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A CENTRAL LIMIT THEOREM FOR STRICTLY
STATIONARY SEQUENCES IN TERMS OF SLOW VARIATION
..~ IN THE LIMIT

. BY

ZBIGNIEW 8. SZEWCZAK (ToruUN)

Abstract. For strictly stationary random sequences satisfying the
“minimal” dependence condition, necessary and sufficient conditions
for the weak convergence to the normal law in terms of slow variation
in the limit are found.

1. Introduction and results. Let {X,};.z be a strictly stationary sequence of
random variables defined on a probability space (2, #, P). Let S, = Z:= Xk
and let v, — + oo be a sequence of positive numbers. Let A4 denote a standard
normally distributed random variable.

Bernstein in [1] introduced a method for proving limit theorems for
dependent variables known as “big blocks by small blocks separation”. This
method requires the following “dependence” Condition B(v,) (see [5]):

(o) (o) (o)

for some sequence v, - + oo of nonnegative reals.

Following [2] we shall say that the sequence of measurable nonnegative
functions f, is (—y)-regularly varying in the limit if there exists a “rate” sequence
Tw» I'n = + 00, such that for any sequence x,, dominated by the rate sequence
(i.e., such that x, = o(r,) and x,— + oo, we have

+0

(1.1) max

1<k+I<n

X fu(xy)—c > 0.

In the case where y = 0 we say that f,, is slowly varying in the limit. If L is slowly
varying in the sense of Karamata, then the sequence of functions

L(x-n)
o)

{fn (x) =

is slowly varying in the limit.
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A strictly stationary random sequence {X,;} with symmetric partial sums
S, is in the domain of attraction of the symmetric strictly p-stable law, pe(0, 2),
if and only if the sequence of functions

{/2() = %" P(S, > xv,)}
is slowly varying in the limit ([2], Theorem 1). For p = 2 the corresponding
result is stated in the following theorem:

THEOREM 1. Let {X,} be a strictly stationary seguence with symmetric sums
S, which satisfies (1.1) for some v, — + o0. Then CLT for {X,} holds if and only if

HES)

is slowly varying in the limit sequence of functions.

If {X;} is an iid. sequence such that EX,; = 0, EX = 1, and the Crameér
condition

E(exp {h]X,[}) < +co0

holds for some h > 0, then the sequence of functions:

12) {P(S,, > xﬁ)}

PN > x)

is slowly varying in the limit with the “rate” r, = n'/¢ ([4], XVL, § 7, Theorem 1).
On the other hand, Nagaev in [8] (Theorem 1) proved that if x, > logn, then
for laws such that

x2**P(X; > x) = L(x),

where ¢ > 0 and L (x) is slowly varying in the sense of Karamata, the following
relation holds:

P(S, > x,,ﬁ) ~ nP(X; > x,ﬁ), n— +oo.

Hence in the general case (such as the absence of variance) one cannot expect
better than a logarithmic rate sequence in (1.2). However, the existence of any
rate sequence is equivalent to CLT (for a similar result when 0 < p < 2 see [6]).

THEOREM 2. Let {X,} be a strictly stationary random sequence satisfying
(1.1) for v,— +o00. Then :

L, 'S A0, 1),
if and only if

13 {P((— i s > /x v,,)}

P((-ty" ¥ > /%)

is slowly varying in the limit for m=1, 2.
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2. Proofs. Condition (1.1) depends on a normalizing sequence v,. Some-
times the information is required whether the sequence such that ¢, > v, also
satisfies (1.1). It turns out that this is the case where the sequence {v, ' S,} is
stochastically compact [3], ie., that every subsequence has a further subse-
quence which converges weakly to a nondegenerate limit.

LemMma 1. For a stochastically compact sequence {v, 1 S.} the convergence
in (1.1) is uniform on every [0, T], T < + o0, and

L _ v,
2.1 lim max — < + o0.
- e e 1KI€nly

Proof of Lemma 1. Let {X,} be an independent copy of {X k} and
S, = Z X,. Assume that for some I, < n the sequence {v; *(S, —S, )} is not
tight. For any symmetric and independent random variables we have

PX+Y>x)>P(X>x)P(Y>0=4P(X > x).

g(sl Sl,.) g(sn-l"—‘g‘n—l">
Uy Uy

is not tight, which together with (1.1) contradicts that {v, ' S,} is tight. Now by
the tightness of {v, !(S,,—S,,)} we have

Hence

] v
lim max — < + 0.
n 1<I<nly

Assume that this is not the case. Then there exists a subsequence n’ such that

1.
ht}lv"r vy, = + 0
n

g(__szn'—b‘zw) _ g( _S_)g(_ _S_)

Un Uy Uy, Uy Uy,

which is not possible since any weak limit {v;! S, } is nondegerate 'and the
left-hand side is tight.

