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Abstract. We prove existence and uniqueness results of the solu-
tion for infinite horizon reflected backward stochastic differential equa-
tions with one or two barriers. We also apply these results to get the
existence of optimal control strategy for the mixed control problem
and a saddle-point strategy for the mixed game problem when, in both
situations, the horizon is infinite.
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1. Introduction. Nonlinear backward stochastic differential equations
(BSDE’s in short) have been independently introduced by Pardoux and Peng [18]
and Duffie and Epstein [7]. It has already been discovered by Peng [20] that,
coupled with a forward SDE, such BSDE’s give a probabilistic interpretation
for a large kind of second order quasilinear partial differential equations (PDE’s).
Then Pardoux and Peng [19] obtained an existence result of the viscosity solution
for this kind of PDE systems. These results generalize the well-known Feyn-
man-Kac formula to the nonlinear case. El-Karoui et al. [ 13] gave some important
properties such as a comparison theorem and applications in optimal control and
financial mathematics. Using results on BSDE’s, Hamadéne and Lepeltier ([14]
and [15]) obtained the existence of a saddle-point strategy under the Isaacs
condition for the zero-sum differential game problem and the existence of an
optimal strategy for the optimal stochastic control problem.

* This work has been finished when this author was visiting the Department of Mathe-
matics, University of Maine, as postdoctor from November 1998 to October 1999. This author was
also partially supported by NSF of China, Program No. 79790130.
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Then El-Karoui et al. [12] studied the reflected BSDE with one barrier.
The solution of the reflected BSDE is forced to stay above one given con- .
tinuous stochastic process which is called obstacle. For this purpose they in-
troduced one increasing process to push the solution upwards and also re-
quired the push power to be minimum. They got the existence and uniqueness
of the solution for this kind of reflected BSDE and also studied its relation with
the obstacle problem for nonlinear parabolic PDE’s within the Markov frame-
work. Using two different methods, the Snell envelope theory connected with
fixed point principle and the penalization method, Cvitanic and Karatzas [5]
extended the result to._reflected BSDE’s with two barriers, called upper and .
lower -barriers, which are two given continuous processes.

Recently Hamadéne and Lepeltier [16] generalized the results of El-Ka-
roui et al. [12] to one barrier which is right continuous and left upper semicon-
tinuous. They used this model to solve the mixed optimal stochastic control
problem when the terminal reward is only right continuous and left upper
semicontinuous. In this kind of mixed control problem, the controller has two
actions, one is of control and the other is of stopping his control strategy in
view to maximize his payoff. Also in this paper Hamadéne and Lepeltier gene-
ralized the result of Cvitanic and Karatzas [5] to reflected BSDE’s with two
barriers to processes S (lower barrier) and — U (U is upper barrier) merely right
continuous and left upper semicontinuous. They also used this result to obtain
a saddle-point strategy for the mixed game problem, which means that two
players have two actions, control and stopping their strategies in view to mini-
mize (respectively, maximize) the payoff, when the Isaacs assumption is fulfilled
and the terminal payoffs S and U satisfy the above condition. The first result
gives another very simple method, different from that of El-Karoui [11], who
used martingale methods to get the existence of an optimal mixed control.
The second result about the mixed stochastic game is to our knowledge
new.

We notice that the above results on reflected BSDE’s, mixed control and
game problems are all with finite time horizon. So our problem is how to
generalize the reflected BSDE’s to an infinite horizon.
~ First we need to review some results on infinite horizon BSDE’s. Peng
[20] obtained an existence and uniqueness result under some monotone con-
ditions. But the solution is in a special kind of square integrable space. Chen
[4] gave an existence and uniqueness result under a kind of Lipschitz condition
suitable for infinite horizon BSDE’s. In Section 2, we give this result as prelimi-
nary. We also prove the corresponding comparison theorem in that section.

In Section 3, we study infinite horizon reflected BSDE’s with one barrier.
Using the Snell envelope theory connected with the contraction method, we
obtain the existence and uniqueness result. Then we use this result to deal with
the mixed control problem with infinite horizon in Section 4. We obtain the
existence of an optimal strategy for the controller.



Backward stochastic differential equations 213

In Section 5, we study the double barrier reflected BSDE with infinite
horizon. We also use the Snell envelope theory connected with the contraction
method to solve our problem. Under some additional assumptions on the
barriers, we obtain the existence and uniqueness result.

At last, we use the result on double barrier reflected BSDE’s with infinite
horizon to study the mixed game problem in Section 6. When the Isaacs
assumption on the Hamiltonian is satisfied, we obtain a saddle-point strategy
for the two players.

2. Preliminary: Infinite horizon BSDE’s. In this section, let us ﬁrst give
some preliminary resulis about infinite horizon BSDE’s.

Let (B,);»o be a standard m-dimensional Brownian motion, defined on
a probability space (2, &, P); let (%), be the natural filtration of B,, where
&, contains all P-null sets of &%, and % = \/‘2 0% We introduce the fol-
lowing notation:

&#?={v,0<t< 0, is an F-adapted process such that
E[ sup [v)*] < o0},

0=t

H? = {v,, 0<t< o0, is an ZF-adapted process such that
o
E[ | o) dt] < o0},
0

= {&, & is an &_-measurable random variable such that E|¢? < oo}.

We consider the infinite horizon BSDE
2.1) Y,=¢+4 _f fG6, Y, Z)ds— j Z.dB,, tel0, oo],
t t

where ¢ e I7 and fis a map from Q x [0, o0) x R x R™ onto R which satisfies the
following:

(H2.1) For all (y, zZ)eR**?, f(, y, z) is progressively measurable and
E([|fs,0,0)ds)’ < 0.
0

(H2.2) There exist two positive deterministic functions u, (¢) and u, (f) such
that, for all (y, z)eR'*%, i=1,2,

Lt y1s 2= f (&, y35 2) IS uy @Oy —yal +u, (B2, — 2,1, te[0, o),
and ([ u, (t)dt < o0, | u3()dt < 0.

Then we have

THeEOREM 2.1 (Chen [4]). There exists a unique solution (y, z)e ¥2 x #?
satisfying the BSDE (2.1).




