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1. INTRODUCTION

Semistable probability distributions (Lévy [12]) have been the object of re-
newed interest in the last several years. These distributions share many impor-
tant properties with the stable laws. Most notably, they are infinitely divisible and
they arise as solutions to central limit problems. Semistable distributions have also
proven to be a richer alternative than stable laws in stochastic modeling. We cite
the monograph by Sato [14] for recent theoretical advances and the books by Adler
et al. [1] and Kotz et al. [11] for applications.

In this paper we will be mainly interested in the semistable distributions with
support in either Z+ := {0, 1, 2, . . .} or R+ := [0,∞). The definitions are as fol-
lows.

A distribution on R+ with Laplace–Stieltjes transform (LST) φ(τ) is said to
be stable if for any α ∈ (0, 1) there exists λ > 0 such that for all τ ­ 0, φ(τ) 6= 0
and

(1.1) ln φ(τ) = λ ln φ(αt).

It is said to be semistable if for some α ∈ (0, 1) there exists λ > 0 such that (1.1)
holds.

∗ Research partially supported by a research grant from the College of Arts and Sciences,
University of Indianapolis.
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A distribution on Z+ with probability generating function (pgf) P (z) is said to
be discrete stable if for any α ∈ (0, 1) there exists λ > 0 such that for all z ∈ [0, 1],
P (z) 6= 0 and

(1.2) lnP (z) = λ lnP (1− α + αz).

It is said to be semistable if for some α ∈ (0, 1) there exists λ > 0 such that (1.2)
holds.

In equations (1.1) and (1.2), λ and α are related by the equation λ = α−γ for
some γ ∈ (0, 1], with γ independent of α for stable distributions (see Huillet et al.
[10] and Bouzar [5], or Lemma 2.1 below). We will refer to γ as the exponent of
the distribution and α (in the case of semistability) its order.

In a recent article, Ben Alaya and Huillet [3] investigated the solution set of
the following functional equation:

(1.3) lnφ(τ) =
m∑

i=1

λi ln φ(αiτ), τ ­ 0,

where m ­ 1 is a natural number, αi > 0, λi > 0 (i = 1, . . . , m) are real numbers,
and φ(τ) is restricted to the set of LST’s of infinitely divisible distributions on R+.
The authors offer a full description of the solution set of (1.3) in terms of stable
or semistable distributions on R+. We note that Ben Alaya et al. [2], [4] studied
similar equations in the context of max-semistability.

The purpose of this paper is to study the analogue of equation (1.3) for dis-
crete distributions on Z+. Specifically, we study the solution set of the functional
equation

(1.4) ln P (z) =
m∑

i=1

λi lnP (1− αi + αiz), 0 ¬ z ¬ 1,

where m ­ 1 is a natural number, 0 < αi < 1, λi > 0 (i = 1, . . . , m) are real
numbers, and P (z) belongs to the set of pgf’s of nondegenerate distributions on
Z+ such that 0 < P (0) < 1.

We note that the condition that αi ∈ (0, 1) (i = 1, . . . ,m) must be imposed in
(1.4) because pgf’s are defined on the unit disk (|z| ¬ 1). However, unlike the con-
tinuous case, we do not impose the condition of infinite divisibility on the solution
to (1.4).

In Section 2, we fully describe the solution set of (1.4). We show that, de-
pending on the commensurability of lnα1, ln α2, . . . , lnαm, or lack thereof, the
solution is either discrete semistable or discrete stable. As a corollary, we obtain
sufficient conditions that will make a discrete semistable law a discrete stable one.
Some examples are discussed. In Section 3, we study the continuous case for dis-
tributions with support on R+. Importantly, we show that the results for the con-
tinuous case can be deduced from their discrete counterparts by way of Poisson
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mixtures. In Section 4, we discuss the solution set of equation (1.4) under the more
general condition αi > 0, i = 1, . . . , m. As a consequence, we offer a somewhat
simplified approach to the proof of the main result in Ben Alaya and Huillet [3].

The following theorems play a fundamental role in establishing the main re-
sults. Their proofs can be found in the monograph by Rao and Shanbhag [13].

