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1. INTRODUCTION 

Let (E, 8) be a general measurable state space and A ( E )  be the space of 
all finite signed measures on (E, 8) equipped with the total variation norm 
ll-llva,. Let (Xj j j , ,  be an E-valued ergodic Markov chain with transition proba- 
bility P and invariant probability measure n. Let ,u be a probability measure on 
(E, 8); then P,  will denote the Markovian probability measure on (EN, gBN) 
determined by the transition probability P and the initial law p, and (Xi) will 
denote the sequence of coordinates on EN. 

Let M ,  be the random element of &(E)  defined by 
r n-l - - 

where (b,), is a sequence of positive numbers tending to infinity. Then the 
problem is the asymptotic estimation of P,(M,E -). When b, = A, it is the 
Central Limit Theorem, which has been established under various ergodicity 
conditions by Nummelin [I81 and recently by Chen [6]. When b, = n, it is the 
so-called Large Deviation Principle (LDP in short) (see Wu [21] for a survey on 
this topic), and when b, satisfies 
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it is usually called a Moderate Deviation Principle (MDP in short). It will be the 
framework of this paper. 

Let V be a finite-dimensional real vector space; then f :  E + Vwill always 
denote in the sequel a measurable function, Consider now a class of real measu- 
rable bounded functions P, with 7c Cf) = 0 for all f E F. Let I ,  (g) be the space 
of all real bounded functions on 9 with the norm IIF]IB : = supfEsr IF (fjl, and 
whose a-field is generated by all its balls and a(P 4 F 1fj I f €9). If 9 is 
infinite, 1, (9) is a non-separable Banach space. Each a E d ( E )  can be seen as 
an element a* of E ,  (9) . . given by aS ( f )  : = J fda. Let d ,  be the following -. metric 
on R: -- * 
(1.3) d, If, g)  := av-gj,  

-- - 

where 

which exists under our geometric ergndicity assumption. We then call, as usual, 
{M,)" the functional empirical process. To avoid measurability problems, 
we will suppose that (M,Cf), f G F )  are separable in the sense of Doob for 
each  EN with respect to d 2 .  In that case, ( M J F  are 1, (9)-valued random 
variables. 

The MDP for the functional empirical process for independent and identical- 
ly distributed (i.i.d) random variables has been established by Ledoux [14] in the 
separable Banach space case and, in the non-separable setting, by Wu [19]. 

In the Markovian context, the MDP for M ,  (f), with a single f ,  and for the 
empirical measure M, have been obtained under successively less restrictive 
conditions (Mogulskii 1171, Gao [13], Wu 1201, Chen 161, de Acosta and Chen 
[3]), but no results have been given for the functional empirical process or 
Banach space valued additive functionals. Although, very recently, Djellout 
and GuilIin [lo] have filled this gap providing such an MDP for a class of 
unbounded functions when the chain has an atom, under a condition on the 
tail of the first entrance time in the atom, which is weaker than all the previous- 
ly cited results. - - 

In this paper, we will consider the uniform (time dependent) version of 
these results. In fact, let us put 

for t E [0, 11, and 

for f bounded measurable such that n Cf) = 0. 
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Abstract. Considcr a random experiment whose true (unknown) 
outcome is modelled by a certain random element X and the available 
imprecise observations are modelled by some random set A such that 
X E A almost surely. Thc purpose of the paper is to propose a statis- 
tical procedure for estvnation of the real distribution of X. The asymp- 
totrc properties of the suggested procedure arc then investigated m 
both nonpararnetric and parametric settings. So far, only the results 
for a finite sample space are avidable. 