214 _ S. Hamadéne et al

Now, if we consider the following two BSDE’s:
22 W =8+, Y, Z)ds— [ZidB, t20,i=1,2,
t t
where EeI?, f* satisfy (H2.1) and (H2.2), by Theorem 2.1 there exist (), z)
which satisfy BSDE’s (2.2), respectively. Further, if
(H23) &' > & and f'(s, 2, 22) 2 2 (5, ¥2, 2) as. for all 520,

then we have also a comparison theorem between the solutions of the infinite
reflected” BSDE’s, that is: '

THEOREM 2.2. For all t >0, y} = y? P-as.
Proof For the notational convenience, we assume that d =1 and set

- =(y'—y?), £ = (z' —2?). Then (J, 7) satisfies

G B8 [ By () Fut Ba(9) 242 (5, 2 D) —f2(5, ¥2, D)) ds— | ,dB,,

fl (Ss ysla Z.})—f(sa y.?, Z:)

if j,#0,
By(s) = yi—y Y
0 otherwise,
fl(sr ysza Zsl)_fl(s3 ysza Zsz) lfé ?,__0
B,(s) = z3—z3 : ’
0 otherwise.

From (H2.2) it is easily seen that |8, (s)| < u, (s) and |B, (s)| < u,(s) a.s. Intro-
duce the process x,, 0 <t < s < oo, which satisfies

dx, = B,(s)x,ds+p,(s)x,dB;,, x,=1.
Since x, = exp[ [ (B, (N—385() dr+{ B,(r)dB,], we have
o= [~ %0+ | (165, 32 2D =F2(5, 12, D), 5] > 0. m
:
If we consider the following two BSDE’s:
23) Y= £‘+°j9fi(s, Y., Zi)ds+Aim—A§—°fZ§st, t20,i=1,2,
t :

with the additional assumption:

(H2.4) Ai,i=1,2, te[0, c0], are continuous increasing processes satis-
fying AL =0, AL, eI?, Al —A? is also an increasing process,
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then we have

COROLLARY 2.3. Assume that the two BSDE’s (2.3) satisfy (H2.1)-(H2.4),
and (v, z}) and (32, z2) are their respective solutions. Then y! > y? as.

3. Infinite horizon reflected BSDE with one barrier. In this section we
discuss the following infinite horizon reflected BSDE with one barrier:

(3.1) Y,=¢+§ f(s, Yy, Z)ds+ K, —K,— [ Z,dB,, te[0, o],
t t

which will be used in the next section to deal with the mixed control problem
with infinite horizon. -

Heére Eel?, fis a map from Qx [0, c0)x R x R™ onto R satisfying (H2.1)
and (H2.2). We consider a barrier {S,, ¢t > 0}, which is a continuous progres-
sively measurable real-valued process satisfying

(H3.1) E[sup

Our problem is to look for a triple (Y;, Z,, K,) of &, progressively measu-
rable processes taking values in R x R™x R*, satisfying the reflected BSDE
(3.1), and

(i) Yes? Ze#? K eI
(M) Y, =5,t>0;
(iii) K, is continuous and increasing, K, =0, and ( (¥,—S)dK, =0.

1508 )*]® < o and limsup, , S, <¢ as.

Remark. In fact, if we consider the following infinite horizon BSDE:
YO =&+ 0 f(s, Y0, Z)ds— [ Z)dB,, te[0, 0],
t t

where £eI?, f satisfies (H2.1) and (H2.2), and (Y;°, Z?) is the solution of the
BSDE, then from Corollary 2.3 we have Y, > Y°,0 < ¢ < oo, where Y, is a solu-
tion of (3.1). So we can replace S, by S, v Y, and, consequently, we may assume
without loss of generality that E [supeoS,z] < 00.

- One approach to solve reflected BSDE’s with infinite horizon is to use the
Snell envelope theory connected with the contraction method. For this we
consider first the following reflected BSDE:

(32) Y, = f+?f(s)ds+Kw—K,—oj?stBs, &[0, oo,

where f does not depend on (y, z) and is an %,-progressively measurable pro-
cess satisfying
(H32) E([71f ®ldt)* < 0.

Then we have

PROPOSITION 3.1, Assume that £el?, and (H3.1) and (H3.2) are satisfied.
Then there exists a unique solution (Y, Z, K) of the reflected BSDE (3.2)
associated with (f, &, S).
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Proof. Let us introduce the process {¥; 0 <t < oo} defined by
Y,=esssupE[[ f(s)ds+8,1p<aytElpy=y | £,
vedy t

where 7 is the set of all %-stopping times taking values in [0, o], and
I, ={ved,v>t}. The process Y,+_f:) f(s)ds is the value function of an
optimal stopping problem with payoff

t
Ht = If(s)dS’I'S: 1{t<00}+§1{t=00}'
0

By the theory of Snell envelope (El-Karoui [11]), it is also the smallest con-
tinuous supermartingale which dominates H,. Moreover, we have

Y| < E[IE&]+ [ |f @)l dt+sup S| F].
0

t20

Hence, by Doob’s inequality,
E( sup Y2) < CE[E*+((|f ()] de)’ +supS?].
0

0stso© t20

Denote by D, the stopping time
inf{t <u< oo, ¥,<8S,},
D, =
o0 - otherwise.
Then D, is optimal in the sense that

D¢
(3.3) Y, =E[| f(5)ds+8p,1ip,<co}+ {1 (p,=coy | F], 0<t<oo.
t

From the Doob-Meyer decomposition of the continuous supermartingale
K+ﬁ, f(s)ds there exist an adapted increasing continuous process
{K,} (K, = 0) and a continuous uniformly integrable martingale {M,} such that

Y,= M,~{ {(ds—K,

By (3.2) and (3.3), we have E[Kp —K, | #,] =0; hence Kp, = K, or, equi-

valently, j':f(Yt—St) dK, = 0. It remains to prove some integrability results.

Since {Y,+_f‘0 f(s)ds, 0 <t < oo} is a square integrable supermartingale,
we have EKZ < oo, ie. K e’ (Dellacheriec and Meyer [8]). Hence the mar-
tingale

M, = E[M,| ] = E[¢+ | f©ds +K,| %]
0

is also square integrable. Finally, since &%, is a Brownian filtration, we obtain

M,=¢+{ f(s)ds+K,— | Z,dB,,
t t
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where E [ |Z|*dt < o0, ie. Z,e #> Therefore, the triple (Y, Z, K) satisfies the
reflected BSDE (3.2) and properties (i}{iii) above.

