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Abstract. In this paper, we provide existence of a reflected solu- 
tion of the one-dimensional backward stochastic differential equation 
when the coefficient is continuous, has a superlinear growth in y and 
quadratic growth in z. We also give a characterization of the solution 
as the value function of an optimal stopping time problem. We also 
study the links between the solution of the quadratic RBSDE and the 
corresponding obstacle problem. Then we give an application of quad- 
ratic RBSDE's to the pricing of American contingent claims in an 
incomplete market. 
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1. INTRODUCTION 

Nonlinear backward stochastic differential equations (BSDE's) were first 
introduced in 1990 by Pardoux and Peng [Ill. Recall that the solution of 
a BSDE consists of a pair of adapted processes (Y, Z )  satisfying 

-dE: = f ( t ,  x, ZJdt-Z*dlq, Y, = 5, 

where f is called the coeflcient and 5 the terminal condition. Under the Lip- 
schitz assumption on f, the authors stated the first existence and uniqueness 
result. The interest in BSDE's comes from their connections with PDE's, sto- 
chastic control and mathematical finance. In particular, as shown in 1997 by El 
Karoui, Peng and Quenez, BSDE's are a useful tool in the pricing of a Euro- 
pean option, which consists of a contract which pays the amount 5 at time T. In 
a complete market (with eventually some nonlinear constraints), the price pro- 
cess Y of 5 is a solution of a BSDE such as (1). In 1997, El Karoui et al. proved 

* The research was supported in part by CSttedra Presidential Fellowship and FONDAP in 
Applied Mathematics. 
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in [I], still under Lipschitz assumptions, the existence and uniqueness of an 
adapted solution for a reflected BSDE (in short, RBSDE) for which the solu- 
tion is constrained to stay above an "obstacle" (t,, 0 4 t d T ) .  In this case, the 
solution of the RBSDE associated with obstacle 5 and coefficient f consists of 
a triple (Y, 2, K), where K is an increasing process satisfying 

(2) -dk; = f ( t ,  x, Zt)dt+dK,-ZtdKy Y, = e,, 
with I: 3 <, and (X- t , )dK ,  = 0. As shown in [I] or [3], RBSDE's are a useful 
tool for the pricing of American options. In a complete market (with eventually 
some nonlinear constraints), the price process Y of an American option as- 
sociated with payoff {&, 0 < t < T )  is a solution of the RBSDE such as (2). 

Recall that many assumptions have been made to relax the assumption on 
the coeficientf; for instance, in [8] Lepeltier and San Martin have proved the 
existence of a solution for BSDE's with a coeillcient which is only continuous 
with linear growth. Moreover, Matoussi [lo] established the existence of a so- 
lution for RBSDE's with continuous and linear growth coefficient. 

In [a Kobylanski studied the case of BSDE's without reflexion and proved 
an existence result in the case when the coefficient is only linear growth in y, and 
quadratic in z. In [9] Lepeltier and San Martin generalized the result to a super- 
linear case in y. Recall that such BSDE's appear in risk-sensitive control and also 
in finance. More precisely, in [4], El Karoui and Rouge studied the problem of 
pricing the European options via exponential utility. In the case of an incomplete 
market, they stated that the price of such an option is a solution of a quadratic 
BSDE. Thus, if we are concerned with American options instead of European 
options, we are naturally led to the study of reflected quadratic BSDE's. 

In this paper, under assumptions similar to those in [9], we state the existence 
of a maximal solution of a quadratic RBSDE, by adapting some techniques of [6] 
and [9] to the reflected case. We also state the existence of a minimal solution of 
the RBSDE, which cannot be derived directly from the existence of a maximal 
solution because of the reflexion. Also, under some stronger assumptions (as in 
[a), we state that, as in the case of a Lipschitz coefficient, the solution can be 
characterized as the value function of an optimal stopping time problem. From 
this property we derive both the uniqueness of the solution and a comparison 
theorem. We also show that, even if there is no uniqueness, the maximal (respeo 
tively, minimal) solution coincides with the value function of an optimal stopping 
time problem. In this paper we also give a stability result: more precisely, if we are 
given a sequence of obstacles (r) which converges a.s. to and a sequence of 
coefficients Cfwhich converges to f locally uniformly, then the solutions (Y") of 
RBSDFs associated with (e, f w n v e r g e  uniformy a.s. to I: the solution of the 
RBSDE associated with (5 ,  f). Note that this stability result can be used to obtain 
some continuity properties of the solutions of RBSDE's with respect to pa- 
rameters. In this paper we also study the links between RBSDE's and obstacle 
problems, generalizing the results of [I] to the quadratic case. 
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The outline of the paper is organized as follows. In Section 2, we show the 
existence of maximal and miTlimal solutions of the RBSDE. In Section 3, we 
study the links between solutions of RBSDE7s and some value functions of 
optimal stopping time problems. Section 4 provides a stability result. Section 5 
provides connections between the solutions of quadratic RBSDE's and solu- 
tions of related obstacle problems. We give a direct proof that the solution of 
the RBSDE is a viscosity solution of the associated obstacle problem. We also 
prove a uniqueness result for the viscosity solution of this obstacle problem. In 
Section 6, we give an application of the previous result to the pricing of Ameri- 
can contingent claims in an incomplete market via utility maximization. In this 
case, the fair price of an American contingent claim can be characterized as the 
unique solution of a quadratic RBSDE, where the obstacle corresponds to the 
payoff of the option. 

2. EXISTENCE OF MAxmAL AND MINIl\aAL SOLUTIONS 

Let (w),,,,, be a standard d-dimensional Brownian motion defined 
on a probability space (62, P). k t  (Fry 0 < t < T) denote the natural 
fltration of (W,), where So contains all the P-null sets of S Let us assume the 
following: 

HI. A bounded adapted process {{,, 0 < t < T) ,  called "obstacle", is con- 
tinuous on [0, T [  and such that =,,, {, < {, a.s. 

HE A ~ccoefficient" f: [0, TI x B x R x Rd -+ R is P@L% (R)@B (Rd)-measu- 
rable, where 9 denotes the predictable a-algebra. 

We introduce the following notation: 

DEFJNITION 1. We say that (Y, Z, K) is a solution of the RBSDE associated 
with obstaclef ((rJ and coeficient f, which is denoted by Eq(c, fly if 

(a) it satisfies 

(b) Y E H ~  (R) and z E H~ (R~); 
(c) I: 2 tt as., 0 < t < T; 
(d) K is a continuous increasing process with KO = 0 and J: (I:- = 0 

(K is increasing only on Y = 0. 
In the sequel, we will suppose that the coefficient f satisfies the following 

assumption: 
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H3. For all (t, a), f ( t ,  o, ., -) is continuous and there exists a function 
I strictly positive such that 

" dx 
- = + co with If ( t ,  w ,  y,  z)l 4 ZC~)+CIZ~~,  dt6dP-a.s. 

0 E(x) 

2.1. Exlstennce of s maximal solution. We remember ([9], Lemma 1) that 
the assumption on E implies that for all b 2 O the ODE 

has a unique solution on [O, 17. Our main result is the following 

THE~REM 1. Under the assumptions HI-H3 on (e, f), the RBSDE Eq(5, f) 
(3) has a maximal bounded solution (Y*,  Z*, K*). Moreover, for all t we have 
Y: < U, =G U, a.s., where U is the unique solution of the equation (4) with 

If we transform the equation (4) by an exponential function, that is, if we 
define = exp(2CUt), we infer that is the unique solution of the ODE 

T 

(5) = p + J g ( ~ ) d ~ ,  1 < fi  = eZcb, 
t 

where 

g(x)=2Crl?$) when x > O .  