I. LNTRODUCTION AND GENERAL RESULTS 

One of the interests underlying the development of the random sets theory 
(see [5] and [7] for extensive reference) is that it provides a natural framework 
allowing one to represent in an elegant way the imprecision of the data availa- 
ble to a statistician. It happens very often, due to the imperfection of the data 
acquiring procedures (inaccuracy of the measuring instruments, influence ex- 
erted upon the state of the observed system by the act of measurement etc.), 
that it may be preferable to represent the outcome of an experiment as a set to 
which the real value of the measured quantity belongs rather than trying to 
ascribe to it some unique value (e.g. the centre of the uncertainty interval) or 
a subjectively chosen probability distribution. From the mathematical point of 
view, in such situations it is particularly convenient to model the observation 
as a random set containing almost surely the random element corresponding to 
the true result of the experiment. A question which arises naturaIly in these 
circumstances is how to infer from such 'set-valued' observations some infor- 
mation about the distribution of the true value of the random experiment. In 
other words, if the observation is modelled by a certain random set A, the 
question is how to find the distribution of its selector X which would be the 
optimal within the prespecified statistical model. Note that by a selector of the 
random set A we mean each random element X such that X E A almost surely. 
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The main goal of this paper is to provide a tool suitable for the above- 
-mentioned purposes and to investigate the quality of estimation it provides. 
Although we aim at extending the suggested procedure for the continuous case, 
at the moment we have the rigorous results in the case of finite sample spaces 
only. 

It seems particularly convenient to use in the discussion of the afore-men- 
tioned topics the standard language of the random sets theory (see ibidem), 
even though there exist some alternatives such as the theory of evidence and 
belief functions (see [6] and the references therein). Our choice is kt ivated by 
the faet- that -the theory of random sets is particularly rich aid it provides 
a well-fdunded formalism which can turn out indispensable for-syitable gene- 
ralisations of the theorems presented in this paper. 

Consider a finite sample space X = {x,, . .., xk}, where x,, . .., xk repre- 
sent the possible true values of a certain experiment. Let Y : = 2%\(0)  be the . 

space of all the nonempty subsets of %, which model the possible set-valued 
observations, always assumed to contain the real outcome. To represent the 
random mechanism governing the observations we consider the random ele- 
ments taking values in Y, which will be referred to as random nonempty 
subsets of 3" (for short, random sets, provided it does not lead to confusion). 
Throughout the paper it is assumed without a further mention that all the 
considered random elements are defined on a common probability space 
(Q, 5,  PI. 

Each random set A is uniquely determined by its hitting functional 
TA defined on the power set TA: 2x + [0, 11 by 

(see Section 1.1 in [7] or Chapter 1 in [5]) .  It is easily verified that TA satisfies 
the following conditions: 

(Tl) TA(@=O, TA(E)= 1 .  

(T2) The following functionals recursively defined by 

are nonnegative for all pa 2 0 and KO, K,, . . ., K, c %. 

Indeed, (Tl) follows from the nonemptiness of A, and to see that (T2) holds 
it sfices to note that &(KO; K,, . . ., K,) is the probability that A misses KO 
but hits K , ,  . . ., K,. In particular, TA is monotone because S, is nonnegative. 
Further, it turns out that (TI) and (T2) characterise the class of the hitting 
functionals of random nonempty subsets of 3!". More precisely, if some function 
T: 2s + [O, 11 satisfies (TI) and fT2), then there exists a random nonempty 
subset A of X such that T = TA (see ibidem; note that in view of the finiteness 
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of X we could omit some conditions of topological nature taken into account 
in the general case). 

Denote by %7 the class of all the functionals T satisfying (TI) and (T2) (such 
functionals are called alternating Choquet capacities of infinite order, see ibi- 
dem). Clearly, % can be regarded as a compact convex subset of [0, 112". 
Further, let 9' denote the space of all the probability measures on X. Obvious- 
ly, B can also be identified with a compact convex subset of [0, I lk .  We endow 
9 and V with the respective Euclidean metrics, denoted both by 'dist'. 

Given a random set A it is crucial for our purposes to ask for a charac- 
terisation ofthe-class of the distributions of all its possible selector5 (i.e. X-  
-valued .randbm elements belonging almost surely to A), which obviously cor- 
respond to all the possible distributions of the true outcome of the experiment. 
It turns out that this class can be described in a natural way in terms of the 
hitting functional TA. We say that a probability distribution p E 9 is dominated 
b y  the capacity TE W and we write p < T iff p (8') < T (8) for all $ c S. The 
following proposition is then a conclusion of Theorem 1 in [8] or Theorem 
A in [ 9 ] .  

PROPOSITION 1. Let A be a nonemply random subset of !T and p E 9. Then 
the foEEowing conditions are equival~nt: 

(1) < %- 
(2) There exists a probability space carrying versions of the random set 

A and of an X-valued random element X with distribution p such that X E A  
almost surely. 