THEOREM 1.1 (the Lau–Rao theorem). Let f be an R+-valued Borel mea-
surable locally integrable function on R+ such that l([f > 0]) 6= 0, where l is the
Lebesgue measure. Let µ be a σ-finite measure on the Borel σ-field of R+ with
µ({0}) < 1. Then

(1.5) f(x) =
∫
R+

f(x + y) µ(dy),

for almost all x ∈ R+ with respect to l, if and only if one of the following two
conditions, with η such that

∫
R+

exp{ηx}µ(dx) = 1, holds:
(i) µ is arithmetic with some span κ > 0 and, for almost all x ∈ R+ with

respect to l,
f(x + nκ) = f(x) exp{nκη}, n = 0, 1, . . .

(ii) µ is non-arithmetic and, for some constant c > 0,

f(x) = c exp{ηx}
for almost all x ∈ R+ with respect to l.

THEOREM 1.2 (Deny’s theorem). Let f be an R+-valued Borel measurable
locally integrable function on R such that l([f > 0]) 6= 0, where l is the Lebesgue
measure. Let µ be a σ-finite measure on the Borel σ-field of R with µ({0}) < 1.
Then

(1.6) f(x) =
∫
R

f(x + y) µ(dy),

for almost all x ∈ R with respect to l, if and only if one of the following two
conditions, with ηi, i = 1, 2, such that

∫
R

exp{ηix}µ(dx) = 1, holds:
(i) µ is arithmetic with some span κ > 0 and, for some nonnegative periodic

Borel measurable functions g1 and g2 with period κ,

(1.7) f(x) = g1(x) exp{η1x}+ g2(x) exp{η2x}
for almost all x ∈ R with respect to l.

(ii) µ is non-arithmetic and, for some constants c1, c2 ­ 0,

(1.8) f(x) = c1 exp{η1x}+ c2 exp{η2x}
for almost all x ∈ R with respect to l.
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2. THE SOLUTION SET OF EQUATION (1.4)

For convenience we denote the solution set of equation (1.4) by D(m,λ, α),
where λ = (λ1, . . . , λm) and α = (α1, . . . , αm).

We start out with a useful lemma.

LEMMA 2.1. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m).
(i) If D(m,λ, α) 6= ∅, then

(2.1)
m∑

i=1

λiαi ¬ 1 <
m∑

i=1

λi.

If, in addition, this distribution has finite mean, then

(2.2)
m∑

i=1

λiαi = 1.

(ii) A nonempty D(1, λ, α) (for some λ > 0 and α ∈ (0, 1)) coincides with
the set of discrete semistable distributions with exponent γ = − lnλ/ lnα and
order α. In this case, λα ¬ 1 < λ.

P r o o f. (i) Assume that P (·) ∈ D(m,λ, α). Since P (0) < P (1 − αi) for
each i = 1, . . . , m, it follows by (1.4) that

ln P (0) =
m∑

i=1

λi lnP (1− αi) >
( m∑

i=1

λi

)
lnP (0),

and the second inequality in (2.1) ensues (as ln P (0) < 0). By differentiation,

(2.3)
P ′(z)
P (z)

=
m∑

i=1

λiαi
P ′(1− αi + αiz)
P (1− αi + αiz)

.

Since P ′(z) is increasing over the interval [0, 1) and 1 − αi + αiz > z for all
i = 1, . . . ,m and z ∈ (0, 1), we have

(2.4)
1

P (z)
­

m∑

i=1

λiαi
1

P (1− αi + αiz)
.

The first inequality in (2.1) follows by letting z ↑ 1 in (2.4). The additional assump-
tion of finite mean is equivalent to 0 < P ′(1) <∞ (recall the distribution with pgf
P (z) is nondegenerate). Letting z ↑ 1 in (2.3) yields (2.2). To prove (ii), suppose
P (·) ∈ D(1, λ, α), λ > 0 and α ∈ (0, 1). Then ln P (z) = λ ln P (1 − α + αz)
for any z ∈ [0, 1]. Note that, by part (i), λα ¬ 1 ¬ λ. Letting γ = − lnλ/ ln α,
we have 0 < γ ¬ 1. Therefore, P (z) is discrete semistable with exponent γ and
order α. ¥
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The real numbers a1, a2, . . . , am are said to be commensurable if there exists
a real number a such that for every i ∈ {1, . . . , m}, ai = ria for some integer ri.
a is called a period of the set {a1, . . . , am}.

We now give a full description of D(m, λ, α).