Now, let us assume that there exists 7" > 0 such that (1.1) does not hold
uniformly on [0, T7]. Hence there exists a subsequence n’ such thatt,, > t, < T

and
S
E <exp {it,,: Sk—"']"i}> —E (exp {it,,: i“'}) -E (exp {it,,' vl"'})‘ >0,

and

lim

while by (2.1) and the tightness there exist random variables Z, Z,, Z, such that
L Wr' Stpr1) @ Z(2), LWr'S)w L2), Ln'S,)w L(Zy).
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S , St .
E (exp {iut,,, "'l‘)' o }) —E (exp {iut,,, U"" }) -E (exp {iut,,, i’" })‘

= |E (exp {iuto Z})— E (exp {iuto Z, }) E (exp {iuto Z,})|,

but, by (1.1), £ (Z) = L (Z,)+ ¥ (Z,). Thus the right-hand side equals 0, which
is not possible. This completes the proof. a

Hence

lim
w

Remark 1. The Lévy metric satisfies the following inequality ([9], Theo-
rem 1.5.2): - .

In(1+T)

17 d 1
(X, Y) < - g |E (exp {itX})—E (exp {itY})I-tf+(4\/§+m) =

Hence, if {v, ! S,} is stochastically compact, then condition (1.1) is equivalent to

(2.2) max _dy (L (Seri/vn), £ (Su/va)* £ (Sifvn) 0.

1€k+1sn

Proof of Theorem 1. Assume that

Vin S2
2 { yP(S, > yvn)dy = E(v—;/\x,,) - 1.
0 n

Let y, = o(x,), y, = . Then
\/x_n S2 Sz
2§ yP (S, > yvn)dy = {E <v—;/\xn>—E(u—;/\y,.>} - 0.

V¥n n n
Hence

X (1= Yu/%n) P(IS,] > /%0 D)

Vxn Xn
= P(Sy > /% 0)-2 | ydy <2 [ yP(S,| > yv,)dy - 0.
. V¥n V¥n
Thus

X P (IS, > /%y 00) > 0.
On the other hand,

' sz (1S,

El=271(]|2
G

Taking x, = o(\/g), X, — oo in the above, we get

Uy
S < x,,)) -1

v,
Since {S,} are symmetric, Theorem 1 follows by Theorem 1 in [7] or by
Theorem 9.5 in [5]. =

Vxn
< ﬁ)) = =X, P(IS;| > /%0 +2 | yP(S,| > yv,)dy.
0

2 S
Xn P(lsnl > Xn Un) d Os E U_ZI
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Proof of Theorem 2. It is enough to show that (1.3) implies CLT.
Observe that if for any K > 1 we have

limg P (S, > Kv,) =0,
then for any 1> 1

P(S, > /1 Kvy)
P > /1K)

holds. Hence, for A /Jc,c = \/)TkK Ve =0(skASs,) and y, — +00, we obtain

tim P(S,, >\/_v,, _
o P(,/V>\/3Tk) *

which contradicts (1.3). Thus further we may assume that

2.3) liminf, P(S, > Kv,) >0, liminf, P(S, < —Kv,) >0
hold for any K > 1.
Let us write Z, = S,— 8., tt, = s.v> and ¢ = E(Z2 A u,), where S, is an
independent copy of S,. Now
P(Z,> 2v,) = P(S,—S, > 2v,) = P(S, > v)  P(S, < —v,).
Hence, by (2.3),
liminf, P(Z, > 2v,) > 0,

and
ZZ
0 < liminf, P(Z, > 2v,) < lim inf, E( A )
Consequently,
2
liminfn%= C>0, - +ow.
Since

P(Z2 > yu,) <2P(S3 > 47 'yu,) 0,

so by the Lebesgue theorem we have
GZ 1
2= [P(Z2 > yuw)dy 0.
[

n

10 — PAMS 132
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Let x, > 4+ o0 be a sequence such that x, = o(u,/cZ). Then

E(Z:Au)—E(Z%Ax, g,.) -2 J!‘ P(Z2 > y)dy

Gn xncZ

u, 1 P(Z? > ys,v?)
“ ] Py e

(XnC2)/un " P(Wz > YSy)

< P(Z? > ys,v?)
P(N? > ys,)dy sup oo
Qn ((x..;jl)/u.. ) (o :Gn)< <« P2 >ypsy)

2P(S2 > 471 ys,v?)
PN > ys,)

<i2( j P(#?>y)dy) sup

SnGn (xngnsn)/"n ( i ")< y<1
U

2

<P%(E(./V2/\S,,)—E(./V2 Uf'%)) 0()

n n

<0(1)-— (E(./VZAS,,) E(JV" x:f"))?o.