The class of all the probability measures dominated by a given capacity is 
referred to as its core, that is 

core (T) = {p E 9 1 p < T) 

(see, e.g., [4]). Note that core(T) is a compact and convex subset of 9. Ob- 
viously, from Proposition 1 it follows immediately that core (T)  is nonempty. 

Let us agree to call a discrepancy measure on 9 x P each nonnegative 
function A :  9 x 9 + R +  u {+ m) satisfying the following conditions: 

- - 
' (Al) A (p, v) = 0 iff p = v.  

(A2) A is lower semicontinuous on P x P. 

(A3) A is convex on 9 x 9' and strictly convex on its domain of finiteness 
{(p, 4 ~ 9 x 9  I Ah, V) < +a). 

Note that we do not require the symmetry. The representative examples of 
such discrepancy measures are the relative entropy (Kullback-Leibler diver- 
gence) 

k 

AH (P, ''1 : = C  log(^ ((~i))/v({xi))) CI ((xi))> 
i =  1 
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the I,-distance 

and the 1,-distance 

A(P)  (p, v) : = ( 2 ],u ({xi}) - v ( { x ~ ] ) [ ~ ) ' ~ ~  for p 2 1. 
i =  l 

Observe that coincides with the usual Euclidean distance 'dist'. 
L e t ~ s  fix- some-discrepancy measure A and extend it f rom-9 x 9 onto 

% ? x B  by setting for T E V  and V E P  
- - 

A ( T ,  v):= inf A(p,v) .  
p ~ c o r e ( T )  

We conclude from (A2) and (A3) that if A(T, v) is finite, then there exists - 
a unique probability distribution v [TI E B such that 

(2) A(v[T], v) = d(T, v). 

In other words, for a random set A, v [TA] is the distribution of its selector 
which is the best approximation of v with respect to A. In particular, if v itself is 
a distribution of a certain selector of A, then, by (Al), A(TA, v) = 0 and 
v [TA] = V. 

The problems related to the algorithmic construction of v [ T I  for a given 
T in the particular case of v uniform on 3 with A chosen to be the relative 
entropy have been considered by several authors (see, e.g., [4] or [6]). 

The following lemma, proved below, gives us some properties of the exten- 
sion of A onto V x 9. 

LEMMA 1. The mapping A:  V x 9 + R+ u { + a) is lower semicontinuous 
and convex. In addition, it is strictly convex on its domain offiniteness. Further, 
if v €9 is such that the function 9 3  p ~  A ( p ,  v) is continuous, then also 
%? 3T H A (T, v) is continuous. 

We are now ready to give a formal description of the general statistical 
problem investigated in this paper. Let E c 9 be a certain nonempty closed 
(and, therefore, compact) family of distributions on X and let A be the random 
nonempty subset of $ with the corresponding hitting functional 7''. As stressed 
in the informal introduction, we aim at finding a selector X of A  so that it 
would be the closest possible to the class of distributions E specified by the 
statistical model. Define for each capacity T E V  

A(T 13"): infA(T, p) .  
peZ 

It follows from Lemma 1 and the compactness of B that there exists (not 
necessarily unique) V E S  such that 

A ( T , V ) = & T I E ) .  
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In particular, if J(T I E) < m, for such v the distribution v [TI satisfying (2) is 
well defined and we have d (T Z) = A (v [ T I ,  v). Here, v [TI is to be regarded 
as the most likely (the closest to the prespecified model E) distribution of the 
true outcome of the experiment which led to the observations modelled by the 
hitting functional T. Further, v is the best approximation, with respect to A ,  of 
v [TI within the model 9. In general, it is natural to define the (necessarily 
nonempty) set 3, c 8: 

- - 
Note that f$m  emm ma-1-and from the compactness of E it follows that EA is 
compact. The set 8, consists of these distributions from S which 'fit the best' to 
the observations modelled by A, In particular, if 3 contains at least one dis- 
tribution of some selector of A, then J(TA 15) = 0 and EA consists of the 
distributions of all the selectors of A belonging to E. 

To proceed we need an additional regularity assumption on A. Namely, 
we require that 

(A4) For each v E 9 the mapping P 3 A (p, v) is continuous. 

Note that (A4) holds automatically if we use A ( ~ )  or A(P), p 2 1, as the 
discrepancy measure. On the other hand, if we choose A to be the relative 
entropy, an additional assumption on E in needed to guarantee that (A4) is 
satisfied. For instance, it is enough to require that v((xi)) > 0 for all V E E  and 
i = 1, ..., k. 

