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Abstract. We present an integral test to determine the limiting
behavior of weighted sums of iid. R%valued random vectors belong-
ing to the (generalized) domain of operator semistable attraction of
some nonnormal law, and deduce a version of Chover’s law of the
iterated logarithm for them. As applications, the corresponding limit
results for some classical summability methods are also established.
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1. INTRODUCTION AND MAIN RESULTS

Let X, X, X,, ... be iid. Ri-valued random vectors. We assume that
X belongs to the strict generalized domain of semistable attraction of a full
operator semistable Y having nonnormal component (see [11] for details).
Then, by definition, there exists a constant ¢ > 1 and a sequence (k,) of natural
numbers tending to infinity with k,,,/k, — c as n — co and linear operators

A,eGL(R% such that for S,=Y;_, X; we have
1 : A,S,, =Y as n— .

Here = denotes convergence in distribution. The distribution v of the limit Y is
then strictly (cE, c)-operator semistable (E an invertible d x d matrix), that is

(1.2) v = (cFv),

where v denotes the c-fold convolution power and (c®v)(4) = v(c™E A) is the
image measure. Note that if v is strictly operator stable with exponent E, then
(1.2) holds for any ¢ > 1, but the class of operator semistable laws is much
larger than that of operator stable laws.
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Then it is shown in [15] that there exists a sequence (B,) = GL (R?) regu-
larly varying with exponent — E, that is, B,y B, ' = A7 F as n — oo, such that

1.3) By, S,,=Y asn—o..

Moreover, the whole sequence (B, S,), is stochastically compact with limit dis-
tributions in {A"Ev*: Ae[1, c]}. Given any unit vector 6 € R?, we can project
the random walk (S,) onto the direction 6, that is we consider the one-dimen-
sional random walk

(Su 0> = 3 (Xi, 0.
i=1

Then it is shown in [15] that for any ||f]| =1 there exists a sequence
¥, = r,(6) > 0 such that (r,<S,, ), is stochastically compact. The norming
sequence (r,) behaves roughly like n~ 1/ where the tail index 0 < a(f) < 2
depends on the exponent E in (1.2). More precisely, for every é > 0 there exists
an ng > 1 such that

(1,4) kn—llu(ﬂ)—é <r, < p~ 1a®)+3

whenever n > ng. See [11], Remark 8.3.21, for details.

The tail behavior and the asymptotic behavior of truncated moments of
(X, 0 are well understood. In fact, if we let V,(t, 0) = P{|KX, 8)] > t}, it
follows from Theorem 6.4.15 of [11] that for any é > 0 there exist constants
C;, C, >0 and a ty > 0 such that

< Vo (4t, 6)

Vol(t, 6)
for any t > t; and any A > 1. If we let U, (t, 0) = E(|<X, 0)" I (KX, )| < 1)),
where b > o(6), it is shown in Corollary 6.4.16 of [11] that there exists a to > 0
and constants C;, C, > 0 such that

b
<t Vo(t, 6) <
Ub (t: 9)
Some technical estimates on nP (|[{(X, 6)| > r; ') as in (9.21) and (9.24) of

[11] together with some asymptotic results on r, as in Lemma 4.1 of [13] are
also needed. In fact,

(15) Cl ,1—.:(9)—5 < Czl—a(9)+6

(1.6) C, for all t=1t,.

1.7 0 < inf nP (KX, 8 >r;Y) <supnP (KX, 8 >r; 1) < 0.
nz1 nz1l
The law of the iterated logarithm for sums of a-stable random variables
was first discovered in [8] and then generalized in various ways. See e.g.
[1]-{6] and [13]. In particular, [5] established some result on the limiting
behavior of weighted sums of heavy-tailed random vectors when the weights
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are of uniform bounded variation. In this paper we generalize the results in [4]
partly in the following way, extending the results in [5]:

Let X belong to the strict generalized domain of semistable attraction of
some full (cE, ¢) operator semistable Y having no normal component. Then we
have

THEOREM 1.1. Let f: [1, 00) — (0, o0) be nondecreasing with lim, _, ,, f (x) = co.
Then:
(@) If there exists an eo> 0 such that

-2 o
2 Xf (%)t 7% ’

then for any array of real numbers {ay,, 1 < k < k,, n = 1} with k, < Mn, for all
n=1,sup,lal <M and Z’;": , G = O (n®) for some 3o < 1, where M is a posi-
tive constant not depending on n, for any ||0|| = 1 we have, for r, = r,(0) and a(6)
as above,

I Yo Gk X )]

(1.8) lir"rL S;lp 7 o a.s.
and especially for any 6 >0
kn
. Irnzk=1ank <Xk7 0>|
(1.9) 111:1_> S;lp log n)i ™=@ =0 a.s.