Let us prove uniqueness. If (Y’, Z’, K') is another solution of the reflected
BSDE (3.2) associated with (f, &, 8) satisfying properties (i)(iii) above, define
Y=Y-Y,Z=2Z-2, and K = K—K'. Using It6’s formula to |¥?,

(3.4) |Y12+ j |Z)2dt = 2; f;dﬁs—zj Y.Z. 4B,

by the integrable condltlons (i}-(iii) and Burkholder-Davis—Gundy’s mequahty,
we have

Ell",|2+Ej|Zsts— I?,

So E|¥)? = 0 as. for all te[0, o] and E(;|ZJ*ds=0. Then |¥|> =0 as, so
Y=Y by the contmmty of ¥.
Finally, it is easy to get K K; as. for all te[0, o0]. =

Now we give the main result of this section.

THEOREM 3.2. Assume that (H2.1), (H2.2) and (H3.1) and that (e I?. Then
the one-barrier reflected BSDE (3.1) associated with (f, &, S) has a unique solu-
tion (Y, Z, K).

Proof. We first prove the existence. It is divided into two steps.

Step 1. Assume ([ u, (s)ds)* +Jg u3(s)ds < 7.

Let 2 be the space of processes (Y, Z) with values in R'*™ such that
Ye 2, Ze#?, and ||(Y, 2% = ||Y)|%2+|Z]|%:. We define a mapping ¥
from % onto itself as follows: for any (U, V)e 2, (Y, Z) = ¥ (U, V) is the
unique element of 2 such that if we define

K,=Y-Y,— j'f(s u,, V)ds+_[Z dB,, 0<t<oo,

then the triple (Y, Z, K) solves the one-barrier reflected backward SDE as-
sociated with (f (s, U, V), &, S).

Let (U’, V') be another element of 2 and define (Y, Z') = ¥(U', V'),
U=U-U, V=V-V, Y=Y-Y, Z=2Z-7Z, K=K-K, and f=
[, Uy, V)—f (s, U, V). We want to prove that the mapping ¥ is a contrac-
tion. From the proof of Proposition 3.1 we obtain

Y, =esssupE[[ f(s, Uy, V)ds+S,1ycoy+Elp=uy | F],

ved: t

Y;l = eSSSUpE[If(S, U;a I/.;)ds+sv 1{v<oo)+£1{v=00) | ‘g—'t]
vedy t

Then
|, — Y| <esssup E[ [ [f(s)ds| F] < E[I [f )ds | 7],

ved: t
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which implies
E[ sup |Y?] < E[Osup (E jlf'(s)ldsl F)] < 4E(T |7 (s)] ds)*
0<ts @ i< 0

by Doob’s inequality. Using 1t6’s formula to |¥|?, we get

%2+ [1Z2ds=2[ Y, f(s)ds+2 | Y,dK,— I L.Z,
t t t t

Then
Ej |ZJ?ds < 2Ef |Y||f (s) ds

<E[ sup |1;|2]+E(°£ @)ds)’ < (El]'(s)lds)z.

0<ts 0

From (H2.2) we know that

E( T T ©1ds) < E([ [uy ()10, +15 () |71 ds)*

2[(Tu1(s)ds)2+°§uz(s)ds] T, Py
0
At last, we have
(T, 2)I3 < 18[(ju1 (5)ds)’ + [ u2(9)ds] 1T, 3.
0 .

From the inequality (g u, (s) ds)’ +{5 u3(s)ds < {5 we infer that ¥ is a strict
contraction and has a unique fixed point, which is the unique solution of the
reflected BSDE (3.1).

Step 2. For the general case, there exists T, > 0 such that

w0

[(f u,(s) ds)2+ Uj? ui(s)ds] < —1%

To
From Step 1 we know that the reflected BSDE

(3'5) Yt = 6+_‘. I(SZTojf(S’ Ys’ Zs)dS+Kw—K1"§stBs5 tE[O, OO]!
t t

has a unique solution (Y, Z,, K,), satisfying the properties (i)-(iii) above. Then
we consider the reflected BSDE
To

To
(3.6) Y=Y+ fG6 ¥, Z)ds+Kr,—K,— | Z,dB,, te[0, T].
) t t



Backward stochastic differential equations 219

By the result of El-Karoui et al. [12], there exists a unique solution (¥,, Z,, K))
satisfying the reflected BSDE (3.6) and the above properties (i)iii) on [0, T;].

Let us set .
{Y,, tel0, Ty1, {z" tel0, T,],
7 =

7:’ tE(TOa OO:], Z_n tE(To, m]a

K, tel0, Ty1,

IET0+Kt_KTo’ tE(TOD (I)]
When te[T,, ], (Y%,Z,K) is the solution of (3.5, and then
(Y, Z,, Ky, + K,~ Kr,) also satisfies (3. 5) Now, if te[0, Ty], (¥,, Z,, K,) is the
solution of (3.6) and ¥;, = ¥;,, K1, = Ky, + Kr,—Ky,. So ¥, and K, are con-
tinuous, and (Y, Z, K) is a solution of the reflected BSDE (3.1).

At last, we prove the uniqueness of (3.1). Let (Y’, Z’, K') be another solu-

tion of the reflected BSDE (3.1) associated with (f, £, S). Wg use the same
notation as in Proposition 3.1. Applying It6’s formula to |Y}?, we have

K =

t

Y2+ [1Z2ds =2 Y.(f s, Yoo Z)~f (s, Y, Z))ds
t t

-~

+2Y.dK,—2( Y.Z dB,.

o —1
P

~ e B

Then
(3.7 EIYP+E[|Z)*ds <2E [ |¥)[uy ()|Y)|+u,(s)|Z,1ds
t

t
< EE_f 1Z)? ds+E | [2u, (s)+2u3 (s)] |Y|? ds.
t t

From Gronwall’s lemma we obtain E|¥|? =0 for all t€[0, co]. Then |¥)? = 0
as,so Y=Y by the continuity of Y,. Now, going back to (3.7), we have

E j |ZJ?ds <4E sup |¥)? _[ [uy (s)+u2(s)] ds,

{0<t< w0}
so Ej: |Z)?>ds = 0. Then it is easy to get K, =K;. m

4, Applications in the mixed control problem with infinite horizon. In this
section, we use the result on infinite horizon reflected BSDE’s with one barrier
to deal with the mixed stochastic control problem.