Our main goal will be to identify the elements of the 'optimal' set 3,. In 
the particular case, if 9, is a singleton {vo) ,  our task reduces to the estimation 
of v,. Let A,  A , ,  A,, . . . be an i.i.d. sequence of i.i.d. copies of the random set 
A corresponding to the successive observations. The empirical information 
provided by the observations can be identified with the empirical hitting func- 
tional defined, by analogy with (I), as 

with Ptnl denoting the empirical probability. As ii (3) we define - -  

Observe that, by Lemma I ,@ is almost surely compact and nonempty. Clear- 
ly, T s ) :  (Q, 8,  P) + %' is measurable. Further, one can show the measurability 
of 89) regarded as a mapping from (51, 5, P)  to the space of all the nonempty 
compact subsets of B endowed with the usual Hausdorff metric. Since the only 
interest we have in this fact is to argue that E?) is a well-defined random 
element, we avoid the details and confine ourselves to a short sketch of the 
proof, referring the reader to [5] for appropriate techniques. First we note that 
by Lemma 2 (see Section 3) the mapping %' 3 TH {V E 3 1 A (T, V) = d" (T 1 E)) is 
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upper semicontinuous and, therefore, measurable (see Definition 1.2.2 and 
Proposition 1.2.4 in [ S ] ) .  Then, our assertion follows by the measurability of 
T$) and standard arguments. 

It is natural to expect that the elements of B$' are very close to 5, for 
n large enough. The following theorem confirms this conjecture. 

THEOREM 1. We have almost surely 

lim ( ~ 2 )  1 9) = dc (T, I E) . and lim sup dist (v, ZA) = 0, 
n-cc., . .. . n-cm vs&l . - - - .  

where dilt(v, Ed) denotes the Euclidean distance between v and -- - E A .  

It is worth noting that in general it may happen that 

lim sup sup dist (v, 95)) > 0 
ntm VEEA 

with some positive probability. In other words, although Theorem 1 guarantees 
that asymptotically each element of the estimator ES) can be approximated by 
some element of E,, yet there may exist some elements of E, which are not 
approximated by any elements of E$). Clearly, this problem disappears if EA is 
a singleton. In this case Theorem 1 yields readily 

COROLLARY 1. I f  EA contains only the unique element v(') and the sequence 
of P-valued random elements (v("))."=~ is such that almost surely v ( " ) ~ E s ) ,  then 
with probability 1 

lim dist (v'"), v(*)) = 0. 
n-33 

The question that immediately arises in this context is what is the accuracy 
of approximation of the optimal discrepancy A (TA I 8) by A (T$) I E) and, more 
generally, of 8, by 82). Unlike the second one, the first of these questions can 
be given a partial answer without any additional regularity assumptions. This 
is done in the following large deviations type theorem. We refer the reader to 
.Section 1.1 in [2] or Section 2.1 in [I] for the terminology used j n  the large 
deviations theory. 

THEOREM 2. For each mapping @: 2x + R define 

and let 

(5 )  &(T):=  sup ( @(d ' )~ (&) - log2~(@))  
0:2'-tR B c %  

for every capacity TES. Then the sequence (A (T2) 1 s"))~~=, sati$es on R the 
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large deviation principle with the rate function 

(6) B , ( h ) : =  inf{XA(T) I TE%, d ^ ( ~ l E )  = h ) ,  

i.e. BA has compact level sets {u  e R I gA (u) < M )  for M 2 0, for each open set 
B c R  

and for each closed set 9 c R 
-. . .. . - -  - 

* l i r n s u p n 1 1 0 g ~ ( d ( ~ ' ; ' ~ ; 7 ~ ~ )  G - i n f g A ( h ) .  -I - 
n-m h ~ 4 F  

In addition, WA(h)  is strictly positive for h # d^(TA 19"). 
Although in practice it can be very difficult to compute the rate function 

explicitly, the value of Theorem 2 is that applying the large deviation principle 
for the closed set ( - co , - E ]  u [ E ,  m), E > 0, yields immediately the exponential 
convergence of (T2) 19) to d^ (TA 1 E) in the following sense: 

COROLLARY 2. For each E > 0 there exists L, 3 0 such that for n large 
enough 

P(IJ(T, I 8 - A  ( ~ 2 )  1 E)1 3 E) < exp(-nL,). 