THEOREM 2.1. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m) sat-
isfy (2.1). A pgf P (·) belongs to D(m,λ, α) if and only if one of the following
two conditions holds, with γ being the unique solution to

∑m
i=1 λiα

γ
i = 1 and γ

necessarily in (0, 1]:
(i) (lnα1, . . . , ln αm) are commensurable with period ln α for some α ∈

(0, 1) and P (z) is the pgf of a discrete semistable distribution with exponent γ
and order α (and hence of orders α1, . . . , αm). Moreover, P (z) admits the repre-
sentation

(2.5) P (z) = exp
{−(1− z)γg

(| ln(1− z)|)}, 0 ¬ z < 1,

where g(·) is a nonnegative periodic function defined over [0,∞), with periods
− ln α and − ln αi, i = 1, . . . , m.

(ii) (lnα1, . . . , lnαm) are noncommensurable and P (z) is the pgf of a dis-
crete stable distribution with exponent γ.

P r o o f. We prove the “if” part first. Assume γ ∈ (0, 1] is a solution to the
equation

∑m
i=1 λiα

γ
i = 1. Under (i), if (lnα1, . . . , ln αm) are commensurable with

period ln α for some α ∈ (0, 1) and P (z) is the pgf of a discrete semistable dis-
tribution with exponent γ and order α ∈ (0, 1), then, by Proposition 2.3 of Bouzar
[5], P (z) admits the representation (2.5) where g(·) is a nonnegative periodic func-
tion over [0,∞) with period− ln α. Since for every i ∈ {1, . . . , m}, ln αi = ri ln α
for some ri ∈ Z, it follows that g(·) has periods − ln αi, i = 1, . . . , m. Therefore,

m∑

i=1

λi lnP (1− αi + αiz) = −(1− z)γ
( m∑

i=1

λiα
γ
i g

(| ln(1− z)| − ln ai

))

= ln P (z),

and hence P (·) ∈ D(m,λ, α). Under (ii), P (z) is the pgf of a discrete semistable
distribution with exponent γ (we note that the lack of commensurability of the
ln αi’s is not needed at this stage of the proof). Then ln P (z) = −c(1 − z)γ for
some c > 0 (see Steutel and van Harn [15], Theorem 5.5, Chapter V). It is easily
seen that P (z) satisfies (1.4). Therefore, P (·) ∈ D(m,λ, α). This concludes the
proof of the “if” part.

We now prove the “only if” part. We will assume without loss of generality
that αi 6= αj for all i, j ∈ {1, . . . , m}, i 6= j. Let P (·) ∈ D(m,λ, α) and define
f(x) = − ln[P (1− e−x)], x ­ 0. f is nonnegative and, by (1.4),

(2.6) f(x) = −
m∑

i=1

λi ln P (1− αie
−x) =

m∑

i=1

λif(x− ln αi)
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for all x ­ 0. For a > 0, let δa be the Dirac point-mass measure on the σ-field of
the Borel sets of R+. Define

(2.7) µ(·) =
m∑

i=1

λiδai(·), ai = − lnαi.

Clearly, µ is a finite measure on the σ-field of the Borel sets of R+ with
µ({0}) = 0. It is easily seen that (2.6) can be rewritten in the form of the inte-
gral equation (1.5) in Theorem 1.1 (the Lau–Rao theorem) with µ of (2.7). The
equation holds for every x ­ 0. By Theorem 1.1, there exists η ∈ R, necessarily
unique, such that

∑m
i=1 λiα

−η
i = 1. Setting γ = −η, we have

∑m
i=1 λiα

γ
i = 1.

Suppose that µ is arithmetic with some span κ. We can assume without loss
of generality that κ > 0. Now the support of µ is {− lnα1, . . . ,− lnαm} (recall
µ({− ln αi}) = λi > 0, i = 1, . . . ,m). It follows that (lnα1, . . . , ln αm) are com-
mensurable with period κ. Letting α = e−κ ∈ (0, 1), we have for every
i ∈ {1, . . . , m}, ln αi = ri ln α for some ri (necessarily) in Z+. By Theorem 1.1
(statement (i), n = 1),

f(x− lnα) = f(x)eκη = αγf(x), x ­ 0,

or, equivalently, through the change of variable z = 1− e−x,

ln P (1− α + αz) = αγ lnP (z), 0 ¬ z < 1.

