PROBABILITY
AND .
MATHEMATICAL STATISTICS

Vol. 25, Fasc. 2 (2005), pp. 393404

ON THE APPROXIMATION OF A RANDOM VARIABLE

BY A CONDITIONAL EXPECTATION
OF ANOTHER RANDOM VARIABLE

. BY
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Abstract. Let X and Y be R-valued random variables on a non-
atomic probability space (2, &, P). We give conditions under which
Y can be approximated by a conditional expectation of X. In par-
ticular, we prove the following theorem:

Let X be an R-valued random variable such that EX* =
EX™ = 0. Then for each random variable Y and arbitrary ¢ > 0 there
exist Be§ and a sub-o-field W of § such that P(B)<:& and
E(X|¥W)=Y as. on B

We also review some facts on the conditional expectation of
unintegrable random variables.
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0. INTRODUCTION

Let X be an R-valued random variable on a non-atomic probability space
(2, &, P). The paper is devoted to the question: which random variables can be
obtained by conditioning of X with respect to sub-o-fields of &. In general, it
seems to be impossible to give any detailed characterization of the family of
such. random variables. Nevertheless we can give some sufficient conditions
under which there exists a sub-o-field U of & such that ¥ = E(X | ) outside
a fixed set Be §. The following lemma has been proved and used in [3] and [4].

0.1. LEMMA. Let X be an integrable random variable and Y a random var-
iable of the form

k.
Y= Z 04 1A;'+ﬂ]:B:

i=1

such that B, A,, A,, ..., A, are pairwise disjoint,

k
Bu|J 4 =@,

i=1

}
|
!
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and

k
Y, | P(4)+ max |o] P(B) < min {EX* 15— EX~ 156, EX " 1,—EX* 15}
i=1

i=1 =l
Then there exists a sub-c-field W of § such that
EX|MW=Y as. on B

A generalization of this theorem is the main result of the paper. It is
proved.in Section 2-Corollaries to this theorem concern unintegrable random
variables. The concept of the conditional expectation of unintegrable random
variable is not new (see e.g. [1]). It seems, however, that the idea of the domain
of conditional expectation lacks precise treatment in the literature. This topic is
covered in Section 1.

1. CONDITIONAL EXPECTATION OF AN ARBITRARY RANDOM VARIABLE

Here and subsequently (2, §, P) denotes a non-atomic probability space.
Let us recall now the definition of the conditional distribution.

1.1. DeErmNITION. Let X be an R"-valued random variable on (Q, §, P),
and A be a sub-o-field of § A function

P(Xe: | (): BRYxQ >R

is called a version of the conditional distribution of X given U if
(i) for each Be B (R") the map Q3w+ P(X e B| ) (w) is A-measurable,
(ii) for each weQ the map B(R")3B+— P (X eB|WU)(w) is a probability
distribution on (R", B(R"),
~ (iii) for each AeU and BeB(R") we have

P(An{o: X(w)eB}) = [ P(X € B|¥)(w)dP(w).

- The existence of P(Xe-|A)() is guarantééd by the following

1.2. THEOREM. Let X be an R"-valued random variable on (Q, §, P), and
W be a sub-o-field of §. Then there exists a version P(X €-|N) () of the con-
ditional distribution of X given . Moreover, if Py(Xe-|N)() is any other
version of the conditional distribution of X given W, then

P(Xe |M(w) = Py (X e | M (w) was.

Proof. See for instance [2]. m

In the expressions involving integrals with respect to P(X e-|U)(w) we
shall often use the following, more convenient notation: dpxe(w) or dpyu.
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1.3. THEOREM. Let X be an R"-valued random variable on (2, &, P),
A a sub-o-field of &, f: R® - R a Borel function, and AeW. If the integral
§ S (X)dP exists (and is finite), then for almost every we A the following inte-
gral exists (and is finite): |

j"" f (x) dpxj (@) (x);

moreover,
I f (X)dP § | f(x)dpxia(w)(x)dP ().
ARn
Proof The theorem can be obtained by the standard “Lebesgue proce-
dure”. =

1.4. DeFiNITION. Let X be an R-valued random variable on (Q, &, P),
A a sub-o-field of &, and pxy a version of the conditional distribution of
X given . Let us put

E(X| %) (w) = | xdpxju (@) (x),

whenever the right-hand integral exists. By D (E (X | 2)) we shall denote the set
of points for which this integral exists.

By the equality Y = E(X |U) we mean that the random variable Y is
a version of the conditional expectation of X given . Usually, when no
confusion can arise, we shall simply write E (X | %) to denote a version of the
conditional expectation of X given 2. ‘

Definition 1.1 implies easily that D(E (X |%))e . By U pexay We shall
denote the restriction of the o-field A to D(E(X|Y)), that is

WppExiay = {AND(E(X | N): AeA}.