Then we have fi  < I.: < exp (2CUo) = &. 
Remark  1. Let Q: R+ + R+ be a smooth function such that 

Assume also that Vo < R ,  and fi  > r > 0. It  is direct to verify that the unique 
solution of the equation 

A useful tool in our considerations will be the following two lemmas. 
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LEMMA 2.1 (Comparison). Let f and f dq5ned on [O, x 62 x R x Wd, 
which are P@B(Rd+')-rneasurabk, satisfy 

Assume that, for all ( t ,  a), f 2 ( t ,  m, y ,  z) is continuous and linear increasing, i.e., 
there exists a constant k < co such that 

Let (t)) and (5:) be two adapted real processes belonging to HZ, continuous on 
- 

[0, T), such that l i m s ~ p , , ~  <:< (& fur i = 1,  2 and satisfying 

Let (Y', Z1,  K1) be a solution of Eq(tl, f l )  and let (Y2 ,  Z Z ,  K Z )  be the maxi- 
mal solution of Eq( t2 ,  f2). Then y1 < YZ as. 

r f  in addition f1 is also continuous and linear increasing, if 5' = e2, and if 
(Y1, Z', K1) is the maximal solution of E q ( t l ,  f l ) ,  then dK1 3 dK2 as. 

Proof. The existence of a maximal solution in the linear growth case 
provides from the result of Matoussi [lo]. Moreover, if for n > K, 
(Yzpn ,  Z2'", K2$") denotes the unique solution of Eq (e2, f :), where Cf;) is the 
sequence of Lipschitz functions approximating f horn above (see [8] or [lo]), 
from the usual comparison theorem for RBSDE [I], we infer that, for all 
n > K ,  Y1  < YZ9", and since Y21" 1 Y2,  we obtain Y1 < Y 2  a.s. 

Now we assume c1 = 5'. In the same way as previously, if (f:) denotes the 
sequence of Lipschitz functions approximating f 1  from above and 
(Y1,n, Zll",  K1*") is the unique solution of Eq( t l ,  f:), we have, for all 
n > k, f A < f :, which implies, by [5], dK1gn 2 dK2*". Finally, since K1%" K1 
and K2." 1 K2, we obtain dK1 3 dK2 P-a.s. 1 

LEMMA 2.2. Let f l :  R + R+ be a continuous function with linear growth. If 
the ODE 

T 

~ , = a + j f ~ ( ~ ~ ) a s ,  a > 0 ,  - 
t 

has a unique solution J, then the RBSDE Eq(a, f,) 
T T 

(10) X, = a+l f, ( X ~ ) ~ S + K ~ - K , -  f z , ~ w ,  
t t 

hus a unique solution given by Z = 0, K = 0 and X = J.  

Proof. As in [8] we approximate f1 by a Lipschitz function from above. 
Let us call Cfl) such an approximation and consider the unique solution of 
Eq (a, f 3: 

T T 

Xy = a+j  ~ ~ ( X ! ) ~ ~ + K + K : - I Z : ~ W , .  
t t 
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From the uniqueness theorem we infer that X: is the solution of the ODE 

(since Xn 3 a, KO = 0). 
We h o w  that 

n a1(Rd+9,  (X, z, (xn, and K" f R a.s., 

where (X, Z, R) satisfies Eq(a, fl) (see [lo]), and therefore Z = 0, K = 0 and 
I = J .  The approximation can be done from above or from below to obtain 
either a maximal or a minimal solution of Eq (a, fi). Consequently, (J, 0, 0) is 
a maximal and a minimal solution of this equation. Finally, let (J, 2, K )  be 
another solution of Eq (a, A). For all r g T we obtain 1: Zs d W. = Kt .  Since the 
left-hand side is an increasing continuous process and the right-hand side is 
a continuous martingale, we obtain Z = K = 0. ra 

23. Pmof of gltseorenn 1. Making the change of variable 8, = exp (2CI;) in 
Eq(5, f) (3) we are led to solving the following RBSDE Eq(q, F): 

with qs = exp(2Ct$, As = 2C2, B,, dJs = 2Cexp (2CY,) dK,,  and 

Since 2 t, and K increases only on (x = a, we have exp(2Cv = 
= ($2 exp(2CtJ = q,, and 

T T 

1 (0, - qJ dl, = 1 (exp (2C :) - exp (2C(,)) 2C exp (2CY,) dKt = 0. 
0 0 

Consider now 

g (x) = 2Cxl (g). 
where I is given by N3. Taking 

b = Max (lltTllm, ess sup ct(co)) and J = eZcb 
(t,col 

we obtain j? < < Vo, where Vo is given by (5). Finally, consider 

m=essinfc,(w) and F ~ ( s , o , x , A ) = $ ( x ) F ( s , u , x , A ) ,  
(t.ml 
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where Cl, is any smooth function satisfying 

#(x)E[O, 11 for all x, 

0 for x$[Ki, Kzl, 
$ (4 = 

1 for XE [2K1, KK2/2] ,  

where 0 < 2K1 < eZCm, K2/2 > Vo. Then for all s, o, x > 0, and A we have 

Assume that for any ~ there exists (%$, A*, 9) being a maximal solution of 
Eq(g, F9) such that eacm < q, < t$' < d Vo. Then we claim that Theorem 1 
follows. In fact, 

is a bounded solution of (3) Eq ( l ,  f, L). On the other hand, let (x Z, @ be 
a bounded solution of Eq((, f) with P< h (bound). We can consider K,, K, 
and satisfjmg (13), and such that 

6={ 
0 outside [K1, Pi2] , 
1 in [2K1, R2/2], 

where 0 < 2Ri $ eZCm, z2/2 > h. Then g =  ezcf, = 2 ~ 2 6  and d j  = 2 ~ 6 d g  
is a solution of Eq (q, F$. Therefore 8 < eJy where (of, A$, fi) E E~ (q, Fg) is 
a A maximal bounded solution such that eZCm < 0s < T/, $ G, and then 
@ a  Eq (q, F,). Consequently, P< < p. This argument also shows that 0 i  
does not depend on &. Summing up, to prove Theorem 1 we are led to proving 
the following result: 

THEOREM 2. Assume that 
- T 

G = {g: (0, m) + R+, for all 1, = b+ J g ( ~ ) d s  has a unique solution). 