Let € be the space of continuous functions from [0, o) to R™ endowed with
the uniform convergence norm; £ is the g-algebra of progressively measurable
subsets of [0, c0) x Q. The (m x m)-matrix 6 = (6;}); j= 1, satisfies the following:

(i) For any continuous and #-measurable process { with values in R™, the
process (6y;(t, {))i>0 is P-measurable, 1 <i,j<m.
(ii) Forany(t, x)e[0, 0] x ¥, o (t, x)isinvertible and ¢~ * (¢, x) is bounded.

(iii) For any t €[0, ), x, x'€¥, la(t, x)—0o(t, X)) < K|x—x|, K > 0.
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Under these assumptions, the stochastic differential equation
dX,=o(t, X)dB,, X,=xeR", t>=0,

has a unique solution.

Now we consider a compact metric space U and let us denote by % the set
of all #-measurable processes with values in U; let ¢ be a function from
[0, 0)x ¥ x U onto R™ such that:

() ¢(-, X(°),*) is P®% (U)-measurable, #(U) is the Borel g-algebra
on U.
_ {if) For any te[0, o) and xe¥%, ¢(t, x, *) is continuous on U.
(iii) '|¢(t, x, u)} < c(t) a.s., where c(¢) is a deterministic function such that
fo 2 (®)dt < oo.

For each ue%, we define a probability P* on (2, #) by

ap
dP

= exp{[ o7 (5, X) b5, X, u)dB,~} [ lo~ s, X) (s, X, u)Pds}.
0 0

Under the assumptions on ¢ and ¢, according to ‘Girsanov’s theorem
(Karatzas and Shreve [17] or Revuz and Yor [21]), the process

t
B*=B,—[c7'(s, X)p(s, X, u)ds, t=0,
0

is a Brownian motion on (2, &%, P*), and X is a weak solution of
dX,= ¢(t, X, u)dt+o(t, X)dB!, X,=x, t>0.

Suppose that we have a system whose evolution is described by the pro-
cess X, which has an effect on the wealth of a controller. On the other hand, the
controller has no influence on the system. The process X may represent, for
example, the price of an asset on the market, and the controller be a small share-

‘holder or a small investor. The controller acts to protect his advantages by

means of ue# via the probability P*; here % is the set of admissible controls.
On the other hand, he has also the possibility at any time teJ to stop

" controlling. The control is not free. We define the payoff

J(u, T) = E.[IC(S, X9 us)dS+S:1(t<w}+€1(‘t=CD}]5
0

where S and ¢ are the same as in Section 3, and C{t, X, u) is from
[0, 0] x ¥ x U into R and satisfies the same hypotheses as ¢. For the control-
ler, C(t, X, u) is the instantaneous reward, S and ¢ are, respectively, the re-
wards if he decides to stop before or until infinite time. The problem is to look
for an optimal strategy for the controller, i.e. a strategy (i, ©) such that

Ju,7)<J(@, %) for all (u,1)e¥UxTJ.
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For (¢, x, p, w)€[0, 0)x € x R"x U we define the Hamiltonian associ-
ated with this mixed stochastic control problem by
H(t, x, p, u) = pg(t, x, u)+ C(t, x, u)
and denote by u*(t, X, p) the #®% (R™)-measurable process with values in
U such that
H(t, X, p, u*(t, X, p)) = max[pg (¢, X, w+C(t, X, u)].
uclU

According to Benes’s result (Benes [2]), such a process u* (¢, X, p) exists. By the
assumption (iii) on ¢, H(t, X, p, u) satisfies the Lipschitz assumption (H2.2)
in p. Then'it is easy to see that the function H (¢, X, p, u*(t, X, p)) also satisfies
the Lipschitz condition (H2.2) on p.

Now we give the main result of this section.

THEOREM 4.1. Let (Y*, Z*, K*) be the solution of the one-barrier infinite
horizon reflected BSDE associated with (H (t, X, z, u*(t, X, 2)), &, S),
u*=u*@t, X, Z¥), te[0, o), and

i inf {t€[0, 00), ¥* < §,},
T =
v'o) otherw_ise.

Then Y§ = J(u*, ©), and (u*, ©) is an optimal strategy for the controller.
Proof. We consider the following one-barrier infinite horizon reflected
BSDE associated with (H(t, X, z, u*(t, X, z)), &, S):

Y* =&+ [ H(s, X, Z¥, u*(s, X, Z¥)ds+ K% —K¥— | Z*dB,.
t

t

By Theorem 3.2, this BSDE has a unique solution (Y*, Z*, K*). Now, since
Y is a deterministic constant, we have

Yo =E"[Y§]1=E"[¢+ [ H(s, X, Z¥, u*(s, X, Z¥)ds+ K% — | Z*dB,]

- 0 0
=E"[[H(s, X, Z¥, u*(s, X, Z¥)ds+ K¥— [ Z* dB,+ Y;*]
1] 0

= E*[[C(s, X, u*(s, X, Z¥))ds+ K — [ Z* dB* + ¥*].
o 0

From the definition of £ and the properties of reflected BSDE’s we know that
the process K¥ does not increase between 0 and £, and then K¥ = 0. On the
other hand, using the Burkholder-Davis—-Gundy’s inequality and the assump-
tions on ¢, we know that (j:) Z}dBY, te[0, o0]) is a P*"-martingale, and then

Yot =E°[{C(s, X, u*(s, X, ZH)ds+ ¥*].
0

From the equality Y* = 8;1lpcoy+&1lp=0y P"-as. we get Y5 = J(u*, ).
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Now, let u be aradmissible control and t be a stopping time. Since P and
P* are equivalent probabilities on (2, #), we obtain

Y¢ = E'[Y&] = B[ ¢+ Qjo H(s, X, Z¥, u*(s, X, Z¥)ds+ K% — Zf Z*dB,]
o
= E"[EH(S, X, Z¥, u*(s, X, Zf))ds+K:“—§Z;“ dB,+ Y*]
=E [i Cl X, »gs_)‘qs+§(f1(s, X, Z¥, u*(s, X, Z¥)—H(s, X, Z¥, u,))d_s_
L KF—[Zr B+ YF].
]
But Y* > S, lpcay+élp=wy KF 20,

H(t, X, ZF, v*(t, X, ZH))—H(, X, Zf, u) > 0 P"as,

and U; Z¥dB);» is a P*-martingale. Then

J*, )= Y= E[{C(s, X, u)ds+S 1<yt Elp=cy] = J @, 7).
0

It follows that the control (i, ©) is optimal. =

5. Double-barrier reflected BSDE’s with infinite horizen. In this section we
discuss the double-barrier reflected BSDE’s with infinite horizon, which will be
used to solve the mixed game problem in the next section.