Obviously, U pEajay = A. From Definition 1.1 we also conclude that any
version of E (X | ) is W pgxjen-measurable. Let pkjor and pgjer be two versions
of the conditional distribution of X given 2. Denote by D; (E(X | %)) the do-
main of the version of E (X | ) derived from pjor. The second part of Theo-
rem 1.3 implies

P(Dy(EX|W)AaD,(E(X|2MW))=0
and -

| xdpkjor(x) = | xdp%er(x) as. on Dy (E(X|W)nD,(E(X|N).

These equalities imply that any two versions of E (X | ) are actually indistin-
guishable. This is why we do not have to indicate from which version of
pxju a version of the conditional expectation is derived.
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1.5. ProrosITION. Let E (X | ) be a version of the conditional expectation
of X given W. Suppose that Y: D (E (X | ) — R is WA\ pexjay-measurable and is
almost surely equal to E(X |U). Then Y is another version of the conditional
expectation of X given 2.

. Proof. Suppose that both E(X|%) and D(E(X|%)) are derived from
pxm- Let us put
Ao = {weD(E(X|M): Y () # E (X |U) ()}

and define )

. _pxu(B)(w) for w¢ Ay,
Pxiu(B)Y (@) = { Sexton (B) for weAg..

It is easily seen that py)q is a version of the conditional distribution of X given
A and that

Y(0) = { xdpxm(w)(x) for each weD(E(X|N)).

This completes the proof. m
1.6. LeMMA. If A€ and the integral | , XdP exists, then A < D (E(X | ?0)).
Proof The lemma follows from Theorem 1.3. &

1.7. LeMMA. Let X be an R-valued random variable on (Q, &, P), and N be
a sub-o-field of §. Then there exist pairwise disjoint sets A;, B;, C;eN, i = 1,
such that .

@) U5, 4= {0eQ: |[EX|A)| < o},

(i) J,5,Bi={weQ: E(X|¥%) = 0},

(iil) Ui?l Ci = {CDEQ.' E(le) = _w}!

(iv) integrals [, XdP and (. XdP exist and | 4, 1X1dP < co.

Proof. For i> 1 we set

A= {0eQ: i-1< [|xdpya(@) () <i}, -
R ;
B, = {weQ: |xdpxu(®)(x) = 0, i—1< [x dpyg(@)(x) < i},
R R

Ci={we: [xdpyg(@)(x) = —00, i—1 < {x* dpyg (@) (x) < i}.
R R

Now it is enough to use Theorem 1.3 to see that the above sets have the desired
properties. m

From Lemma 1.7 we deduce

1.8. LemMA. Let X be an R-valued random variable on (2, &, P), and
W be a sub-a-field of §. Then there exist pairwise disjoint sets D;eU, i > 1,
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such that

(i) UialDi = D(E(Xlg’[))’
(ii) integrals jDi XdP exist.
The following lemma is elementary and we shall leave it without proof.
1.9. LEMMA. Let X and Y be R-valued random variables on (2, §, P). If the
equality
{XdP = [ YdP
4 4

holds for each Ae§ for which both integrals exist, then X =Y a.s.+

The following characterization of the conditional expectatlon is analogous
to the one for integrable random variables.

1.10. THEOREM. Let X be an R-valued random variable on (Q, &, P), N
a sub-o-field of &, and Y an R-valued random variable on D (E (X |)). If Y is
a version of E(X|), then

() Y is Ujpgxjan-measurable,

(i) foreach AW, if the integral | , XdP exists, then | , YAP also exists and

[ XdP = [ YdP.
4 A

On the other hand, if Y is W pgx em-measurable and the above equality
holds for each AeW pwxa) for which the above integrals exist, then Y is
a version of E(X|).

Proof. Let Y be a version of E (X | ). We have already observed that Y is
W, pEcxjay-measurable. Part (i) follows from Theorem 1.3.

Take an R-valued random variable Y satisfying the assumptions of the
converse implication. Theorem 1.3 again implies '

Ol B deP= §E(X|QI)dP

for each A €U pgjay such that both integrals exist. Take A €U i) such
that the integrals j 4 YdP and { LEX|W)dP exist. Let D;, i > 1, be a sequence
of sets whose existence has been proved in Lemma 1.8. Now we have

[YdP=Y [ YaP=Y [ XdP=Y | E(X|WdP

iz1 AnD; iZ21 AnD; iz1 AnD;

= (E(X|w)dP.