In the next section we investigate the properties of our statistical proce- 
dure under a regular parametric setting, which yields further more detailed 
asymptotic results. 

2 PARAMETRIC CASE 

Let O c Rm be a certain Bore1 set of parameters and suppose that 

In classical parametric statistics the maximum likelihood estimators- are, un- 
der certain regularity conditions, asymptotically normal with variance given 
by the inverted Fisher's information matrix (see, e.g., [3]). Below we present 
analogous asymptotic normality results for the procedure investigated in this 
paper. 

As remarked before, 9 and (8 can be identified with convex compact 
subsets of [0, ljk and [0, I]'", respectively. Thus, the notion of differentiation 
with respect to T E % and ,u E 9 is well defined on the relative interiors ri (%) and 
r i (8)  of %? and 9, respectively, where ri(%) is the interior of % which results 
when % is regarded as a subset of its affine hull and ri (8 )  is defined analogously 
(see, e.g., [lo]). Let us agree to denote the operation of taking these derivatives 
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by P,. and P,, respectively. It is clear that the affine hull aff (P) has dimension 
k-1. Moreover, it is easily proved that 

so, in particular, dim(aff(%'j) = 2k-2. To verify (7) consider the random set 
B := X\{x,) with r]  distributed uniformly on (1, 2, . . ., k )  and check that in 
(T2) the quantities S, (KO; K , ,  . . ., K,-  ,) are strictly positive provided none of 
K , ,  . . ., K , - ,  is contained in K O .  This means that V contains some ball in 
{@: ZE 4 R I @ (0) = 0, @ (X) = 1) centred in T, . Relation (7) allows us to 
identifje:he-differentiation with respect to T E %  with the differentiation with 
respect to T (b,), . . . , T ( b , k -  ,), where (bl , . . . , b z k  -z) is a fixed-sequence of all 
the subsets of 5 except for 0 and 9". 

Throughout this section we will assume that the following regularity con- 
ditions are satisfied: 

(U) d(TA! 9 < m and there exists unique 8, E @ such that 
A (TA, peD) = A (TA 1 S). In addition, 0, lies in the topological interior of O. 

(C) If a sequence c O is such that pBn -+ poo, then also 0, + UO. 

(D) Thefunctiond,: W x O + R u ( + c x , )  defined by Ae(T, O):= ACT, pe) 
is twice continuously differentiable in a neighbourhood of (TA, 8,). 

(I) The (m x m)-matrix of the second derivative of A ,  in (TA, 8,) with re- 
spect to 8, denoted by : = [v;,, A @ ]  (TA, go), is invertible. 

Note that condition (D) is satisfied for instance if A is twice continuously 
differentiable with respect to p and Tin some neighbourhood of (TA, pea) and 
the parametrisation mapping B H ,ue ({xi)) is twice continuously differentiable 
in a neighbourhood of 8, for i = 1, ..., k .  

To proceed, consider a sequence of @-valued random vectors 8, such that 
almost surely 

for all n E N (thus, if 89) contains more than one element, g,, is chosen arbitrarily, 
.- the only requirement being the measurability of &). It follows immediately from 

condition (C) and Corollary 1 that 8, is a consistent estimator of 8,, i.e. 

COROLLARY 3.  With probability 1 

lim 8,, = 8,. 
n+ 30 

The following theorem, stating the asymptotic normality of 4, is the main 
result of this section. 

THEOREM 3. Assume that conditions (U),  (C), (D) and ( I )  are satisjed and 
denote by Wo the rn x (2k - 2)-matrix 

: = [G.T A s 1  (TA, d o ) ,  
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where PiuT is the second order partial derivative with respect to 0 and T Further, 
let IT be the (2k - 2 )  x (2k - 2)-matrix with entries 

Then the sequence &(&-so) converges in distribution to the mean zero normal 
law with covariance matrix V i l  Wo IlW; V ,  l .  

As in Theorem 2, also here the character of the result is mainly qualitative, 
because the explicit computation of the covariance matrix V ;  W, l7W: W; 
is, even for-_moderate k, a-lengthy and difficult task due to both the size of the 
matrices involved and the complicated character of A on %' x 9'. Nevertheless, 
in some particular cases one may try to estimate the covariance-matrix by 
means of Monte-Carlo methods. 