Let f, ¢ and S, be the same as in Section 3, and U,, t€[0, o), be a con-
tinuous progressively measurable process valued in R such that:

(H5.1) Efsup,, ,(U7)*] < o0 and §, < U,, t€[0, o), liminf, |, U, > as.

t
Our problem is to look for a solution (Y, Z,, K;', K, ") of the reflected
BSDE with values in RxR"x R* x R* such that

(51) ,=¢+[fG, Y, Z)ds+Ki—K}'—(Ky;—K;)-|Z,dB,, te[0, co].
t t

Moreover:

(i) Y is continuous and Ye %2, Ze #2.

(i) S, <Y,<U,, 0<t< .

(iii) Kt and K, are continuous and increasing processes satisfying
K¢ =Ko =0,Kiel?, K;el? and [y (Y,—S)dK;" =0, [ (U,~ Y)dK; =0.

Fort >0, we set St = S, 1<)+ Ely=cop Uf = U lyc ooy + 1= o and de-
note by 72 the space of continuous real-valued nonnegative %,-supermartin-
gales M, such that E [sup . M?] < .
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Similarly to the one-barrier problem in Section 3, we first consider the
following reflected BSDE with two barriers:

(52) Y,=&+] f()ds+Ki—KF —(Ka—Ki)— | Z,dB,  te[0, oo].

We assume that the following hypotheses are fulfilled.

(HS5.2) There exist two supermartingales k and 0 of n2 such that, for all

t>0,
St <h,—0,+E[¢| #] < U as.

(H5.3) For all t 20, §,<U, as.
Then we have

PrROPOSITION 5.1. Let (el?, let f satisfy (H3.2), and assume that
(H5.1)(H5.3) hold true. Then there exists a unique solution (Y, Z, K", K™) for
the double-barrier reflected BSDE (5.2) associated with (f, &, S, U).

Proof. The sketch of the proof is the same as that one of Cvitanic and
Karatzas [5] in {0, T].

We first prove the existence of two continuous supermartingales X * and
X~ such that

(5.3) X*=RX +8), X =RX*"-0),
where

S=8-N@, U=U-N(@, N(t)=E[6+Tf(s)ds|.9§],

and R is the Snell envelope operator, that is R(y), = esssup _ ﬂE ENEAR
ne%? 7, is the same as in Section 3.

First we notice that § and — U are right continuous and left upper semi-
continuous. Moreover, §€.%? and (—U)e &2

For te[0, oo], let

H,=h+E[[ /- @du| Z], O,=0+E[[S" @du|ZF],

where f* (u) = f(w)v0 and f~ (4) = (—f W) v0. Then Hexn?, @ en? and, for
all t >0, §,<H,—0,<U,

In the following part, we prove the existence of a solution to (5.3) by
considering the iterative scheme )

X, =R(Xn_+§): Xoi1 =R(X:"‘ﬁ), n>0, and Xg=X; =0.
(a) For all n>0, X;7 and X, are defined and
0<X;(®<H, 0<X,1)<®, t=0.

We do the proof by recurrence. For n = 0, the property holds. Suppose it
also holds for some n and let us show that it still holds for n+1.
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Since 0 < X, (1) < ©,, we have
S<X;()+5 <0,+8,

So X, is defined and 0 < X7 ()
In the same way, working with X7 1nstead of X, we can see that X, is
defined and 0 < X, ;4 (?) < O,.

(b) For all n>0, X, <Xy, and X, < X,;;.

We also do the proof by recurrence. For n = 0, it is obvious to get X{ > 0
and X1 > 0. Suppose that for some n we have X, <Xfand X, ,<X,.1t
follows-that - X,/ ,— U< X})—-U and X,_{+S <X, +8, which yields

' Xy =R(X;-1— U)\R(X+—U) Xis
X} =R(X,;-1—8) <R(X; +8) = X\

(c) For any n >0, X,/ and X, are continuous processes

We do the proof by recurrence again. For n =0, the property holds.
Suppose now that for some n the processes X, and X, are continuous. Since
S, and U, are continuous, by the theory of Snell envelope (Cvitanic and Kara-
tzas [5]), X 41 and X, are also continuous.

(d) For all n>0, X;fen?, X, en? and X, () =0, X, () =

Clearly, X§ = X5 =0 and X{ en?, X, en?. By recurrence we easily get
the conclusion.

<H, X;(0)+S,>0
<H

(¢) Now, let X™* (respectively, X ) be the pointwise increasing limit of
X} (respectively, X, ), ie. for all ¢t >0,

X} =lm~2X}(t) (respectively, X; =lim /X, (t)).

Then X* and X~ are potentials, which are nonnegative supermartingales with
RCLL paths, X* (00) = X~ (c0) = 0 and satisfy X" e &2, X~ es?, X* and
X~ solve the equation (5.3).
Let us show that X+ and X ~ are continuous processes. We notice that, for
>0, S, < U,. Then the set {§ = U} vanishes, where
S, =limsupS,, U,=IliminfU,.
s/t S/t
It follows from the result of Alario-Nazaret [1] that the processes X * and X~
are also upper semicontinuous. Hence X~ +8§ and X* — U are right continu-
ous and left upper semicontinuous %-adapted processes.
Then we need the following lemma:

LeMMA 5.2. If'n, is a right continuous and left upper semicontinuous process
and ne 2, then its Snell envelope
R,(n) =esssup E[n, | #], te[0, ],
ved:
is continuous when the filtration is Brownian.
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Proof. By the theory of Snell envelope, R, is the smallest RCLL super-
martingale which dominates #,. Since € %2, R, is a supermartingale of class
[D], ie. the set {R,,veJ} is uniformly integrable. So according to the
Doob—Meyer decomposition, there exist a unique martingale M, and a non-
decreasing predictable process K, (K, = 0) such that R, = M,—K,. Moreover,
the jumping times of K, are included in {R™ = 5}, where R is the left con-
tinuous version of R and B

n, =limsup#n,, te[0, oo].
. s/t

Let us show that R is continuous. The martingale M is obviously con-
tinuous since (%), is a Brownian filtration. On the other hand, if 7 is a pre-
dictable stopping time, then

ER,_ lyg >0 = BN, 1k >0y < E[PN, Lk >0)] = En: ag >0y < ER, 14k > 035

where 77 is the predictable projection of #. The first inequality is true since #, is
left upper semicontinuous. It follows that ER,_ = ER_ for any predictable stop-
ping time 7 since R, is a supermartingale.