Hence

E(Z2 AxaGa z;

_<_gg_x_c) _E (g_ A xn) o1
if x, > oo and x, = o(u,/c?). By (1.3) and (2.3) we observe that {v,*Z,} is
a stochastically compact sequence. It is easy to see that {Z,} satisfies Condition
B(v,). Hence, by Lemma 1 and by the relation limsup, ¢, *v2 = C™! < + 0 it
follows that {Z,} satisfies Condition B(g,). Now, by Theorem 1, for random
variables {Z,} we have

g(s,,-&) = .%(5) > 40, 1).
Sn Gn

Now we shall establish that symmetricity can be dropped. Let us write
U= Su (S S /%u00)s  Un= SIS < /%,00)

for some fixed x,— o0, x, = o0(s,). By (1.3) we have

P(ISuI (1S4 > /%n0s)| > £6) < P(ISul > /%) 70,

and hence

(2.4) g((UH—EU")Q—(U,,—EUn)> N 3,<S,,g—s,,>.
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We shall prove that

—EU,\?
limsup,,E(ﬂ—————'—') < + .

For this, note that

. 24/ Xntn ~
E(Un_ 071)2 =2 _f yP(IUn—'Unl > J’)dy

(1]

2V Xptn . 24/ Xptn .
0 [}

4 Ty (P 1054 > f3utd =S, 1084 > /5o > 271 3) dy

0
Vg

<8 | yP(Sa—8,> y)dy
1]
24 Xnbn
+8 [ yP(SJI(Sd > /%uvs) > 471 y)dy
0

24/ Xnn
S AE(Z2 A%, 02)+ 8P (S| > </Xavn)- | ydy

]

2
<4E (zz A (x;;’">gz>+ 163, 02 P (IS, > /%n )

Since limsup,¢, 2v2 = C~! < + 00, so by the relations
lim sup, ¢; 2 E(U,— U,)? < 4+1lim, ¢; 202+ 16x, P(IS,| > /%, v,) = 4,
we have
lim sup, ¢; 2 E(U,— E(U,))* = 2~ !timsup,¢~? E((U,— EU,)—(U,— EU,))*
=2 limsup, ¢ 2E(U,— U’ <2714 =2,

Now, by (2.4) and the Cramér theorem, we know that any weak limit of
{¢r 1 (U,—EUp)}, is of the form A" (a, 27*). The sequence {¢, 2 E(U,—EU,)*},
is bounded, so the only possibility is a = 0. On the other hand, {¢,(U,—EU,)}
is a tight sequence, and hence

g(U,.—EUn> ;»m(o, 1)_
Gn 2

By (1.3) we obtain

P(|S, (1Sl > /%at0)| > £G2) 20,
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whence

S,—ES,I(S,] < \/x_nv,))
£ - A0, 1).
( V26 # 400

Taking A, = ES,I(|S,] < \/x_,,v,,) and B, = ﬁ Gn in Theorem 10.3 in [5], we
see that the limit lim,n"! 4, = A exists and

S,—nA
3( B );n/V(O, 1)

holds. Also for the sequence {A,} we have

EISII0S) € VXt _ /%t _ /5 (//CHe)s,
n ?

n n

Ay
n

and hence [n"'A4,| -0 by the slow variation of the sequence n~1¢2 ([5],
Theorem 3.1). Consequently, we get

S\ _ S ).,
o(§)- ()00

The proof will be completed if we show that B, 1y, — 1. We know that
X, B2 X,4/2¢?

Cv? ~ Cu?

Hence by (1.3) we obtain
P(S; > (xa BD/Cv)oR) |
P(A4? > (x, BD)/(Cv7))

Now, since C~1x, = o(c, %u,), by what has been proved we have
P(S2>C 'x,B?)
P#?>C1x,)

-+ for x,=o0(¢ 2u,).

—1

and, consequently,

P(#* > (x, B2)/(Cv2))
P2 >x/C)

Observe that

' 1 X
PWN2>x)~—=x"12 exp{——},
/21 2
whence -

__1 ex {—l-x"B'%}\/gex {—x—"}~1
JomBycR) P2 e P acf T
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Thus
v, Xp B?

2.5) B—"exp {2C(1—E)}—> 1,
B, Xp 82

Since

2 2
limnfB—;'—hmnf(‘/_g") =2C >0,

by (2.6) we obtain

B? v?
lim sup,,v—;' <1 and lim inf,,»ﬁ% = 1.

By (2.5) we have

2
lim inf, ; >1
ll
(if this is not true, then we have along the subsequence n:

Un, B:,
B, eXP {ZC (1 - v,,)} -0

which contradicts (2.5)). Finally, B, ~ v,, and hence
Sn
&£ (v_) 2 40, 1).

n

This completes the proof of Theorem 2. &
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