3. PROOFS 

We will proceed as follows. First we give the proofs of Lemmas 1 and 2 in 
which we establish the continuity and other relevant properties of A and A, 
respectively. The next step is to deduce Theorems 1 and 2 from Lemma 2. 
Finally, we establish Theorem 3. 

3.8. Proof of Lemma 1. To see that A is convex on V x B take some 
a ~ ( 0 ,  I), TI, T2 E%? and v,, ~ ~ € 9 .  We are to show that 

(9) A (aTl+(l-a)Tz, uvl+(l-a)vz) 6 UA(T,, vl)+(l-rx) A(T2, v,). 

Clearly, we can assume that both A (TI, v,) and A (T,, v2) are finite, for other- 
wise (9) holds trivially. Thus, ;vl [TI] and v2 [T2] are well defined (see (2)) and, 
obviously, avl [TI] + (1 -a) vz [TZ] E core ( a ~  + (1 - ol) Tz). Thus, by the con- 
vexity of A:  9 ~ 9 + R , u { c o )  we get 

which yields (9) and, therefore, the convexity of A on V x 9. If in addition 
TI # Tz or v, # vz, inequality in (10) becomes strict by the strict convexity of 
A :  9' x 9' -+ R u  { +  m) on its domain of finiteness, which gives us in turn the 
strict convexity of A: %' x  9 + R u { + m)  on its domain of finiteness. 

To prove the lower semicontinuity of A on %? x9' choose an arbitrary 
sequence (T,, v,),"= convergent to some (T, , v,) E +? x 9. Since the only non- 
trivial case we have to consider is A (T,, vn) < m  infinitely often, we can assume 
without loss of generality that A (T,, v,) < co for all n, optionally passing to an 
appropriate sequence. Thus, the distributions V, [T,] given by (2) are well de- 
fined. Taking into account the compactness of 9 we can assume that v, [T,] 
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converges to some p,. Thus, in view of the lower semicontinuity of A on P x P 
(see (A2)) and taking into account that p, < T,, we conclude that 

lim inf d (T,, v,) = lim inf d (v ,  [XI, IJ,) 3 A (poor v m )  2 A (Tm , v m ) ,  
n+ m n + a. 

as required. 
It remains to establish the continuity of % 3 T H A [T, V )  for each v for 

which the function P E I ~ H A ( ~ ,  v )  is continuous. Fix such v and note that 
Tt-t A (T, v) is lower semicontinuous by the preceding part of the p;oof. Thus, 
it suffices to' prove -fie upper semicontinuity of this mapping,-i.e. 

* 
- - 

(1 1) rim sup A (T,, v )  < A ITm, V) 
n+m 

for T, + T,. Assume that A (T,, v) < co, for otherwise (11) becomes obvious. 
Then the distribution v [ T , j  is we11 defined and we can choose a sequence 
(p,,)F==, c 9 convergent to v [ T J  and such that p, < T,. Therefore, by the 
choice of v, 

IimsupAtT,, v) G limsupA(p,, v)= A(v[Tm], V )  = d(Tm, v), 
n+ m n-4) 

which yields (11). The proof is complete. ra 

3.2. Lemma 2. The following lemma is crucial for Theorems 1  and 2. 

LEMMA 2. Let (T,),"=, c%? be a sequence of capacities converging to  a cer- 
tain capacity T, E %. Let further 

for n = 1 ,  2 ,  . . ., m. Then C(") s E are compact and nonempty, 

(12) 

and 

(1 3) 

lim d c ( ~ , l E )  = J ( T , I E )  
n+ m 

lim sup dist (v, C(")) = 0. - - 
n+m ..Z("I 

P r o  of. The compactness and nonemptiness of Z(") follow immediately 
from the compactness of E and from Lemma. 1. 

Further, using (A4) and Lemma 1 we conclude that (- I E) is upper semi- 
continuous as the minimum of the family {A (- I v) I v E 3) of continuous func- 
tions. 