Therefore, R is a regular supermartingale (Dellacherie [7]), which implies
that K is continuous, and so is R. =

We go back to the proof of Proposition 5.1.

From Lemma 5.2 we infer that X~ 4§ and X* — U are right continuous
and left upper semicontinuous %,-adapted processes, their envelopes are con-
tinuous processes, so X* and X~ are continuous. :

We know that the process X* (respectively, X~) is a continuous &,
supermartingale of class [D] which satisfies X ¥ (c0) =0 (respectively,
X" (0) = 0). Hence there exists a unique continuous %,-adapted increasing
process K* (respectively, K~) such that K§ =0, E(K})><oo and
X}t =E[K} | #]—K;" (respectively, Ko =0, E(K7)>?<o0 and X; =
E[K, | #]1—K;). Moreover, we have

J&x¢ =X -8)dK; = [ (X7 —X}+U)dK; =0
0 0

(see El-Karoui [11] and Cvitanic and Karatzas [5]).
"Now, let ¥, = N,+X;*—X; and define Ze#? by

a t
E[¢+ | f()ds+KL—Ko | #] = No+E[K$—KZ]+[Z,dB,.
0 (1]

For all t =0,
H 4] t
Y+ [ f(s)ds+K;—K; = E[¢+ [ f()ds+KE5—K3 | ] = Yo+ [ Z,dB,.
0 0 (V]

Then - -
Y,=¢(+ [ fe)ds+K5—K5—(Ko—K)— | Z,dB,, tel0, oo].
t t
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It is easy to check that (Y, Z, K*, K ™) satisfies properties (i}iii) in this sec-
tion. Consequently, (Y, Z, K™, K7) is a solution of the double-barrier reflected
BSDE (5.2) associated with (f, &, S, U).

Let us prove the uniqueness. If (Y, Z, K*, K7) is another solution of the
reflected BSDE (5.2) associated with (f, &, S, U) define Y=Y-Y,Z=2Z-2Z,
K = K—K, where K = K*—K~, K = K* —K~. Using It&’s formula to | Y2,
we obtain

19>+ [1Z,)>ds =2 | ¥,dR,—2 [ ¥,Z,dB,.
t 4

~ temmy 8

But.(j' Z:dB ),;o’is'“a'martingale and

f,
§ Y.dK, = [(S,—Y) dK{ — [ (U,~Y)dK; — [ (Y,—S)dK
t t t t

+ [ (Y,—UydK; <0,
t

E[f',|2+Ej|z‘s|2ds<0.

Consequently, E|Y]?> =0 as. for all te[0, o] and Ef; |Z?ds = 0. Then
|¥)2=0 as., so Y = Y’ by the continuity of ¥,. It is easy to get K, = K,.
Finally, let us show that K* = K* and K~ =K .
For any t >0, jO(Y S)dK, = j"o(Y —5,)dK,. On the other hand,
t
[(Y,—8)dK, = —J(Ys—Ss)sz_ = _f(Us_Ss)dKS—'
V] 0

0
In the same way we have (| (Y,—S)dK, = — i (U,~S)dK;, and then

t t
{(U,—8)dK; = [(U,—S)dR; for all te[0, o],
0 0

which implies (U,—S,)dK; = (U,—S,)dK; . Consequently, K, = K, since
Ky =Ko =0 and S, < U, for all t>0. Similarly, from ‘the equality
j" (U,—Y)dK, = jo(U Y)dK we obtain K* = K*. So we get the unique-
_ ness of the solutlon to the infinite horizon reflected BSDE (5.2) with two
barriers. m

Now we give the main result of this section.

THEOREM 5.3. Let ée 2, let f satisfy (H2.1) and (H2.2), and assume that
(HS5.1)-(H5.3) hold true. Then the double-barrier reflected BSDE (5.1) associated
with (f, &, 8, U) has a unique solution (Y, Z, K*, K7).

Proof. We first prove the existence. It is also divided into two steps.

Step 1. Assume [(f u, (s)ds) +§, u3(s)ds]'? < 4.

Let 2 be the space of the process (Y, Z) with values in R'*™ such that
Ye¥? Ze#? and |[(Y, Z)||3 = ||Y|I%2+]|Z]|%=. We define a mapping ¥ from
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2 onto itself as follows: for any (%, ¥)e 2, (Y, Z) = ¥ (%, ¥") is the unique
element of 2 such that (Y, Z, K*, K~) solves the double-barrier reflected

" BSDE associated with (f (s, %, ¥, &, S, U).

Let (%, ¥) be an element of & and define (Y, Z) =¥V (¥, V), % = U ~U,
V=¥V, Y=Y-Y,Z=2Z-Z,K=K-K,K=K*—-K,K=K*—K~
and f =f (s, %, ¥)—f (s, %, ¥,). We want to prove that the mapping ¥ is
a contraction.

Using It6’s formula to |¥)?, we have

(5.4) NEP+[1ZJ2ds =2 § l“gf(s)ds+ { Y,dR,—2( Y,Z,dB,
" . t t t t
(Y. f(s)ds—2[ ¥,Z dB..
Then ‘ '
E sup |Y)><2E sup |Y|j|f(s)|ds+2E sup Uffs dB|
0<t€ @ 0<t< 0 0<t€o ¢
<3iE sup |1?,|2+6E(j|f(s)|ds)2+4E[j|1‘;|2|z‘s|2ds]”2
0<t< 0 1]
<3E sup |2 +6E([ |f (s)ds)* +3E[ sup |Y|2]+8Ej|2|2dt.
) . 0st€w [} 0<t<
Consequently,
(5.5) E sup |Y)> < 18E([ |f (s)ds)* +24E [ |Z, dr.
0<tS 0 1]
Going back to (5.4), we have
(5.6) E 5 \Z|?dt < 2E j [%)1f @) dt < 2E sup |Y| [ |7 ()| ds
0<t<€ o0

< 7E sup |Y12+48E(5 |7 (s)l ds)>.