Let g~ G and k t  be a bounded obstacle process which satisfies u < q < B, 
jl> 1, 0 < u < 1. Suppose that F: LO, T'l x B x R+ x Rd + R satiSJies for some 
constant C > 0 the following codition: 

Assume also that F is P@I (Rd+l)-measurable and F (t, w ,  ., .) is continuous for 
each (t, w). Then the RBSDE Eq(q, F) 

T T 

(14) e, = q T + j ~ ( s ,  a, e,, A , ) ~ s + J ~ - J ~ - ~  A , ~ w ,  
t t 
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has a maximal solution (O*, A*, J*) which satisfies m < q, < 8: < K /r Vo, 
where m - = ess id(,,, (q, (w)) > 0 and where is the unique solution of 

T 

t: = B+[stV,)ds. 
t 

P r o  of. For any 0 c r < z, Vo < R (where Vo and m are defined as in 
Theorem 2) we consider a smooth function Q such t h a t  

I x, x ~ f r ,  R], - 

4(x)= r / 2 ,  O < x < r / 2 ,  

We shall prove that the RBSDE Eq(q, F,) 

has a unique solution which satisfies rn < 8, < b, and therefore we can choose 
it independent of (r, R, Q). This showsthat (BP, AP, JP) is a solution of Eq (q ,  F) 
(14). We proceed in the way like in the proof of Theorem 2 of [9] defining 
~ : [ O , ~ x Q x R x W d + R  by ~ ( t , c o , Q l ; 1 ) = F ( t , m , ~ ( B ) , 1 E ) ,  and taking 
up: R J + R  to be a sequence of smooth functions such that 0 < K, < 1, 
K~ (A) = 1 if IAI 6 p ,  and rcP (A) = 0 if IRI 2 p + 1, we define 

Then 5 1 F, Fp is a bounded and continuous function of (8, 2). Therefore by 
[lo] we have proved the existence of a maximal solution (BP, AP, JP) for 
Eq (q, Fp). Since 

we infer from the comparison theorem that m < OP 6 H, where H is the maxi- 
mal solution of Eq(/3, g o @ )  (5). From Lemma 2.2 and Remark 1 we have 
H = 1.: Since (OP) is a decreasing and bounded sequence, we have proved the 
existence of B E  H z  (R) such that, for all t < T, 8PJ 8 P-as., and 0. 
Moreover, 8 satisfies, for all t < T, < Of 6 Vo P-a.s. 

We now claim that (Ap) has a convergent subsequence in HZ. First we 
prove that (IIAPllz), is bounded. AppIying ItB's formula to 4(8f), where 
4(x) = e-3Cx, and taking the expected value we get 
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Since &(x)  = -3Ce-3Cx < 0 and Jp is increasing, the last term is negative. 
Then 

1 T 

E ( ~ ( ~ O ) ) + Z E ( ~  6"(@91AP12ds) C E(#(qr ) )+E(J  4 ' (Bf)P, (s ,  e:, A : ) ~ s ) .  
0 0 

Using the relations - m.< 8: 6 and the facts that 

Vs, w ,  t lO~[m,  Vo], Vil, &is, w,  8, A) 2 - A - ~ l h l ~ ,  

where - 

A =  max g(8)  and $@'f Cr$' =$C2r$, 
m S B i V o  

we get 
+ ~2 e- ~ C M  llAPll~ < E(r$(q,))+ 3Ce-3CmAT 

Consequently, IJAP(12 < K < a, where the constant K is independent of p. 
Next take a weak convergent subsequence which still will be denoted by 

(AP), and AEH' the weak limit. Applying ItB's formula to 

like in 191, and taking the expected value we get for p < q 

Since $'(88-8:) 2 0 and dJ: < dJ: ,  we see that the last term is negative. Now 
4(ep-@) 2 0 and 

Therefore we obtain 

The convergence of (03 to 8 being pointwise, (89  being bounded and (AP) being 
bounded in HZ, we have, by Lebesgue's theorem, the following results: For 



each sequence (qJ such that 
T 

lim E ( j  #' - 3C47 (d: - 0:~)) IA! - A?I2 ds) 
j -m o 

exists, this limit coincides with 
T 

Consequently, - 

- T 

= lim E 1 [$ &" -3C$'](O,P- @) IAf - Az12 ds 
q-=" 0 

Now, Lebesgue's theorem gives 
T 

lirn E (j 4' (8: - R) (2A + 3C (In: - A,12 + IAs12)) ds) 
q+=" 0 

T 

Also, since the functional 

is convex and I.s.c., it follows that 

Once more we deduce that 

Finally, since @'/2 - 6C#' = 6C, and since by the convexity of the 1.s.c. func- 
tional 

T 

AI+E(J IA:-A,~~~s) ,  
0 
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we have 
T 

It follows clearly that 

We consider now the sequence ( J q .  This sequence is increasing* Then there 
exists {J,:  0 6 t < T) valued in R+ such that, for all t, Jf t J,.  We now claim 
that JT < m a,s, In fact, we have 

T T 

J; = e ; - vT- jFp( s ,  q, n g d ~ +  1 A : ~ w , .  
0 0 

Then 
T T 

E(J$) = e P g - ~ ( r l r ) - ~ ( j F ~ ( ~ ,  rinds) 4 B ~ ; - E ( ~ ~ ) + A T + c E ( ~ ) A : ~ ~ ~ s ) .  
0 0 

Since {llAP(I2), is bounded by a constant K, we deduce that 

sup E(J;) < 0;-E(qT)+ AT+K2 CT 
pdV 

Since 

we conclude that JT is integrable, and consequently a.s. finite. Thus 
{J,: 0 < t < T) is clearly an increasing process and Jo = 0. Finally, it remains 
to verify (d) of Definition 1. Let p < q. Then we have 

-T T T 

Of-0: =.I(<(S, Of, A:)-F~(s, @, A9)ds-{ (A[-A:)dW,+J(dJf-dJi ) ,  
t t t 

the last term of the right-hand side being less than or equal to 0. ~ d n s e ~ u e n t l ~ ,  

Extracting if necessary a subsequence still denoted by (An), we may assume 
without loss of generality that (An) converges a.s. to A and 2 = sup, IAnl E Hz. 
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Since Fp 4 F is continuous, by Dini's theorem we see that Fp + F uniform- 
ly on compact sets. Then taking a subsequence we get 

I 

I 
~ p l ~ , ~ f , / I s P ) + - - * F ( s , ~ , , A , )  a s p ~ m ,  

F'ts, @, A : ) + F ( S ,  e,, AJ as 4- ao. 

Since l&(s, @, A;)1 < A+ C I A ~ I '  6 A+c;~,',  it follows by the dominated con- 
I vergence theorem that 

. 8 

Now, by the Burkholder-Davis-Gundy inequality, we get 
T T 

E( sup I J ( A : - A ~ ) ~ W , I ) ' < D E ( ~ I A : - A ~ ~ ~ ~ S ) + ~  as p, q + m .  
O S t b T  0 0 

1 Consequently, 

E ( sup 10;- I!?!!) + 0 P-as. as p, q + a. 
O G t b T  

This implies that OP 4 6 uniformly in t, where B is a continuous process, and 
fitzally J is also a continuous process. It remains to show that 

i T 

1 
I Since 
i 
I 

T T T 

j ( d r - ~ l t )  dJ* = S 10t - 6;) dJt + j (0: -qt)dJ*, 
0 0 0 

T 

OP J 9, and S (0,- 8:) d J t  G 0, 
0 

we obtain 

and 
T  

IE (J (6; - ylt) (dJ t  - dJf))I < KE (JT - J;) for all p E N .  
0  

The dominated convergence theorem gives 
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Then 

which completes the proof. 

2.3. Edstence ~f a m i n k 1  solution. 

THEOREM 3. Under the assumptions HI-H3 on (i, f f h  the RBSDE Eq (r ,  f )  
(3) has a minimal bounded solution (Y,, Z, ,  K,). Moreover, for all t we have 
Y, (t) < U, < U, u.s., where U is the unique solution of the e q u a t h  (4) with 

If we define Qt = exp (-2CUt), we infer that (QJ is the unique solution of 
the ODE 

where 
-In (x) g(x) = ~ C X Z ( ~ )  when x > 0. 

Then we have Qo = exp(-2CU,) < Q, < a. 