(b) If there exists an g, > 0 such that

@ dx

I oo =

then for any array of real numbers {ay, 1 < k < k,, n > 1} such that there exist
two strictly increasing sequences of positive integers l(n), m(n), n > 1, with

sup({(n+1)—Im) < oo and liminf|ayp,mm >0
nz1 n—+

and any ||0]| =1 we have
|r,,Z’;"=1a,,k <Xka 0>|

(1.10) lir"rl S;lp 70 =0 as.
and especially for any 0 < <1
k
) o O <Xy, 0
(1.11) limsup| =1 9ok X >| = 00 a.s.

now (logn)t RO



284 Chen Pingyan and Hans-Peter Scheffler

As a corollary the following law of the iterated logarithm (LIL) holds true:

COROLLARY 1.2. Let {ay, 1 <k < k,, n > 1} fulfill conditions (a) and (b) of
Theorem 1.1. Then for any ||0|| =1 we have

kn )
(1.12) limsuplr, Y, au <Xy, 819" = @ g,
n— o k=1

where r, is as above.

Complementarily to our results on the limiting behavior of weighted sums
of {X;, 0) given above, we also consider the behavior of the norm of the
weighted sum of the X;’s. Recall that the distribution v of Y is a full (c£, c)
operator semistable law without normal component and let R = V@ ... @V,
denote the spectral decomposition of R? with respect to E. Recall that
E=E"®...®E® and that every eigenvalue of E® has real part 1/a; for
1 <i<p. Then Theorem 1 in [7] implies that 0 <a, <...<a; <2.

In the following let X belong to the strict generalized domain of semistable
attraction of a (c¥, c) semistable law v such that (1.3) holds. In view of Theorem
8.3.7 of [11] we can assume without loss of generality that the distribution of
X is spectrally compatible with v. Then the spaces V; are B,-invariant for all
nandall1 <i<p,sothatB,= BV @®... ®BP. We write X = X4, 4+ X®
with respect to the spectral decomposition of R? obtained above and for
1<i<<p set Xod = xWy 4+ X® gnd B =BV @... BY.

THEOREM 1.3. Suppose that X is in the strict generalized domain of semi-
stable attraction of some full (cE, ¢) operator semistable law without normal com-
ponent, where ¢ > 1. Moreover, let f: [1, o0) — (0, c0) be nondecreasing with
lim,., o, f(x) = co. Then:

(@) If there exists an g3 > 0 such that

]9 dx <
2 Xf )t

then for any 1 <i<p, for any array of real numbers {a, 1 <k <k,, n> 1}
with k, < Mn, for all n> 1, sup,xlaml < M and Yoo a3 = O(n*) for some
09 < 1, where M is a positive constant not depending on n, we have

“35‘1 ..... i)\ kn a”ng ..... i)”

k=1

(1.13) lir'}l_'sgp 7o =0 as.

and especially for any 6 >0

@,

(1.14) HT—» S;}lp {og n)fd ¥ =0 as.
(b) If there exists an gy, > 0 such that

@ dx

[57e= ==
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then for any 1 < i< p, for any array of real numbers {ay, 1 <k <k, n>1}
such that there exist two strictly increasing sequences of positive integers l(n),
m(n), n 2 1, with

sup(In+1)—I(m) <o and  lHminf|@yp meml > 0
nz1 n—* oo

we have |
' ” Bl an: a X4 i)”
(1.15) hr"rh sup f:n)i ) = 0 as.
and especially for any 0 <d < 1
. ” Bﬁl ..... i) Z:": L Xfcl ..... i)”
(1.16) ln;n_' sotlp (Tog )™= = 00 as.