The second equality is a consequence of our assumptions on Y and the third
one follows from (1). It is worth mentioning at the moment that the third
equality is the place where we have taken advantage of the existence of sets
D; on which integrals IDi XdP exist. Now Lemma 1.9 gives Y= E (X | ) as.
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Since Y is Upwex|on-measurable, it follows from Proposition 1.5 that Y is
a version of E(X|N). m

Basic properties of the conditional expectation of integrable and uninte-
grable random variables are similar and we shall not discuss them here. How-
ever, some properties of the conditional expectation of X in the case when both
EX™ and EX ™ are infinite seem to be pathological. The following theorem has
been proved in [5].

1.11. THEOREM. Let (X,),»1 be a sequence of independent random variables
with non-atomic distributions and such that

EX,) =EX, =0 for n>1.
Then there exists an increasing sequence (U,),>, of sub-o-fields of §& such that
D(E(Xn+1|g[n)) =0 fOT nz 15 E(Xn-l-llsun) = Xn ‘for nz 1;

but
DEX, x| W) =D for n=1 and k > 2.

2. THE MAIN RESULTS
2.1. THEOREM. Let X be an integrable random variable on (2, &, P), and
Be§. For any random variable Y satisfying
(2) E|Y|1pg.+supess|Y (w)|-P(B)
weB°

< min {EX* 15— EX ™~ 1p, EX™ 13— EX* 15}
there exists a sub-o-field W of § such that
EX|MW=Y as. on B

Proof. Let Y be a random variable satisfying (2). Let us suppose that (Y,)
is a sequence of simple random variables such that

lim Y=Y as. on B

S n—oo

and that (2,) is an increasing sequence of sub-g-fields of § satisfying
3) ‘ E(X|%,)=Y, as. on B

Putting
m=0’(9«[1, 912, ...)
we get ' . .
EX|W=ImEX|N,)=1lmY,=Y as. on B
n—> o

n—+w

To complete the proof we shall construct sequences (Y,) and (2,). -
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Let N be an integer such that
[Y(w) <N as. on B
For n2 1 and ieZ we write
4) o =27,

EP =Y ', ™" {X < Y}nB,
©) F® =Y 1, d™]n{X > Y}nB"
We can easily notice that

o E{®™ = E§*YUERTY, F® =F§rYOFEY.
Let (Y,) be a sequence of random variables given by

Na2n ' Nan

Yn = Z as") IEYI) + Z ag'ﬁ 1 IFS")'

i=—N2n i=—N2n
It can be easily seen that

lim ¥, =Yas. on B,

n— o

and
©) EX lgp <of" P(E("), EX1pp > of? P(FY).

Let us also observe that

7 lim supess|Y,(w)| = sup ess |Y ()]
n—*o weB®

and

(8) lim EK, ch = EYch.

n— o

From (2), (7) and (8) it follows that there exists an integer m such that forn > m
we have h

E|Y|130+supess|Y(w)| P(B)<min{EX" 1,—EX~ IBE,EX 15— EX 15}.

Take an arbitrary random variable Z with a non-atomic distribution on [0, 1],
defined on (Q, &, P), and put '
*=Bn{Z>0}, B =Bn{Z<0}.

Now, using the same arguments as in the proof of Lemma 2 1in [3] we find
real numbers

0<t™m< ... <M. << 1
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and
0Ss™m<... <. <5< 1

satisfying
) EX1ppm g+ nz-1pgm gy = ™ P(EMU[B* A Z 71 1™, t™)])
and

(10)  EXLpemyp- nz- i, sy = 6P P(FMO[B™ A Z7 1 [s{™,, s™)]).

We set-

G = EPO[B* nZ 1[4, )],  H{ = FMU[B™ nZ ™ [si,, si™)].

Putting
A, =0 (G™, H™: i= —~N2™,..., N2")
from (9) and (10) we obtain
E(X|%W,)=Y, as. on B

Now we shall construct a o-field ,,,,. It is easy to see that

N2m
+1 +
YVori= ) 5P lggen+afi Digemen)
i==N2m

N2m

+1 +1
+ Y 5P Ipgep+afit P Ipgnen).

i= —N2m
For ie{—N2", ..., N2™} and te[t{™,, t™] we put
T (t) = EX1ggr+oyip+ nz-tpgm— o5 "V P(EGDO[BY nZ71 [y, 1)]).

Then by (6) we have
T (™) < 0.