Sketch of the  proof of Theorem 3. It should be noted that the 
existence of a minimal solution of the RBSDE Eq(5,f) (3) cannot be directly 
derived from the existence of a minimal solution because the problem is not 
symmetric. However, the proof of the existence of a minimal solution is based 
more or less on similar arguments to those in the case of the maximal solution. 
In the following, we give the main arguments of this proof. 

Making the change of variable 8, = exp (- 2Cl3 in Eq ( 9 ,  f) (3) we are led 
to solving the following RBSDE with upper obstacle rj and coefficient P: 

with rjs = exp(-2C5,), As = -2CZ,&, dIs = -2Cexp(-2C%)dK,, and 

Since 2 5, and K increases only on (Y ,  = c,), we have 
T 

exp(-2Cx)=8,6exp(-2Cct)=jj, and 118,-ft)dJt=O. 
0 
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Consider now 
-In (x) 

g(x) = 2cxl(7), 

where E is given by H3. Taking 

b=Ma~(11~,II, ,esssup~~(w)) and a=e-ZCb,  
Q.m) 

we obtain Q, < Q, < a, where Q, is given by (16). 
Finally, consider - 

r n = e s s i n f & O  and F ~ ( s , w , x , A ) = $ ( x ) F ( s , o , x , 2 ) ,  
(tm) 

where $ is any smooth function satisfying (13) where 0 c 2K1 < Q,, K2/2 > 
Then for all s , o , x > O  and ;I we have 

Assume that for any JI there exists (p, J*, 79 being a maximal solution of the 
RBSDE associated with coefficient F$ and upper obstacle i j  such that 

Then we claim that, by arguments as in the proof of Theorem 1, Theorem 3 
holds. Thus, to prove Theorem 3 we are led to prove the following result. 

PROPOSITION 2.3. Assume that 
T 

G = {g: (0, oo) + R,, for all aE10, I[, Q, = a- a(Qs) ds has a unique solution). 
t 

Let Q E G and let tj be a bounded predictable process, continuous on [0,  TG such 
that lh,,,lJ, 2 tiT, which satisjks a < ,< #?, > 1, 0 < a < 1. Suppose that 
F:  [0, T ]  x D x R, x Rd + R satisjies for some constant C > 0 the following con- 
dition: - 

V t , w , x > O , A ,  - g ( ~ ) - C ( A ( ~ < F ( t , m , x , A ) < # ( x ) .  

Assume also that F is 9@&Y(Rd+l)-measurable and F ( t ,  w ,  ., a )  is continuous for 
all ( t ,  w). Then the RBSDE associated with coeficient F and upper obstacle ti 

has a maximal solution (P, A*, I*) which satisfies Qo < Q, < &* ,< @, < iii, 
where rii = esssup(t,m, (ii, (a) )  and where (Q*) is the unique solution of 
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Proof.  We consider for any 0 < r < Qo, fi < R, a smooth function p satis- 
fying (6). We hale to prove that the RBSDE associated with upper obstacle 
y and coefficient F" defined by F"(t, u, 6,  A) = F{t, w, e(8),  A) has a unique solu- 
tion which satisfies Qo 6 6 < 7la, and therefore we can choose it independent of 
(r, R,  Q). We proceed in the same way as in the proof of Theorem 2. We define 

Fp(t, ~ 0 ,  = a ( ~ c e ) ) ( l - x ~ ( l ) ) + ~ , ( ~ ) B ~ t ,  w ,  0, a). 
Then Fp J. F and, far each p, Fp is a bounded and continuous function of (0, A). 
Therefore, it can be shown, using similar arguments to those used in [10], that 
there exists a maximal solutioq(&P, Jp, J p )  of the RBSDE, associated with 
upper obstacle f j  and coefficient Fp, and we infer from the comparison theorem 
that Q < BP < 6. 

Since (BP) is a decreasing and bounded sequence, we have proved the 
existence of BE H2 () such that, for alI t < T, @' 1 6 a.s. Moreover, g satisfies, 
for all t < T, Qo G 8< m as. 

The boundedness of (HJp112), is obtained by the same argument as before 
by applying It8's formula to 4(Bf), where #(x) = ef 3Cx. Next take a weak 
convergent subsequence which still will be denoted by (AP) and let XE HZ be 
the weak limit. Applying ItG's formula to 

and using the fact that, for p < q, dJp 2 dJq, and then the same arguments as in 
the proof of Theorem 2, we derive 

We consider now the sequence (JP). This sequence is decreasing. Then there 
exists {A: 0 < t < T )  valued in R+ such that, for all t, Jf Jz. We have 
JT < PT a.s., and hence JTeC. Now, for p < q, we have 

Using the fact that, for p < q, dIp 2 dJq, and then applying the same arguments 
as in the proof of Theorem 2, we obtain 

E (  sup 18f-6;41) + 0  P-a.s. as p, q -t co. 
O S t 4 T  

This implies that 87P + B uniformly in t, where B is a continuous process, and 
finally J is also a continuous process. It remains to show that 

5 - PAMS 221 



66 M. Kobylanski  et al. 

This can be obtained by using the fact that (see [13], p. 465), at least for 
a subsequence, 

T T 

O = j ( 8 f - f t ) d J ~ + J ( 8 , - ~ ) d J t  asp- ,a , .  
0 0 

The proof is completed. a 

3. WNIQUENESS A N D  CHARACTERIZATION OF THE SOLUTION OF TWE RBSDE 
AS THE VALUE FUNCTION OF AN OPTIMAL STOPPING PROBLEM - 

3.1. Uniqueness, characterization, compadrnn. In this section, we will sup- 
pose as in [6] that the coeficient f is locally Lipschitz continuous and has 
a quadratic growth in z in a strong sense, that means, the partial derivatives of 
f have a linear growth. More precisely, the assumption (H3) will be replaced by 
the following assumption: 

H4. For each constant M > 0, there exists a constant C > 0 satisfying for 
all (t, y ,  z ) E [ O ,  T]x[-M, W x R d :  

(ii) 

(iii) VE > 0, 3C, such that 

where the partial derivatives are taken in the sense of distributions. 

Remark 2. Recall that H4 (i), (ii), (iii) are the assumptions under which 
the comparison theorem and the uniqueness of the solution hold for a non- 
-reflected BSDE with quadratic growth (see [6]) .  

Remark 3. Note that if 

af 
-(t, y, z) < a (1 + lzl), where a > 0, 
ay 

then the assumption (iii) is satisfied. 

In the following, we show that under the assumptions HI, H2 and H4, 
a solution (I;) of the RBSDE Eq(c, f) corresponds to the value function of an 
optimal stopping time problem. This result generalizes the result obtained in 
[6] in the case of a Lipschitz coefficient. 

For each t E [0, TI, let us denote by T, the set of stopping times T such that 
t ~ [ t ,  17 a.s. 



Reflected BSDE with s~perlineru. quadratic coeficient 67 

For each z E T, we will denote by (X,(z,  {J, n,(.r, e,), t < s < z) the 
(unique) solution of the BSDE associated with terminal time z, terminal con- 
dition 5, and coefficient f. We derive easily the following property: 

PROPOSITION 3.1 (Characterization). Suppose that the assumptions HI, H2 
and H4 are satisfied. Suppose that (Y, Z ,  K) is a solution of the reflected BSDE 
Eq (5  , f ). n e n ,  for each t E [0, TI,  

(20) X = X ,  (D, ,  tDJ = ess sup X, ( r ,  t,), 
,€Tt 

- 
where D, = in f {u  2 t ;  Y, = t,). 

