 2, then it is isomorphic to a Hilbert space. According 
to Theorems 2.3 and 3.1, if there exist spaces other than the real line having the 
Kqm-property, these spaces are necessarily isomorphic to Hilbert spaces. The 
following result makes more precise the relationship between being a Hilbert 
space and having. the Kqm-property : 

THEOREM 3.3. An inafinite-dimensional HiIbert space does not have the 
Kqm-property. 

Proof .  Let ( H ,  <, )) be a real separable infinite-dimensional HiIbert 
space. Being of type 2, it has the property K1. Giving a counterexample we will 
check that the space does not have the property K2. 

Let (ejj denote the basis of H. Define 

As above, for n 2 4 we put S, = E ~ x ~ .  Let us check that (11~,/n11~; 9,) is 
a quasimartingale. Write 

An obvious comparison between an integral and a series shows that 

2n+1 " x 2 n f l  x 1 -dx < v, < 1 -dx. 
n2(n+1)' 3 1 n ~  n2(n+ 1)' lnx 

From (3.4) we deduce immediately that there exist two positive constants 
CI9 and Czo such that 

Consequently, 
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and, finally, 

Therefore 

Thus (IISnJnI12, Fn) is a quasimartingale. But . ..  

so the Hilbert space ( H ,  {, )) does not have the property K2; this completes 
the proof of Theorem 3.3. 

4. Appendix: A lower exgonentia1 bound for the Bail of the distribution of 
a weighted Rrsdernacher sum. In the proof of Theorem 1.1 we used a very 
powerful exponential bound for the tail of the distribution of a weighted 
Rademacher sum. This bound is due independently to Ledoux and Talagrand 
([I 01, Lemma 4.9) and Montgomery-Smith [I 11. We will give the statement of 
this result in Montgomery-Smith's language. 

First we have to recall some definitions and properties related to the 
E,-space. 

Let t > 0 be given. We will consider the following norm K,,,(., t )  on I , ,  
associated with t, arising in the theory of interpolation of Banach spaces: 

(see, e.g., [6]). Holmstedt ([6], Theorem 4.1) proved the following 

PROPOSITION 4.1. There exists a universal constant c > 0 such that for all 
~ € 1 ~ :  

- - 
1 

(4.2) ~ K 1 . 2  (x, t )  C x? + t J m  G Kl,, (x, t),  

where [ 1 stands for the integer part of a real number, and ( x f )  denotes the 
non-increasing rearrangement of the sequence (Ix,~). 

The announced exponential lower bound is as follows: 

THEOREM 4.2. For every element x = (x,) of il,, we deJine X (x) = x, , , E, x,, 
where, as usual, ( E ~ )  denotes a sequence of independent Rademacher r.v. Then 
there exists a constant C > 0 such that 

(4.3) VXEZ,, Vt > 0, P ( X ( x )  > C-1K,,2(x, t)) 2 C-'exp(-Ct2). 
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5. Some concluding remarks and some problems. As a conclusion to this 
paper, we will make some comments suggested by the above results. 

1. The first natural question which raises is the following: Does Theo- 
rem 1.1 extend to R"? A positive answer to this question would - with the help 
of Theorem 3.3 - give a characterization of finite-dimensional spaces. 

2. A second natural question, connected with Theorem 3.1, is the one of 
the relation between the property K2 and the cotype 2 property. Intuitively, 
one expects that Godbole's characterization of cotype q spaces in terms of the 
SLLN for symmetrically distributed r.v. [3] would play a role for answering 
this question as the Hoffmann-Jsrgensen and Pisier theorem does in the proof 
of Theorem 2.3. 

As the convergence of the Kolmogorov series 

is more restrictive than Godbole's assumption 

it is probable that the property K2 does not hold in every cotype 2 space. 
3. From the Hoffmann-Jergensen and Pisier theorem we know also that 

(3, 11 11) is of type p(1 < p < 2) if and only if the foIlowing implication holds: 

Therefore, an idea similar to the one developed in this paper is to compare (5.1) 
and the fact that ([lS,/nllP, Pn)  is a quasimartingale. By the same proof as for 
Theorem 2.3 we get 

THEOREM 5.1. Let (B, 11 )I) be a real separable Banach space, and ~ € 1 1 ,  2[. 
Then the following are equivalent: 

(i) V (xk) €EN, xk3 llxk llP/kP < + CKI * (IISn/nIIP, 9 , )  is a quasimartingale. 
(ii) B is of type p. 

A natural question, which relates Theorem 1.1 to Theorem 5.1 is the 
following one: Is the implication converse to (i) of Theorem 5.1 also true (of 
course, in the scalar setting)? The answer to this question is negative. This can 
be seen as follows: 

Using the above notation, we get immediately 

E IS,IP Z F  < + CKI *(l:q sn) is a quasimartingale, 
n 3  1 
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which, by Khinchin's inequalities (see [lo], Lemma 4.1), is equivalent to 

It is easy to construct sequences (xk) of real numbers such that the series having 
the general term k-P]x , lP  diverges, but for which (5.2) holds. Thus Theorem 1.1 
has no analogue for p # 2. 
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