 From (3}«5) and (9) we obtain

T5:(t™) > EX1ggp+v

UIB* AZ 1™, 1™y
—afi*VP(EG VOB nZ7 [, ™))
+EX1ggsn—aft* Y P(EGED)
= EX1gpm g+ nz-1ppm gy — ™ P(E{™ O [BY nZ7 1 [y, £™)])

=0.
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Therefore there exists ¢+ Ve[ti™,, t™] such that
(11)  EX1ggn+n g+ ng- 10, e+ 1)
=i "V P(ESTVU[BT nZ7 [y, (51T D)]).
Now for te[t5* D, ti] we put
Ti-1(t) = EX1gg+pop+ nz- 1[t5'{‘+”.t)]—°‘g'i‘:r11) P(E(z":'+11)U [B*nZ ' [i5*Y, t)])
By (6) we get -
B Th-1 (517 Y) <0.
From (5), (9), (11) and the inequality aff*P < af?*! we have
Ti-1 (tf") = EX1gpmoip+ nz-1pegmy amn — EXTpgpe 001n+ nz- 1pefm, e+ )
—aitDP(ESHPO[BY nZ71 [, 4)])
= o™ P(EMU[B*nZ™ ' [¢™,, ti™)])
—aitVP(EGTVU[BY nZ 7 [, 5 D))
— oD P(EGE OB nZ 7 [, i)
> o P(EMU[B* AZ71 [, 1)]) |
—ai*YP(EMU[B nZ7 [y, ti™)])
=0. -
So we conclude that there exists tfXPe[tS*?, t™] such that
EX1gg+pomps nz-1mgr Oagm o
| gn+1)P(Em+1)U[B+nZ 1[gm+ ), t(m+1))])
Now we write
Gt = EptDU[BYAZ1 [tgn+1) ],
GEtY = ER*DU[B* nZ 1 [y, )]

It is easily seen that

(12) CEIPAGE V=0
and |
(13) Gg'H- l)ﬂG(m+ 1) —~ G(m)

Similarly we find sets H?* and HJ*V satisfying

EX1gg:o =aft* P P(HGZD), EXlgg«n= a&"'Jrl)P(H(erl))
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(14) HGIPAHY™ = @,
(15) HEZPOHG™ < H™.
Finally, we put
W,y =0 (GHIY, GRHY, G\GHIPUGH™Y),
HR*P, HG' Y, HM\HGIPOHEY), ie {—N2™, ..., N2™}).
From (12)15) we conclude that
- U,y and EX|Uu+y) = Y4, as. B

Continuiﬁg inductively the above construction we find an increasing sequence
(A,) of sub-o-fields of & satisfying (3). This completes the proof. a

2.2. CoROLLARY. Let X be an R-valued random variable on (2, &, P) and
Be§. If . :
(16) EX"13=EX 13= o0,
then for each random variable Y there exists a sub-o-field W of § such that
E(X|W=Y as. on B

Proof. Let ¢ = (p,, ¢,) be a one-to-one mapping from N onto N x N.
For n>=1 we put

Co={weQ: ¢;(M-1<|X|<91(n), p2(M—-1< Y| < @, (n)} " B".
It is easily observed that
U ¢, =B
n=1 .
By (16) there exists a positive number k; such that

(17)  E|Y|1c,+supess|Y (o) P(D,)
weCy

<min {EX* 1, —EX ™ 1c,, EX™ 1, —EX* 1},

where D; = Bn{|X| < k,}. Similarly we can inductively define an increasing

sequence (k,) of real numbers such that (k,) goes to infinity and
E|Y|1c, +supess|Y (w)|- P(D,)
weCy
<min{EX* 1, —EX™ 1., EX 1, —EX* 1.},
where D, = Bn{k,_, < |X| < k,}.
Now let us consider probability spaces (2,, &, P,) defined in the follow-

ing way:
Q,=D,UC,, Fn={QnF: FeF}, P,=P/P,(Q,).
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It can be easily seen that

(18) 2,NQ, =9 forn#m
and
(19) Ue.=q.

n=1

From (17) and Theorem 2.1 we conclude that for each n > 1 there exists
a o-field A, = §, such that

20 Eg.5.p)X|N)=Y as. on C,.

Finally, we set

A= {) 4n: 4,€U,, n>1}.
1

n=

By (19) and (20) we obtain
EX|MW(w)=Y(w) as. on B,

which completes the proof. m

2.3. COROLLARY. Let X be an R-valued random variable on (Q, §, P) such
that

(1) EX* =EX™ = .

Then for each random variable Y and arbitrary & > 0 there exist Be & and
a o-field W = § such that

PB)<e¢ and EX|W) =Y as. on B.

Proof. Fix ¢ > 0. It follows from (21) that there exists Be § such that
P(B)<e¢ and EX*13=EX 13= co. Now we apply Corollary 2.2. =
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