Proof. The proof is based on the same arguments as in the case of 
a Lipschitz coeficient. Since Y,, = e,, and since the process K is constant on 
[t, D,], we derive easily that (x, t < s < DJ is a solution of the BSDE as- 
sociated with terminal time D,, terminal condition (,, and coefficient f, that is 

It remains now to show that Y; 2 X,(z, 5,) for each T E  T .  Fix T E  q. Note that 
on the interval [ t ,  z] the pair (x, Z,) satisfies 

In other words? the pair (Y,, Z,, t < s < D,) is a solution of the BSDE associated 
with tenninal time z, terminal condition and coefficient f (s, y, z)+dK,. Since 
f (s ,  y, z)+ dKs f (s ,  y, z) and since Y, 2 t,, the comparison theorem for 
quadratic BSDE's gives 

and the proof is completed. pa 

Note that Proposition 3.1 gives clearly the uniqueness of the solution: 

COROLLARY 1 (Uniqueness). Suppose that the assumptions H1, H2, H3 and 
H4 are satisfied. Then there exists a unique solution of the R3SD.E Eq(e,  f) .  

Moreover, from Proposition 3.1 we derive easily the following comparison 
theorem for quadratic RBSDEYs: 

PRows~no~ 3.2 (Comparison). Let 11, 5' be two obstacle processes (satis- 
fying H I )  a d  let f l, f ' be two coeficients (satiSfying H2 and H3) such that f 1  
or f ' satisjies H4. Let (Y1, Z 1 ,  K1)  (respectively, ( Y 2 ,  Z2,  K2))  be a solution of 
the RBSDE Eq  ( e l ,  f l) (respectively, Eq (12, f ')) and assume that 

(1)  < l2 U.S., 

( 2 ) f 1 ( t ,  y , z ) < f 2 ( t , y , z ) ,  t € C O ,  T7, I y y z ) € R x R d .  
Then Y: < Y: for all t E [0, a.s. 
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P r o  of. Case 1. Suppose that f satisfies H4. The proof is based on 
Proposition 3.1 and on the comparison theorem for quadratic BSDE's. 

For each z E 1;, let US denote by X2 (z, {:) the unique solution on [t, t] of 
the BSDE associated with (z, {:, f2 ) .  

Let us introduce the stopping time D: = inf{u 3 t; Yi  = 9;). Recall that 
since the process K' is constant on [t, D:], we derive easily that 

where Xf (D:, lh,) is a solution of the BSDE associated with (D:, ti:, f I). The - 
classical comparison theorem for quadratic BSDE's gives 

x: ID:, G x; CD: , egi) a.s. 

Hence, by Proposition 3.1, 

Y: a ess sup X," (T, 5:) = Yt2 a.s., 
T E T ~  

and the proof is completed. 

Case 2. Iff (but not f2) satisfies H4, the proof is very similar and uses 
the characterization of the minimal solution given in Proposition 3.3. 

3.2. Characterization of the nzinimal and maximal sahtiom. In the fol- 
lowing proposition, we state that under the weaker assumption H3, Proposi- 
tion 3.1 still holds but for the maximal (respectively, minimal) solutions of the 
RBSDE's. More precisely: 

PROPOSITION 3.3. Let l and f be, respectively, an obstacle process and a coef- 
Jicient (satisfving 81, H2, and H3). Let (Y*, Z*, K*) (respectively, (Y,, Z , ,  K,)) 
be the maximal (respectively, minimar) solution of the RBSDE Eq ({, f). For each 
T E  ?;, let us denote by X* (T, {J (respectively, X,(z, 5,)) the maximal (respec- 
tively, minimal) solution of the quadratic BSDE associated with terminal time T, 
terminal condition tz, and coeficient f. Then, for each t E [0, n, 
(22) . Y: = X: (D: , tq) = ess sup X* (z, 53 

r€Tt 

and 

where D: = inf{u 2 t; Y: = lU}. 

Remark 4. Let D,(t) = inf{er 2 t ;  Y,(u) = t,). It can be noted that 
Y, (t) = Xt(D, It), ti*(,,), where X(D, (t), ED,(,,) is a solution (but not necessarily 
the minimal solution) of the BSDE associated with terminal time D,(t), ter- 
minal condition {,,(,,, and coefficient f. 
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Before giving the proof, let us state the foIlowing lemma: 

LEMMA 3.4. Let f be dejined on [ O ,  x SZ x R x lid, which is B@L% (Rd + '1- 
-measurable, continuous with respect to y, z, linear increasing, i.e., there exists 
a constant K < og such that 

Let (a be an adapted real process belonging to Hz, continuous on [ O ,  T [ ,  such 
that lim  sup,,^ (, < t,. Let (Y*, Z*,  K*) (respectively, (Y,, Z,,  K,)) be the 
maximal (respectively, minimal) solution of RBSDE Eq (5, f). Then the equalities 
(22) and (23) hold as. 

Proof of Lemma 3.4. First, since the process K* (respectivel.~, K,) is con- 
stant on [t, D f ]  (respectiveIy, [t, D,(t)]) ,  we have clearly 

where X(D; ,  t0:) (respectively, X ( D ,  (t), 5D+I,1)) is a solution of the BSDE as- 
sociated with terminal time D f  (respectively, D, (t)), terminal condition (,; (re- 
spectively, {,*(,,), and coeEcient f. 

Let us show now that, for any fixed t E [ O ,  TI, the equalities (22) hold. 
Let Cf,) be a sequence of Lipschitz functions approximating f from above. 

Let (Yn, Z", 1YY be the unique solution associated with the RBSDE Eq(c, f,) 
and for each T E  T,  let us denote by Xn(z, 53 a solution of the quadratic BSDE 
associated with terminal time z, terminal condition t,, and coefficient f,. 

By the comparison theorem for quadratic BSDE's, for each n E N, for each 
T E  T ,  

and hence, by taking the supremum over T,, for each  EN, 

Consequently, since Y? = limn,, 1 r, we have 

Y: 2 ess supX* (7, &)It) a.s. 
ZETC 

Moreover, since YF = X,(D:, 5 4  < X: (D:, tD:), the equalities (22) follow 
clearly. 

Let us show now that, for any fixed t€[O, q, the equality (23) holds. 
Let a) be the sequence of Lipschitz functions approximating f from 

below (see [lo]). Let (P", 2, Kn) be the unique solution associated with the 
RBSDE Eq (5, x), and for each z E T, let us denote by F ( z ,  (3 the solution of 
the quadratic BSDE associated with terminal time z, terminal condition (,, and 
coefficient 7. 
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By the comparison theorem for quadratic BSDE's, for each n E N ,  for each 
TE T ,  

E (., (3 6 x* (z, (3 0) a.s., 

and hence, by taking the supremum over T,, for each  EN, 

Y: G ess sup X, (T, 5,) (t) as. 
a T t  

Consequently, since Y*(t) = lim,,, t c, we have 
- 

Y, (t) < ess sup X ,  (z, tr) (t) a.s. 
TET* 

It remains now to show the converse inequality. Suppose that we have showed 
that there exists a sequence (z,, P E N )  such that a.s. 

(25) ess sup X* (.c, 53 (t) = lim t X* b,, CTp) (0. 
. c f ~ t  p + m  

Then, we infer clearly that, for all n and p, 

Y* (t) 2 F; 3 z (zp, tra]. 