This implies that P (z) satisfies (1.2) with λ = α−γ , and hence P (z) is the pgf
of a discrete semistable distribution with exponent γ and order α. The fact that
γ ∈ (0, 1] follows from Lemma 2.1 (ii). Proposition 2.3 of Bouzar [5] leads to the
representation (2.5).

Assume now that µ is not arithmetic. Necessarily, (lnα1, . . . , ln αm) are non-
commensurable. By Theorem 1.1 (statement (ii)), there exists c > 0 such that
f(x) = ceηx = ce−γx, x ­ 0, or, equivalently, ln P (z) = −c(1− z)γ , 0 ¬ z < 1.
Thus P (z) is the pgf of a discrete stable distribution with exponent γ, necessarily
in (0, 1]. ¥

Discrete stable and discrete semistable distributions are infinitely divisible
(Steutel and van Harn [15], Theorem 5.6, Chapter V, and Bouzar [5]). Let I(Z+)
be the set of pgf’s of the infinitely divisible distributions on Z+. We thus have the
following result as an immediate consequence of Theorem 2.1.

COROLLARY 2.1. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m)
satisfy (2.1). Then

D(m,λ, α) ⊂ I(Z+).

We denote by DSS(α), α ∈ (0, 1), the set of discrete semistable distributions
with order α and by DS the set of discrete stable distributions. It is easily seen that

DS =
⋂

0<α<1

DSS(α).
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A noncommensurability assumption leads to the following stronger result.

COROLLARY 2.2. If α1 and α2 in (0, 1) are such that ln α1 and ln α2 are
noncommensurable, then

DS = DSS(α1) ∩DSS(α2).

P r o o f. Clearly, DS ⊂ DSS(α1) ∩DSS(α2). Conversely, let P (z) be the
pgf of a distribution in DSS(α1) ∩DSS(α2). There exists λi ­ 1, i = 1, 2, such
that ln P (z) = λi lnP (1− αi + αiz), z ∈ [0, 1], which implies

ln P (z) =
λ1

2
ln P (1− α1 + α1z) +

λ2

2
ln P (1− α2 + α2z).

Therefore, P (·) ∈ D(2, λ/2, α). Condition (2.1) holds by Lemma 2.1. Since ln α1

and lnα2 are noncommensurable, it follows by Theorem 2.1 that P (z) is the pgf
of a discrete stable distribution. ¥

We note that Rao and Shanbhag [13], Theorem 6.4.6, p. 159, used the Deny–
Lau–Rao theorem to obtain characterizations for discrete stability that are similar
to the result given in Corollary 2.2 (see also Gupta et al. [8]).

We recall that a function P (z) on [0, 1] is the pgf of an infinitely divisible
discrete distribution if and only if it admits the representation (see Steutel and van
Harn [15], Theorem 4.2, Chapter II)

(2.8) ln P (z) = −
1∫
z

R(x) dx, 0 ¬ z ¬ 1,

where R(x)=
∑∞

n=0 rnxn with rn­0 and, necessarily,
∑∞

n=0 rn(n + 1)−1 <∞.
Following Steutel and van Harn [15], we will refer to R(z) as the R-function
of P (z).

We now give a characterization of the solution set D(m, λ, α) in terms of R-
functions.

THEOREM 2.2. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m) sat-
isfy (2.1) and P (·) ∈ I(Z+). Then P (·) ∈ D(m,λ, α) if and only if one of the
following two conditions, with γ being the solution to

∑m
i=1 λiα

γ
i = 1 and γ nec-

essarily in (0, 1], holds:
(i) (lnα1, . . . , ln αm) are commensurable with period ln α for some α ∈

(0, 1) and P (z) is the pgf of a discrete semistable distribution with exponent γ,
order α (and hence of orders α1, . . . , αm), and an R-function with the represen-
tation

(2.9) R(z) = (1− z)γ−1r
(| ln(1− z)|), 0 ¬ z < 1,

where r(·) is a nonnegative periodic function defined over [0,∞), with periods
− ln α and − ln αi, i = 1, . . . , m.
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(ii) (lnα1, . . . , lnαm) are noncommensurable and P (z) is the pgf of a dis-
crete stable distribution with exponent γ and an R-function of the form

(2.10) R(z) = k(1− z)γ−1, 0 ¬ z < 1,

for some k > 0.