0<t€

From (5.5) and (5.6) we get

E sup |Y><1E sup |¥?+(18+24 x48)E([ |f (s)| ds)’,
0

0<t< 0 0t
SO

E sup |¥)* <2340E([ |f (s)|ds)>
o

O0st<

Going back to (5.6) again, we have

E “Z,Izdt<%E sup |Y|2+48E(_[]f(s)|ds) < 100E(] 1 (s) ds)?.
o

0<t<w

2 — PAMS 192
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Similarly to Theorem 3.2, we have

I, 212 < 4880 ([ uy (5)ds)? + | 13 (9)ds] 1@, P)I3
1] 0

< 702 [(af u, (s)ds)* + }o u3 (s)ds (%, V)3
0 [}

From the inequality [([, u,(s)ds)*+ fo u3(s)ds]!* < +5 we deduce that ¥ is
a strict contraction and has a unique fixed point, which is the unique solution
of the double-barrier reflected BSDE (5.1). '

Stel') 2. For the general case, there exists Ty > 0 such that
00

(T, () dsf* + [ w3 (9)ds]"? < .
To To 70

From Step 1 we know that the reflected BSDE
(5'7) Yt = §+_‘. l{s?To}f(ss Ys’ ZJdS-}-K;—K?—(K;—K:)
t

0

—(Z,dB,, te[0, ],

t

has a unique solution (¥, Z,, K;", K;”). Then we consider the double-barrier
reflected BSDE

To

(58) Y; = T’To'*- _‘. f(ss za Zs)ds+K~;o_K't"-_(K~;o_K~z‘_)
t

To
—( Z,dB,, te[0, T,].
t

‘From the result of Cvitanic and Karatzas [5] we know that there exists a uni-
que solution (¥, Z,, K;*, K;") satisfying the double-barrier reflected BSDE (5.8)
and the properties (i)iii) in this section on [0, T;]. We set

v ¥, te[0, T, 5 Z,, tel0, T],
l_/;a tE(To, w]: B Z_t’ tE(TB, w],

K K, te[0, T,],
o K} +Kf—K$, te(T, ],

K7, te[0, T,l,
K~;0+K;_K;oa tE(Tb, OO]
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Then it is easy to check that (Y, Z, K*, K7) is a solution of the double-barrier
reflected BSDE (5.1).

At last, we prove the uniqueness of the solution of (5.1). Let
(Y, Z, K*, K~) be another solution of the double-barrier reflected BSDE (5.1)
associated with (f, £, S, U). We use the same notation as in Proposition 5.1;
Itd’s formula gives

%2+ §1Z)2ds =2 [ Y(f G, Yo, Z)—S G5, Y, Z))ds
t t

~ . 42 fdR—2(VZ.dB,

e 8
e 8

Then, taking expectation we get

(59)  EIRP+E[IZ)ds < 2E [ |V [u, (5) %) +u,(s)|Z1ds
t t

1 e o] . o -
< EEI |Z)?>ds+E | [2u, (s)+2u3 ()] 1Y) ds.
t t

From Gronwall’s lemma we obtain E[¥|*> = 0 for all t€[0, co]. Then |¥)? =0
as., so Y=Y’ by the continuity of Y. Going back to (5.9), we have

Ej' |Z)?ds < 4E sup |¥)? j [u, (s)+u2(s)] ds,
' {0<t< w}
so Ef_ |Z)*ds = 0. Then it is easy to get K, = K,. In the same way as in the
proof of Proposition 5.1, we can get K;* = K;' and K; =K, . =

6. Applications in the mixed game problem with infinite horizon. Like for
the mixed control problem, we now use the double-barrier reflected BSDE with
infinite horizon to deal with a stochastic mixed differential game problem.

Let €, 0, X, U and % be the same as in Section 4, let ¥ be another
compact metric space, and ¥~ be the space of #-measurable processes with
values in V.

Let ¢ be a function from [0, c0)x % x U x ¥ into R™ such that:

@ o(, X(), -, -} is PR (U x V)-measurable, #(U x V) is the Borel
o-algebra on Ux V.

(i) For any te[0, o0) and x€%, o(t, x, -, ) is continuous on U x V.

@) |@(t, x, u, v)) € c(t) P-as, where c(t) is deterministic and
fo @ dt < co.

For any (u, v)e% x ¥, we define a probability P** on (2, #) by

dP{u,v) o0 _y
7P =exp{fo (s, X)@(s, X, u,, v)dB,
0

lo~ (s, X)o(s, X, u,, v)|*ds}.

1
-2

Oty 8
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According to Girsanov’s theorem, the process
B®*Y = B,— ja‘l(s X)o(s, X, u, v)ds, t=0,

is a Brownian motion on (2, & P®") and X is a weak solution of
dX,= o, X, u, v)ds+o(t, X)dB™", X,=x, te[0, o).

Suppose now that we have a system whose evolution is described by X, which
has an effect on the payoffs of two players J, and J,. For their part the
controllers have no influence on the system and they act such as to protect
their advdntages, which are antagonistic, by means of ue % for J, and ve ¥ for

* J, via the probability P“"). The pair (u, v)e# x ¥~ is called an admissible

control for the game. On the other hand, the two players have also the pos-
sibility to stop the game at ¢ for J, and 7 for J,, where ¢ and 7 are elements
of . So the controlling actions are not free and the payoff corresponding to
the actions of J, and J, is defined by

TAC

J@,o;0,7)=E""[ | C(s, X, u, v)ds
0

+ S-: 1{t$u.a< o0} + Uq 1{a'<1:}_+' é 1{1:=a= ao}] )
where S,, U, and ¢ are the same as in Section 5, C(t, x, u, v) is a function from
[0, 00) x € x U x Vonto R which satisfies the same hypotheses as ¢. The action
of J, (respectively, J,) is to minimize (respectively, maximize) the payoff
J(u, o; v, 7). We can understand the reward and cost for the two players as
follows:
(@) C(t, X, u, v) is the instantaneous reward (respectively, cost) for J,

(respectively, J,).

(ii) U, is the terminal cost (respectively, reward) for J, (respectively, J,) if
J, decides to stop first the game.

(iii) S, is the terminal reward (respectively, cost) for J, (respectively, J,) if
J, decides to stop first the game.