Hence, by letting n tend to m, we derive that, for all p, 

Y, (t) 3 lim R (T,, trp) = X*'(Z~,  tTp) (t). 
n+m 

Then, by letting p tend to m, we obtain 

Y* 2 ess sup X, (z , t-3 (t). 
r€Tt 

It remains now to show that there exists a sequence (z,, p E N) such that 
the equality (25) holds. 

First, note that the family of random variables {X, (7, &)(t), T E  is sta- 
ble by supremum. More precisely, for any zl, z, E ?;, there exists T E T, such that 

(just consider z : = zl on (X, (zl, <,,)(t) > X, (z,, c,,) (t)] and T : = 2~ other- 
wise). Using this property, we derive that there exists a sequence (zp, p EN) such 
that the equality (25) holds. ~ g l  

Proof of Proposi t ion  3.3. Let us show that the equalities (22) and (23) 
hold. By making the change of variables 8, = exp(2CYT) as in the proof of 
Theorem 1 we are led to state a similar property concerning the process 0. 
Then, applying Lemma 3.4 to 8, for PEN, and applying similar arguments to 
those used in the proof of Lemma 3.4 to the decreasing sequences (Fp) and (O,), 
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we obtain the desired result. Furthermore, the equality (23) can aIso be ob- 
tained by using the change of variable and the approximation introduced in the 
proof of Theorem 3. BU 

We state the following theorem: 

THEOREM 4. Let (tp)p,N, { be a family of obstacles and (f P)p,N, a family of 
coeficients satisfying the assumptions HI, H2, H3, H4 and such that: 

(a) there exists a constant b > 0 such that, for each p, 

ITPI<b a-s., t ~ [ O , q ;  

(b) there exists a function I of the form I(y)  = a(1 f ly ! )  with a > 0 and 
a constant C such that, for each p, 

(c) the sequence uq) converges to f locally uni$ormly on [ O ,  TI x R x R~ and 
the seqerence (rp)  converges a.s. to c. 

For each p, let ( Y P ,  Z P ,  Kp)  be the unique solution of the RBSDE 
Eq(tP, fq. Then the sequence (YP) converges to Y uniformly on [0, TI, (ZP) 
converges to Z in Hz, and (KP) converges to K uniformly on [0, a, where 
(I: 2, K) is the unique sohtion of the RBSDE Eq(5,  f). 

P r o  o f. S t e p 1. Suppose first that the sequences CfP) and (cP) are increas- 
ing. By the comparison theorem, this implies that the sequence ( Y p )  is also 
increasing. Note that, since the obstacles are not the same, the sequence (KP) is 
not monotonic, which makes the problem more dficult than in the case of the 
same obstacle, studied more or less in the proofs of Theorems 1 and 3. 

The idea is to make an exponential change of variable as in the proof of 
Theorem 1 or Theorem 3. In fact, the good one is 8= e-2CY since, as we will 
see, it makes the associated increasing processes sufficiently integrable. Thus, 
making the change of variable @' = exp ( - 2 C Y f )  in Eq (tP, fP), we are led to 
solving the following RBSDE with upper obstacle and coeficient Fp: 

with @ = exp(-2Cc:), A: = -2CZ: B!, d1: = -2Cexp (- 2CY:)dK:, and 

with 8; 4 @, and 1: (8; - i!')dR = 0- 
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Consider now 

and Q, given by (16). Note that, for each p, Qo < gf < e-"" a.s. Then for each 
p, for all s, a, XE[Q~, e-2Cm], and A we have 

where C is a-constant (independent of p). Since (BP) is a decreasing and bounded 
sequence, we have proved the existence of B € H 2 ( R )  such that, for all t d T, 
@ 4 B, a.s. Moreover, B satisfies, for all t < T, Q0 < B< e-2Cm a.s. 

LEMMA 4.1. There exists AE H2 ( R ~ )  and a bounded adapted process J such 
that Pp converges to B a s .  uniformly on [ O ,  TI, I F  converges to 7 a . s .  uni$orrnly on 
[O, TI,  conwrges to A E H ~ ( R ~ ) ,  and (8, A, 5) is a solution of the RBSDE 
associated with upper obstacle ij := e-"C and coeficient F defined by the fur- 
mula (18). 

End of the  proof of Step 1. The desired result follows clearly by 
considering 

- Log 6 - At -exp(2CI.;) - I; = 
2C ' 

z, = - 2ce; and dK, = 
2C 

dJ,. rn 

P r o  of of Lemma 4.1. The boundedness of (I[JPll2), is obtained by the 
same argument as in the proof of Proposition 2.3. Next take a weak convergent 
subsequence which still will be denoted by (Jp) and let A € H 2  be the weak 
limit. Applying It6's formula to 

and taking the expected value, we get for p < q :  

Note that here the sequence of increasing processes (Jp)  is no longer mo- 
notonic (because the obstacles are not equal). However, we have 
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because (8!-$)dIi = 0, 8: 6 qf and #' and $" are positive on R'. Then, by 
CauchySchwartz's inequality, we derive 

We now claim that the sequence (8) is bounded in L2. In fact, we have 

which implies that 
T 

O G G G ~ ; + A T - ~ S : ~ ~ ,  where A =  max Q(8). 
0 QoSBSe-aCm 

Consequently, there exists a constant K such that, for each p, E(PTJ2 < K. 
Then, this with the same arguments as in the proof of Theorem 2 and Proposi- 
tion 2.3 shows that 

We will now prove that 

Applying It6's formula to (@'- @)2, using the same argument as for the in- 
equality (27) and then taking the supremum over t, we get for p < q 

Taking the'expectation, using the fact that the sequence Bp is bounded and 
applying Cauchy-Schwartz's inequality and Burkholder-Davis-Gundy's in- 
equality, we can derive that 

E (sup (@ - B;f)2) < E (qc - s)' + CE (1 (FP(s , 8!, 3:) - Fq (s, @, A:)( ds) 
t 0 

Extracting if necessary a subsequence still denoted by (JP), we may assume 
without loss of generality that (Ap) converges a.s. to Z, i? = supptAPI~H2 
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and jb A: dW. converges a.s. uniformly in f to & dW,.  By using the fact that 

and Lebesgue's theorem, we infer easily that 

Then it follows clearly that 

Consequently, extracting if necessary a subsequence, we see-that Bp converges 
to 8 uniformly in t a.s. Also, by using the equation (28), we can easily derive 
that converg'es to f uniformly in t a.s., where 7 is a continuous increasing 
process. Applying the same arguments as in. the proof of Proposition 2.3, we 
can prove that 

from which the desired result follows. rn 

Step 2. Using exactly the same arguments as in Step 1, one can show 
that the result holds if the sequences Cf") and (en) are supposed to be de- 
creasing. 

Step 3. We now consider the general case, that is, when the sequences 
Cf") and (r) are not necessarily monotonic. In this case, the result can be 
derived by using exactly the same arguments as in [6] (see the proof of Theo- 
rem 2.8). s 

5. RBSDE AND OBSTACLE PROBLEM 

In this section, we will show that in the Markovian case the reflected 
BSDE is' a solution of an obstacle problem for PDE's. 