Hence, to establish the continuity of the mapping A (. 15) asserted in (12) it 
is enough to prove its lower semicontinuity, i.e. 
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Take an arbitrary sequence V,E Zf"). By the compactness of B we can assume 
without loss of generality that this sequence converges to some v ,  E 8. Thus, by 
Lemma 1, 

d(~,lE) < A(T,, v,)  < liminfA(T,, v,) = l imin fa (~ ,~s" ) ,  
A'W n-14 

which yields (141, and hence (12) as well. 
To prove (13) take a sequence v, E 9") for n = 1, 2, . . . and let v, E 9, be its 

arbitrary cluster point such that v ,  = limn,,, v,! for some subsequence n'. 
Taking into-?cco0u& (12t Lemma 1 and the definition of I(") we dedice that 

d (T,, v,) < lim inf d (T,. , v,.) = lim infB (T,. I E) = a (TA I 3. 
n'+ m n'-r m 

This means that v ,  E X ( " ) .  Relation (13) follows now by  standard arguments. rn 

3.3. Proof of Theorem 1. Theorem 1 is an easy conclusion of Lemma 2. By 
the law of large numbers we have almost surely 

lim T$') = TA. 
n+m 

Hence the assertions of Theorem 2 follow immediately from Lemma 2. 

3.4. Proof of Theorem 2. For each i~ N define the random function 
S2): 2% + R by 

1 if A i n d  +0, sy (8) : = 
0 otherwise. 

It is easily seen that Ssi are i.i.d. and 

Note also that the functional PA defined in (4)  is the Laplace transform of S y ) .  
Therefore, using the standard Cramer's result (see [I], Corollary 3.1.7 and 
Exercise 3.1.1 1 below or Theorem 3.3.1 1, and [2], Theorem 3.5.1) we conclude 
that the sequence (T$)),"=, satisfies on %? the large deviation principle with the 
rate function 9A given in (51, i.e. 9A has compact level sets, for each open set 
9?c% 

and for every closed set 9 c %? 
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Applying Lemma 2 and the standard contraction principle (see [2], Theorem 
1.3.2) we obtain the large deviation principle for (d^ ( ~ 2 )  I E)):= with rate func- 
tion &A defined in (6), which is the first assertion of Theorem 2. 

It remains to prove that 9, (h) > 0 for h # A (TA 1 E)!. Assume that for some 
ho # A(T, I S) we have 9,(h,) = 0. Then there exists a sequence T, with 
YA IT,) -, 0 and A (T,, 1 E) = ho. In view of the compactness of %' we can assume 
without loss of generality that T, converges to some T,. By Lemma 2 we have 
a(T, 19) = ko. On the other hand, YA is lower semicontinuous (because it has 
compact level sets) so that 0 < .YA (T,) d lim inf,, , (x) = 0. - Since - the only 
element-of %'at which equals 0 is T'', we conclude that T, A 7''. On the 
other hznd, however, A (T, ( E) = ho # (TA I Z), so we come to a contradic- 
tion. This completes the proof of Theorem 2. 

3.5. Proof of Theorem 3. Applying the standard central limit theorem we 
conclude that the sequence f i ( ~ 2 ) -  TAj converges in distribution to the mean 
zero normal law with covariance matrix l7 given by (8). Hence, setting 

we see that 

Further, from condition (D) we obtain the following Taylor expansion: 

where the absence of term linear in (8-0,) follows from (U), which yieIds 
[Ve A s ]  (TA, 0,) = 0. Therefore, writing 

M(O):=A,(T,, 8) and MU(0):=A,(T2),0), 

we conclude from (16) that 

(M, - M )  (0) -(M,-  M )  (80) = (6 - 80)T w0 ( ~ $ 1 -  TA) + o (18- e0Jz + IT$)- ~ ~ 1 ' ) .  
- - 

Taking into account (15) we get 

In view of (15) and (17) we can apply Theorem 3.2.16 in [ll] with r,, = f i  to 
obtain 

This yields immediately the assertion of Theorem 3. The proof is complete. 
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4. CONCLUDING REMARKS 

The further objectives aimed at by the author are twofold. The first one is 
to elaborate appropriate algorithms and to implement the estimation proce- 
dures suggested in the paper in relevant particular cases. It is worth noting that 
although related algorithms have been already investigated in the literature (see 
[4] and [dl), they performed the relative entropy rninimisation over the core of 
a certain capacity with respect to a fixed (usually uniform) measure, while in 
our case an additional complication arises due to the fact that the reference 
measure is also subject to the optimisation procedure. . - 

The-second objective is to extend the established results to the case of 
- - 

continuous sample space. 
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