Our problem is to look for a saddle-point strategy for the two players, ie.
a strategy (4, 6; ¢, ©) such that

J@, é;v,71)<J(@, 6;0,7)<J(u, 0; 0, 1)

for any (u, o)e¥% xJ and (v,7)e¥ x 7.
For (t, x, p, u, v)€[0 c0) x € x R™ x U x V we define the Hamiltonian by

H(t, x,p,u,v)=po(t, x, u, v)+C(, x, u, v)

and we suppose that the following assumption holds:

6.1) inf supH(t, X, p, u, v) =sup inf H(t, X, p, u, v).

uel yey vey uel




Backward stochastic differential equations 231

Under the above condition, which is called Isaacs’s condition (Elliott [10],
Bensoussan and Lions [3], Davis and Elliott [6], Hamadéne and Lepeltier
[14], [15]), by the Benes theorem (Benes [2]), there exists a pair of ZQ # (R™)-
measurable functions u* (¢, X, p) and v*(¢, X, p) with values, respectively, in
U and V such that for any (¢, p)e[0, o) x R™, ueU and veV,

(6.2) H(t, X, p, u*(t, X, p), v*(t, X, p)) = inf sup H(¢, X, p, u, v)

uell ey

=sup inf H(¢, X, p, u, v)

vey uel

and
6.3) - H(t X, p, u*(t, X, p), ) <H(t, X, p, u*(t, X, p), v*(t, X, p))
<H(t, X, p, u, v*(t, X, p))

for all (4, v)e U x V. Under the assumption (iii) of @, H(t, X, p, u, v) satisfies
the Lipschitz condition (H2.2) in p. Then it is easily deduced from (6.2) that the
function H(t, X, p, u*(t, X, p), v*(t, X, p)) also satisfies the Lipschitz condi-
tion (H2.2) in p.

We now give the main result of this section.

THEOREM 6.1. Assume (H5.1)-(HS5.3) and Isaacs’s condition (6.1) are satis-
fied; let (Y*, Z*, K**, K*~) be the solution of the double-barrier reflected
BSDE with infinite horizon associated with (H t, X, Z, u*(t, X, Z), v*(t, X, Z)),
&, S, U), w* =u*(t, X, Z¥), v* = v*(t, X, Z¥), te[0, o), and

) inf{te[0, 0), ¥*<S,}, inf {te[0, ), }* > U},
= =
o0  otherwise, o0 otherwise.

A

Then Y5 = J (u*, 6; v*, ) and (u*, ; v*, ©) is a saddle-point strategy for the
mixed stochastic game problem with infinite horizon. .

Proof. We consider the following double-barrier infinite horizon reflec-
ted BSDE associated with (H(t, X, Z, u*(t, X, Z), v*(t, X, 2Z)), &, S, U):

Y*=¢4 [ His, X, Z¥, u*(s, X, Z¥), v*(s, X, Z¥)ds
t
+K&"—K* —(K% —K#7)— [ Z#dB,.
t
By Theorem 5.3, there exists a unique solution (Y;*, Z¥, K**, K¥ ™) satisfying

the properties (i}iii) in Section 5 and we know that Yg* is a deterministic
constant. Then

1§ = B (1]

=E“M[E+ [H(s, X, Z¥, u*(s, X, Z¥), v*(s, X, Z¥))ds
()]
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+K% K4 — [ Z¢dB]
0

= B[ [ H(s, X, Z¥, uw*(s, X, Z¥), v* 5, X, Z3))ds
0

TAG

+K¥5—K¥ 55— g Z¥dB,+ Y ;]

= B[ | C(s, X, u*(s, X, Z¥), v*(s, X, Z¥))ds
0

&

* i A
+KE5—KEs— | ZEdBI™+ Y]
1]

We know that the processes K** and K*~ increase only when Y;* = §, and
Y* = U,, respectively. Therefore, they do not increase between 0 and £ A 6, and
then K, = K¥7, = 0. On the other hand, using the Burkholder-Davis—Gun-
dy inequality and the assumptions on ¢, we deduce that the process
(j"o Z*dB""™),5, is a P“*)-martingale, and then

Y¢ =E“[ [ Cls, X, u*(s, X, Z¥), v* (s, X, ZH))ds+ V).
0 .

From the equality
Y = S:lgcsio<ayt Us lg<n+&lg=s=oy P*""-as.

we obtain Y§F = J(u*, 6; v*, 7).
Now, let u be an element of %, and ¢ be a stopping time. Since P and P*""
are equivalent probabilities on (2, &%), we get

¥ = E*[Y8]

= B[4 (H(s, X, Z¥, u*(s, X, Z¥), v* (s, X, Z¥))ds
0

[« o]
+KXY K% — £ Z*dB]

=E“"[ | H(s, X, Z¥, u*(s, X, Z¥), v*(s, X, Z¥))ds
0 -~
+K¥h—K¥:— [ Z¥dB,+ 72 <]
0
= E(",v*)[ _‘. C(S, X, U, U*(S, X’ Z::))dS“I'K:,T‘f""K:;;— jl Z;kng"v*)'I_ Ya'*Af
0 0

+ [ (H(s, X, Z¥, u*(s, X, Z3), v* (s, X, Z¥))
(4]

—H(s, X, Z¥, u, v*(s, X, Z;")))ds]. v
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But K*!: =0 P®".as, and by (6.3) we have
H(s, X, Z¥, u*(s, X, Z¥), v* (s, X, Z}))
—H(s, X, Z¥, u, v*(s, X, Z¥)) <0 for all se[0, o).
On the other hand, (j:) Z¥dBy™),5, is a P“")-martingale,
Y=Yl ocamrt Y lp<y+Elg=0=c)
< Silg<oo<omyt Usligen+€lg-c=w)-

It follows that,

J(u*, 6; v*, ) = ¢
CAT

< E'(u,v*)[ I C(S, X, U, U*(S, X, Z:))dS'FS; lﬁéa,a<w}+ Uo- 1{a<ij+€l[?=a=m}]
(1]

= J(u, o; v¥, 7).

~ In the same way we can show that, for any (v, 7)e ¥ xJ we have

J(u*, é; v*, ) = Y§
GAT

= E‘(u*,v)[ g C(S, X: u* (S, Xs Z:), Us)dS-I-S.: 1{t~<.6',3<00}+ U& 1{5‘<t}+61[5=1=m}]

= J(u*, 6; v, 1).

Henceforth the strategy (u*, é; v*, £) is a saddle-point for the mixed stochastic
game problem with infinite horizon.
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