Let b: [0, TI x Rd + Rd and o: [0, TI x Rd -+ Rd be continuous map- 
pings, which are Lipschitz with respect to their second variable, uniformly with 
respect to t E [0, TI and satisfying, for a positive constant K, 

For each (t, X) E [0, x Rd, let (X:X; t < s 6 T )  be the unique P-valued 
solution of the SDE: 
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We suppose now that the data (t, f )  of the RBSDE take the form: 

ST = g(X'i.X), 

f (s? Y, z) =f Is, x:", Y ,  4 ,  

5, = h(s ,  X:*), s < T, 

where g ,  f and h are determined as follows: 
g E C (Rd) and is bounded. 
f: [0, TI x Rd x R x Rd + R is jointly continuous and satisfies the following 

- 
assumptions (which correspond to HI-H4): 

\ f ( t ,x ,  y,z)l <Z(y)+ClzI2, where l ( y ) = a ( l + [ y l )  with a > O  

Moreover, for each constant M > 0 there exists a constant C > 0 such that for 
all (t, x, y, z)E[O, T ]  x R R x  [ - M ,  M ]  x R d :  

where the partial derivatives are taken in the sense of distributions. 
h: [0, T ]  x Rd + R is bounded, jointly continuous in t and x. We also 

assume that h (T, x) d g (x), x G Rd. 
For each t > 0, we denote by {Pi, t d s < T )  the natural filtration of the 

Brownian motion {W,-K, t < s < T), augmented by the P-null sets of 9. It 
follows from the results of the above sections that for each (t, x) there exists 
a unique triple (Y.", Zt,", Ktp")f (9:)-adapted processes, which solves the 
RssDE Eq ( 5 ,  f 1. 

We now consider the related obstacle problem for a parabolic PDE. 
Roughly speaking, a solution of the obstacle problem is a function 
u: [0, TI x Rd + R which satisfies: 

au 
x), -%(t, x ) - L t u ( t , x ) - f ( t , r , u ( t , x ) ,  (Vua)-(t, x)) 

(t ,x)€(O,T)xRd, u(T,x)=g(x),  x€Rd,  

where 

More precisely, we shall consider solutions of (30) in the viscosity sense. 

DEFINITION 2. (a) A bounded function u E C([O, T'J x Rd) is said to be a vis- 
cosity subsolution of (30) if u(T, X) < g(x), xfRd, and if for any point (to, X ~ ) E  
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~ ( 0 ,  T) x IZd and any 4 E C ~ ~ ~ ( [ O ,  7'-j x Rd) such that 4 (to, xo) = tk(to, x,) and 
4-14 attains its minimum at (to, xo), then 

In other words, if u (to, xo) > h (to, x ~ ) ,  then 
- 

(b) A bounded function u E C ([O, 71 x Ed) is said to be a viscosity super- 
solution of (30) if u (T, x) 2 g (x), x E R" and if for any point ( to ,  xo) E (0, T )  x Rd 
and m y  4 E Clm2 ([0, x ltd) such that 4 (to, xo) = u (to, xo) and 4 - u attains 
its maximum at (to, x,), then 

In other words, we have both u(t,, x,) 2 h(t,, x,) and 

(c) U E  C([O, TI x Rd) is said to be a viscosity solution of (30) if it is both 
a viscosity subsolution and supersolution. 

We now define 

which is 'a deterministic quantity. 

LEMMA 5.1. u E C (10, TI x Rd). 

P r o of. Note first that for each (t , x) the solution (V;")an also be defined 
on the whole intervaI LO, TI by putting Y:" = Y:'" for s < t. Note now that, for 
each sequence (t,, x,) which converges to (t, x), the sequence of coefficients 
f (s, Xf,"."", y , z) converges locally uniformly to f (3, X2", y , z). Applying Theo- 
rem 4, we derive that the sequence (YF*xn) converges to (Y23 uniformly on 
10, TI ,  which gives the desired result. s 

THEOREM 5. The function u, deJined by (31), is a viscosity solution of the 
obstacle problem (30). 



Reflected BSDE with superlinear quadratic coficient 77 

P r o  of. We give a direct proof of this property. First, let us show that u is 
a subsolution of (30). Let (to, xo) ~ ( 0 ,  T )  x P and # E C1g2 ([O, T'l x Rd) be such 
that 4 (to ,  xO) = u(tO, x0) and #I ( t ,  x )  2 u{t ,  x)  for all ( t ,  x) E [O, T ]  x Rn. 

Suppose now that u(to,  xo) > h(to, xo) and that 

Let us show that this leads to a contradiction. Note that, by continuity, we 
can suppose that there exists E > 0 and there exists q,  > 0 (small enough) such 
that: for each ( t ,  x )  such that to < t < to i- q ,  and (x - xol < 6, we have 
u(t ,  x)  2 h{t ,  x)+s and 

Let z be a stopping time defined by 

Note that, for all s € [ t O ,  z], 

u (s, X?-"O) >, h (s , X$*"*) + E . 
Consequently, the process (K:lxO] is constant on [to,  z], and hence 
(Y$',"O, s E [toy 21) is a solution of the classical BSDE associated with terminal 
value Y?,"O and coeficient f. 

Let us now compare the solution Y?,"O to 4 {s, X?qxO) on the interval 
[to, TI. Now, ItB's lemma applied to $(s,  r:,"") gives 

Consequently, the pair (# (s, F ; , " O ) ,  (V#n){s, X?*"O); s E [to,  z]) is a solution of 
the BSDE associated with terminal vaIue 4 ( z ,  Xf,OsxO) and coefficient 
- (a$/at + L,#) (s ,  F:sXO). Now, by the assumption (32), 

Also, 4 (z ,  X:gX0) 2 u {T, X:"*"O) = Y?*"O. Consequently, the comparison theo- 
rem for classical quadratic BSDE's implies 

which leads to a contradiction. 
Let us show that u is a viscosity supersoIution of (30). Let (to, xO) ~ ( 0 ,  T )  x Rd 

and let $J E C1,' (LO, TI x Rd) be such that #(to ,  xD) = u (to,  xo) and 
# ( t ,  x) < u( t ,  x)  for all t ,  x. 

First, note that since the solution (F;sX0) of the RBSDE stays above the 
obstacle, we have clearly 

u(t0, ~ 0 )  2 h(tO> ~ 0 ) .  
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Suppose now that 

Let us show that this leads to a contradiction. Again, by continuity, we can 
suppose that there exists E > 0 and there exists q, > 0 (small enough) such that: 
for each ( t ,  x )  such that to < t < to +qE and Ix -xol < q,, we have 

Let z be the stopping time defined as above by (33) and let us now 
compare the solution Y$,"O to +(s, X , O y X O )  on the interval [to, TI. Now, as 
we have seen above, the pair (#(s, X:*xO), (Vda) (s ,  Xf..xD); s E [to, z]) is a solu- 
tion' of the BSDE associated with terminal value 4 (z, X:*xO) and coefficient 
- (a4/at + L, $) (s, X ~ Q J ) .  

Note now that the process (Yt0'"O; s E [to, r]) is a solution of the classical 
quadratic BSDE associated with terminal condition YF7"O = u (T, X>+"O) and 
with coefficient f (s, XFlx0, y, Z ) + ~ K ~ ~ " ~ .  Now, by the assumption (34), 

Also, dJ(z, P2,x0) 6 u(z, X,OlxO) = Y>'xD. Consequently, this with the compari- 
son theorem for classical quadratic BSDE's implies that 

which leads to a contradiction and the proof is completed. 

For the strong comparison principle between viscosity subsolution and 
supersolution we need in addition the following hypothesis of J 

THEOREM 6 (Strong comparison principle for the obstacle problem). 
Under the above hypothesis, if U is a viscosity subsolution and V is a viscosity 
supersolution of the obstacle problem (30), then U (t, x) < V ( t ,  x) for all 
ty X E  [0, T ]  x Rd. 