COROLLARY 1.4. Under the assumptions of Theorem 1.3 we have

kn
1.17 limsup |[|[BL? ¥ g, X(Led||1/1o8logn _ plfe: g o
( P n nk A n
n—o k=1

2. PROOFS

To prove the convergent parts of Theorems 1.1 and 1.3 we need the
following preliminary results.

LemMmA 2.1 (see [2]). Let f > 0 be a nondecreasing function with

Pl
2 xf (x) '
Then there exists a nondecreasing function g > 0 such that
. g(2x) ® dx
g(x) <f(x), limsu <o and < +00.
A T $ 5%

Lemma 2.2. Let (Z;);<y be independent random variables. Set S, = ZL 1 Zi
k < N. Then for any integer j > 2 there exist positive numbers C; and D; depend-
ing only on j such that for all t >0

P{max|S;| > 47!t} < C; P {max|X;| > t} + D;(P {max|S;| > t}).
k<N i<N k<N

Proof. The assertion follows from Proposition 6.7 of [9] by induction. &

We also need the next lemma to prove the divergent parts of our main
theorems.
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LEMMA 2.3, Let f be as in (b) of Theorem 1.1. Then there exists a non-
decreasing function g: [1, o©) — (0, o0) such that

d =
x(f)g @)

Proof. The assertion follows from Lemma 2.2 of [1]. =

limg(x)=c0 and

n—a

NhﬂS

Proof of Theorem 1.1. (a) Without loss of generality we can assume
that  k,>n, and by Lemma 21 we also can assume that
lim sup,_, ,, f (2x)/f (x) < co. Furthermore, we can also assume that M is an
even integer. Directly from (4.6) of [13] we have sup,s;7,—,7, ! < co, and
hence

supr,ri,! <max {1, (supr,_;r, Y} < oo.
nzl nz1
Consequently, we have
lim supr, f (n)~ O (£ (k)™ 15®) " !« .
n—=ow

Then to prove (1.8), it is enough to show that

kn X, 0
@y lm sup "t 2.9 Ko )

m U 7 U)T® =0 as.

By the same argument as in [10], one can assume, without loss of generality,
that k, = n for every n > 1. Hence (2.1) follows from

. I"n Zn= apy, <Xy, 9>|
22) lim sup = e —— =

Choose an integer j > 2 w1th j(1—8¢) > 1. Then (2.2) holds if we can show that
for any &€ > 0 we have

" X,, 0
2.3) lim sup o Y-y 0t <X, 0]

i1
m su 7 ()@ <471-3Me as.

Note that, by (1.5) and (1.7) and our assumptions of f, for any b > 0 and some
constant C > 0 we have

S P {ral(Xn 0] > b6 ()9} < C Y £ (1) 1+ P {r,|(X,, 0] > 1)
n=1 n=1

< CsupnP {r,|KX,, 6)] > 1} i (nf(n)l‘“")_1 < 0.
nz1

n=1
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Note that by (4.7) of [13] we have b = sup,» 1 SUP; <k<n?a?s & < 0. Then the
monotonicity of f together with the Borel-Cantelli lemma implies that

n

Y raldXer O I (ra <X, )] > & (n)1=®)

k=1
is bounded almost surely. Therefore
Tn e 1 e[ X ks O (ra | Xk, 0] > &f (m)*/=®)
£ (n)1=®
Hence to prove (2.3) it enough to show that
, Tn|Xp o 1 o <Xt 0 I(ra | X, O] < & ()19
(24) limsup T7at
n>ow f(n)t/=®

—0 a.s.

<4 '-3Me as.

Before we prove (2.4) we first show that

(2.5)

Py {Xir 0> —nr EX, 0 I(ra <X, 0)] < &f (m)*®) 3
£ ()@ — 0 in probability.

In fact, for £ > 0 decompose

P{|Y ra X, 05 —nry ECX, 6) I(rs[<X, 03] < o (n)5®)| > & (n)t/<®)
k=

1

< P(U #rl<Xs, 031 > & ()<0)

+P{| i 70 Xis O I{ra[<Xs, O)| < &f (n)1/=®)
k=1 —nr, EXX, 0) I(r, KX, 0)] < ef (n)"=®)| > &f (n)1/=®)
=I1,+1,.
Now, by (1.5) and (1.7),
I, <nP{r, KX, 6)] > ef (n)'/*®}

< Cy(supnP {r, KX, )] > 1}) f ()~ 70 0.
nz1

Moreover, by Chebyshev’s inequality together with (1.6) we conclude that for
some constants Cy;, C, > 0 we have
I, < Cymrd f (n) 2O U, (1 £ (), 0)

< CynP {1, KX, )] > f ()@} -0,
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proving (2.5). Since (r, )., _, (X4, 0) is stochastically compact, (2.5) implies
nr, EXX, 0 I(r, KX, 0] < ef (n)/*®)
f (m)t7®

-0 as n- .

It follows that |
oY s oy @i E XX, 01 (r, KX, 0] < ef (n)Ho®)]
f @
Mnr, |[EXX, 0 I(r, KX, 0)] < ef ()1*®)]
) f @)™
Let Un = 12 <Xy, 0> I(ra <X, 8] < &f (0)1*®). In view of (2.6), to prove (2.4),
it is enough to show that

S 4 (Un—EUL)|
2.7 lnﬁ S:)lp T )@

(2.6)

-0 asn-oo.

<47 1-3Me as.

By the Borel-Cantelli lemma, it is enough to prove that

(2.8) i P{l il G (U —EU )| > 471 SMsf(n)”"“”} < .
n=1 k=

In view of Lemma 2.2, (2.8) follows from

2.9 n§1 P {lril,;agn 1@ (Une— EU )| > 3Mef (n)*9} < oo

and

(2.10) il (P {kfl |aw (Une— EU )| > 3Mef ()@} < oo,

Since max; <y<p | (Um— EUL) < 2Mef (n)'*®, for every n> 1, we know
that P {max; <x<,|@m (Um—EU,)| > 3Mef (n)*®} = 0, so (2.9) holds true.

By Chebyshev’s inequality together with (1.5) and (1.6), we have for some
constant C > 0

P{ i |nk (U — EU )| > 3Mef (n)1/=@}
k=1

n

< C( Z aﬁk) T,‘:' f(n)‘Z/a(O) U2 (rn—l f(n)lla(a) g, 0)

k=1
<n®P{r, KX, 05| > ef ()@} g no~ 1,

Since j(1—4d¢) > 1, (2.10) follows at once. Hence (2.7) holds true.

(b) The proof is similar to the proof of Theorem 1.1 (b) in [5], so we omit
it. See also the proof of Theorem 1.5 in [5]. &
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Before we give a proof of Theorem 1.3 and its corollary, similar to that in
[13], we first prove a special case sufficient for our purpose. Recall from [11]
that a (cE, c) operator semistable law is called spectrally simple if every eigen-
value of E has the same real part.

PROPOSITION 2.4. Let the distribution of Y be a full (%, c) operator semista-
ble, spectrally simple, nonnormal law on a finite-dimensional vector space V and let
X belong to the strict generalized domain of semistable attraction of Y, ie. (1.3)
holds. Let f:[1, o0] — (0, o0) be nondecreasing with lim,_,,, f (x) = co. Then:

(a) If there exists an g, > 0 such that

®  dx
s <
then for any array of real numbers {a,, 1 < k < ky, n > 1} with k, < Mn, for all
n=1,sup,lanl <M and 2:": L @ = 0 (n*) for some 3o < 1, where M is a posi-
tive constant not depending on n, we have

1B am Xl

lim sup =0 as

n— o S @)t
(b) If there exists an &, >0 such that
]‘3 dx _
2 xf ()t

then for any array of real numbers {ay, 1 < k < k,, n > 1} such that there exist
two strictly increasing sequences of positive integers l(n), m(n), n > 1, with

0,

sup(I(n+1)—Im) <o and liminf|ag mml > 0
nz1 n— o

we have

1B, Yy, ank X
= o0 a.s.,

lim sup

noo f

where B,e RV (—E) is the embedding sequence and 1/a is the real part of the
eigenvalues of E.
Proof. (a) By the same argument as in the proof of Theorem 1.1, we can
assume that k, =n for every n > 1. Hence it is enough to prove that
By @ X
2.11) llt:l_}sgp T =