From this theorem we derive clearly the following corollary: 

COROLLARY 2 (Uniqueness). Under the above hypothesis, there exists a 
unique viscosity solution of the obstacle problem (30). 
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P r o  of of Theorem 6. Let U and V be such as indicated in the theo- 
rem. The proof consists in showing that 

M = sup { U ( t ,  x)-V(t, x)), 
X E R ~  

t€[O,TI 

the supremum of the bounded function U -  K is negative. 
Let us consider, for E ,  q > 0 ,  

Let ME*q be a maximum of @,"over t ,  S ,  X, y). AS U and V are bounded, this 
maximum is reached at some point ( t E a q ,  s"'f, xE7.", yhV). We define 

1 ~ - ~ " ' r l 2  2 t - ~ ~ 7 " ~  
m, (t, X) = V(sgYv, Y ~ ~ ~ )  + 

El + e2 
+ q2 (Ixl2 + l ~ ~ ~ ~ l ~ ) ,  

As (t, X) H ( U -  Gl) (t, X) reaches its maximum at (P, x"39 and U is a sub- 
solution, we have 

either te*" T and then U (t"." xXelll) < g (xE"J), 
or teiq # T, and then 

As (s, y) c, (@, - V) (s, y) reaches its maximum at (P\ ,YE,t3 and V is a super- 
solution, we have 

either s"?' = T, and then V (sE,v,  y".? < g V"f), 
or sE3." # T, and then 

We recall some notation and results from [6]. 
If a sequence ( ~ ' 7 7  satisfies 

lim sup (?im sup = lim inf Dim inf 
V-0 6 - 0  v + 0  e+O 

we denote this common limit by lim a E s q .  
& % q - + o  
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It is shown in [6] that 

(371 lim M"?" M. 
E ~ ? + O  

Furthermore, using the fact that PrV(f7", s'*~, xeYq, yEyq) >, @,?(O, 0 ,0 ,0)  and 
that U and V are bounded, one can easily show that there exists a constant 
C such that 

(38) (xE," yE,l(+ j P T -  Se,rl( < C&, (xE.'l(, (ye.? < C/q. 

As [ O ,  is bounded and, by (38), extracting a subsequence, 3 necessary, we 
may suppose that for each g the sequences (tE7TE and (Y.7, converge to a com- 
mon limit P. By (38) we may also suppose, extracting again,-that for each q the 
sequences (x'.~)& and lye+V), converge to a common limit xq. 

1st case. There exists a subsequence of (twsuch that t" T for all q (of 
this subsequence). 

As U is lower semicontinuous, for all q and for E small enough we have 

U ( P ,  x e q  6 U (t'l, x") + ? 6 g (x'l) + q, 

and as V is upper semicontinuous, for all q and for E small enough we obtain 

Hence 

u It".", 3f-3 - V(sG", y"3 < 21 > 

and consequently 
lX~. r l  - ye.?12 ) f .v  

MerT = U(P.q, 3f-q) - F/(S'.~, ye3rs) - - 
&= 

-= U (P', x"q) - V(S"~, y"" 6 2q. \ 

Letting E + 0, and then r ,~ + 0, we see, using (37), that M < 0. 

2nd case. There exists a subsequence such that t"# Jr and for all q be- 
longing to this subsequence there exists a subsequence of (9.7, such that 

As by (36) we have 

V (sE,V, yE,v) - h (sE,", ye,") 2 0, 

it follows that 

Letting e + 0, and then q +O, we see, using (37) again, that M < 0. 
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Last  case. We are left with the case when, for a subsequence of q, we 
have P # T and for all q belonging to this subsequence there exists a sub- 
sequence of (xGqlL such that 

U(P\ 2-7-h(te*q, A?) > 0. 

Then from (35) we obtain 

- 
As the inequality 

is always satisfied in view of (361, this case is the one treated in [6]. Hence, 
using the arguments of [ti], one can show that M < 0, which completes the 
proof. EI 

In the section, we present an application of quadratic RBSDE's to the 
pricing of American options in an incomplete market. Recall that in [4] El 
Karoui and Rouge proposed to price a European option in an incomplete 
market via exponential utility maximization and stated that such a price is 
a solution of a quadratic BSDE. 

More precisely, let us consider a complete market (as in [4]) which con- 
tains d securities, whose (invertible) volatility matrix is denoted by a,. Suppose 
that only the hrst j ones are available for hedging and their volatility matrix is 
denoted by CT;. The utility function is given by u (x )  = e-Yx, where y (2 0) 
corresponds to the risk-aversion coefficient. Let C be a given contingent claim 
corresponding to an exercise time T; in other terms, C is a bounded ST-measura- 
ble variableee Let (Xt(T, c)) (denoted also by (XJ) be the forward price process 
defined via the exponential utility function as in [4]. By Theorem 5.1 in [4], there 
exists Z E H ~ ( R ~ )  such that the pair (X, z) is a solution of the quadratic BSDE: 

where q is the classical relative risk process, v0 is a given process (see [4]) and 
where n(z) denotes the orthogonal projection of z onto the kernel of a:. 

Let us consider now the valuation of an American option (tty 0 < t < T )  
which satisfies the assumptions of an obstacle. Recall that in this case the holder 
has the right to exercise the option at any stopping time z between 0 and T 

6 - PAMS 221 
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If he exercises at time z, then he receives the payoff 9,. The forward price 
process (K) of such an option is naturally defined by the right-continuous 
process (which exists) such that, for each t, 

(391 = ess sup Xi (7, (3 a.s. 
TE& 

Applying the previous results on RBSDE's, we derive the following char- 
acterization of 'Y: 

PROPOSITION 6.1. The forward price process Y is the unique solution of the 
RBSDE associated with obstacle { and coeflcient f, where - 

Moreover, the stopping time D, = inf(u 2 t ;  Y, = c,) is optimal, that is, 
& = xt (Dt, ED,) lams- 

Proof.  Note first that if the coefficient vo is bounded, then the coefficient 
f satisfies the assumptions H3 and H4. Consequently, the result follows directly 
from our previous results. Suppose now that the coefficient v0 is not bounded. 
Then the coefficient f does not satisfy the assumptions H3 and H4. However, 
the problem can be solved under another probability. Indeed, let us consider 
the probability Q"" {considered in [4]) which minimizes the entropy h {QVD I P). 
Recall that Q'' admits 

as density with respect to P on PT. Note that there exists a representation 
theorem for (R pa)-martingales with respect to the (e Q")-~rownian motion 

t 

w:':= W + j ( ~ + c ~ ; ~ v , O ) d s .  
0 

Thus, under QVO, the forward price X(T,  C )  of the European contingent claim 
C is characterized as the unique solution of the quadratic BSDE associated 
with Brownian w'", terminal condition C and coefficient 

Y 
F ( t ,  2) = -1fl(z)I2, 2 

which clearly satisfies H3 and H4. Hence, under QVO, the forward price Y of the 
American contingent claim is also clearly characterized as the unique solu- 
tion of the quadratic RBSDE associated with Brownian w"", obstacle 5: and 
coefficient F. 

Remark  5. Note that, as in the case of a European option, the price is 
increasing with respect to the risk-aversion coefficient y. Furthermore, as y goes 
to infinity, the price tends to the superhedging price (as defined in [2] for 
a European option and in [7] for an American option). 
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