Let {6, ..., 0™} be an orthonormal basis of V. Since

n n n
“Bn 2 ank)(k”2 = |<Bn Z anka’ 0(1)>|2+"'+|<Bn Z anka’ H(M)>|25
k=1 k=1 k=1
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to prove (2.11) it suffices to show that for any 1 <j < m we have
|<an;:n=lankas B(j)>|
St

Fix any 1 <j < m, write B}, 69 = r, 0, for some r, > 0 and ||f;]| = 1. Hence to
prove (2.12) it is enough to show that

Ty |<Z:=1 ankaa 0n>|
_)
[t
Following the proof of Theorem 1.1, using the uniform R-O variation results

obtained in [14] instead of (1.5), (1.6) and (1.7), we get (2.13). We leave the
details to the reader.

(b) The proof is similar to the proof of Theorem 1.1. See also [5]. =m

—0 as. as n— .

(2.12)

(2.13) 0 as. as n- 0.

Proof of Theorem 1.3. Using Proposition 2.4, we obtain the result of
Theorem 1.3 along the lines of the proof of Theorem 2.6 in [13]. =

3. APPLICATIONS

In this section, as applications of Theorem 1.1, we will discuss the cor-
responding results for some classical summability methods. For the Cesiro
method, Riesz method, by the same argument as in [10] we have:

THEOREM 3.1 (Cesaro method). Let 0 <a < 1 and f: [1, «0) = (0, o) be
nondecreasing with lim,_, ., f (x) = c. Then:
(a) If there exists an &y > 0 such that
2 dx

| Fogrs <

then for any ||0]| =1 we have, for r,=r,(6) and a(6) as above,
Xy o 27 <X )]

(3.1) lir"ri sup T a.s.
and especially for any 6 > 0

Y ATI(X,, 0
3.2) limsupl Lo ik Ko O] 0 as.

n—+o (log n)( 1+4)/a(6)

(b) If there exists an &y > 0 such that

I—L—=oo,
2

*f G
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then for any ||0)| = 1 we have

, [Fadopm o Aak {Xi» 6D
(3.3) 111:1_’ sol.}p k }0, )@ =00 as.

and especially for any 0 <d < 1

R rnZ:=0Az:I% <Xk5 0>|
(34) llﬁsgp (log )~ 9@

=0 as.,

where for any B> —1, A§ =1 and A} = (B+1)...(B+))/j! for every j= 1.
COROLLARY 3.2. For any ||0|| =1 we have

(3.5) hm 15up |r,, Ai‘, L Xy, 0|1 = e1e® g5

where r, is as above.
THEOREM 3.3 (Riesz method or delayed method). Let p > 1 and f: [1, c0) =
(0, o0) be nondecreasing with lim,_, ., f(x) = co. Then
(@) If there exists an &y > 0 such that
ok,
2 xf (x)! ~% ’
then for any &€ > 0 and for any ||0|| = 1 we have, for r, = r,(0) and « () as above,
n+enl/p
e emn <Xu O]

(3.6) liI,E, sul)lp 7 @@ as.
and especially for any 6 >0
n+enl/p
. Irn <st 0>|
3.7) 111’2’ Sotlp o gn)“ e — = 0 a.s.
(b) If there exists an g, > 0 such that
@ X
$srera ==
then for any ¢ >0 and for any ||0|| =1 we have
n+enl/p
. |rn <Xk: 9>|
(3.8) hr"rL S;lp f (n)1 ) = 00 a.s.
and especially for any 0 <6 < 1
n+enl/p
T'n X, 0
(3.9) lim su l Z Xs >| = 0 a..

P o gn)“ 5)/a®)
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COROLLARY 3.4. For any p > 1, any ¢ > 0 and for any ||6|l = 1 we have

n+enl/p

(3.10) limsuplr, 3 <X, 6)|m°g1°g" =l g5,
1= k=n

where r, is as above.
For the Euler method, we have

TueOREM 3.5 (Euler method). Let 0 < g <1 and f:[1, o0) = (0, c©) be
nondecreasing with lim, ., , f (x) = co. Then:
(a) If there exists an g, > 0 such that
[,
2 Xf ()t ’

then for any ||0|| = 1 we have, for r,=r,(0) and a(0) as above,

! [ra/n Lo Chd (1 =) (X, O _o

ST

| (3.11) lir"ri s;;p 7 )@ a.s.
B and especially for any 6 >0
‘ /Y, Cha L=y E (X, O))
o (3.12) hr"ri sup u (()logn)“ T5e® =0 as.
| (b) If there exists an gy > 0 such that
|
i I
[ 2 Xf(x)t e o
‘ then for any ||0]| =1 we have
/Y, Cha - (X 0))]
(3.13) lim sup =2 7 = as.
and especially for any 0 <d < 1
/Y Ch - X, 6))
(3.14) lim sup u (()logn)‘l_")"““” =w as.,

where Ct = n!/(k!(n—k)!) for any n>1 and 0 <k <n.
COROLLARY 3.6, For any 0 < g <1 and any ||0|| =1 we have

n
(3.15) limsuplr,\/n Y Cigt(1—g) " <X,, O = el® g5,
n= o k=0

where r, is as above.

For Borel’s method we have
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THEOREM 3.7 (Borel method). Let f:[1, «©)— (0, c0) be nondecreasing
with lim,_, , f(x) = c0. Then:
(a) If there exists an g, > 0 such that

]E’ dx <
2 Xf ()7

then for any |0l =1 we have, for r, =r,(0) and «(f) as above,

ria/2e ™ 2 o /KD <X 6] .

00,

(3.16) lirln_’sgp 70)7® as.
and especially for any 6 >0
/A (AR <X, 0))]
(3.17) llrln_’sgp (loglil)‘(; 50 =0 as.
(b) If there exists an gy > 0 such that
39 dx o
2 xf(x)te
then for any ||0|| = 1 we have
. /262X (YK (X, 0)]
(3.18) llI;l_'Sal.jlp flzll)ol = =00 as.
and especially for any 0 <d < 1
, [ra /A2 Y0 (/K <Xy, )]
(3.19) lllflﬂsgp oz /1)8- 7@ =0 as.,

where [x] denotes the largest integer less than or equal to x.
Proof. It is enough to prove part (a). By Lemma 2.1, we can assume that
lim sup,-. f (2x)/f (x) < co. Since

w0 k

A
Z F(st 0>

k=0 K:

® (4 1)
<3 " x, 0y
DT

sup
n€i<n+1

and sup,s 7,74 < 0, it is enough to prove that
_ Ta/neTm YR (1Y) KX, O
(3.20) 111:: S:)lp 70 =0 as

" Take any 0 <t < min {1, «(6)}. Then, by Theorem 16 of [12], there exists
an integer M > 1 such that

nk

t
Z (e_"ﬁ) < Cn_(1+t/2).
kzMn+1 '

6 — PAMS 242
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Hence, by Markov’s inequality, for any ¢ > 0 and some constant C > 0

Pldier 5 2K, 01> of (50} < Cn~ B, O

k>Mn+1 k!

Since E [{X, 8> < co and (1.4) holds true, by the Borel-Cantelli lemma, we get
Tn ﬁe_"EkZMn+1 KX, 61 _

liri s;lp 7 ()@ a.s.
Then (3.20) follows from
—nMn k
</ ne _ (n* k) KX, 6]
(3.21) lim sup Ve By (KD KX, =0 as.

n~* oo f (n)”“w)

Let g, = \/r;e"”(n"/k ,n2=1,0< k< Mn A slight modification of the proof
of Theorem 1.1 yields (3.21). This completes the proof of Theorem 3.7. m

As a corollary the following law of the iterated logarithm (LIL) holds true:
COROLLARY 3.8. For any ||0|| =1 we have

o0 1/loglogi

(3.22) lim sup {r;./de™* Y, k'<X'“ 6> = el g5,
A k=0

where r, is as above.

Results similar to Theorems 3.1, 3.3, 3.5, and 3.7 and respective corollaries
also hold true for X9 We leave the formulation and the proofs to the
interested reader.
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