P r o o f. By (1.4) and (2.8), P (·) ∈ D(m,λ, α) if and only if its R-function
is a solution to the functional equation

(2.11) R(z) =
m∑

i=1

λiαiR(1− αi + αiz), 0 ¬ z < 1.

It is easy to see that R(z) of (2.9) (resp. (2.10)), under condition (i) (resp. (ii)),
satisfies (2.11). This establishes the “if” part. We now prove the “only if” part.
Let P (·) ∈ D(m,λ, α). We assume first that condition (i) in Theorem 2.1 holds.
Noting that R(z) = (d/dz)[P (z)], we deduce the representation (2.9) from (2.5)
and differentiation. In this case, r(x) = γg(x) − g′(x), x ­ 0. The nonnegativ-
ity of r(x) follows from that of R(x). Moreover, since g(x) is periodic with pe-
riods − ln α and − ln αi, i = 1, . . . ,m, it is easily shown that r(x) enjoys the
same property. A similar argument, assuming this time that condition (ii) in Theo-
rem 2.1 holds, leads to the representation (2.10). ¥

We conclude the section by discussing an example.

EXAMPLE 2.1. Let m = 2, α ∈ (0, 1) and 0 < λ < (1− α)/α2. Let also
λ1 = 1, λ2 = λ, α1 = α, and α2 = α2. Clearly, condition (2.1) holds and ln α1

and lnα2 are commensurable with period ln α. The assumptions also insure the
existence of (a unique) γ ∈ (0, 1) such that αγ

1 + λαγ
2 = 1, specifically,

γ = ln
[−1 +

√
1 + 4λ

2λ

]
/ ln α.

Let ψ(x) be a continuous bounded nonnegative and periodic function, with
period− ln α. For example, ψ(x) = | sin[(2πx)/(− ln α)]|. We define the function

G(z) = 1− c
∞∫
0

(1− e−(1−z)x)x−1−γψ(lnx) dx, 0 ¬ z ¬ 1,

where c =
(∫∞

0
(1 − e−x)x−1−γψ(lnx) dx

)−1
. G(z) is the pgf of (pn, n ­ 0)

given by

p0 = 0 and pn =
c

n!

∞∫
0

xn−1−γe−xψ(lnx) dx (n ­ 1).

Let

(2.12) P (z) = exp{G(z)− 1}, 0 ¬ z ¬ 1.
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P (z) is the pgf of a compound Poisson distribution (see for example Feller [7]).
Moreover, a simple change of variable argument leads to

lnP (z) = −(1− z)γg
(| ln(1− z)|), 0 ¬ z < 1,

with

g(τ) = c
∞∫
0

(1− e−x)x−1−γψ(τ + lnx) dx, τ ­ 0.

Since ψ(x) is periodic with period − ln α and α1 and α2 are commensurable with
period ln α, it follows that g(τ) has periods ln αi, i = 1, 2. Therefore, by Theo-
rem 2.1 (or by direct calculation), P (·) ∈ D(2, λ, α) and P (·) is discrete semistable
with exponent γ and orders α1 = α and α2 = α2.

REMARK 2.1. A different example can be constructed with γ, α, α1, α2 as
above and the function G(z) in (2.12) as follows (see Corollary 5.2 of Bouzar [5]):

G(z) = 1− c
∞∫
0

(1− e−(1−z)f(x)) dx, 0 ¬ z ¬ 1,

where

(2.13) f(x) = x−1/γ
(
1−B cos(b ln x)

)
, x > 0,

b = −2π/(γ ln α), 0 < B ¬ (1 + bγ)−1, and c =
(∫∞

0
(1 − e−f(x)) dx

)−1
. An

argument similar to the one used above shows P (·) ∈ D(2, λ, α).

3. THE R+-VALUED CASE VIA POISSON MIXTURES

In this section, we revisit equation (1.3) of Ben Alaya and Huillet [3] by re-
stricting the αi’s to the interval (0, 1) and by dropping the assumption that the LST
φ(τ) be infinitely divisible. Instead, we simply require that φ(τ) belong to the set
of LST’s of nondegenerate distributions on R+.

For convenience we denote the solution set of equation (1.3), under the mod-
ifications stated above, by C(m,λ, α), where, we recall, λ = (λ1, . . . , λm) and
α = (α1, . . . , αm). Moreover, we note that if C(m,λ, α) 6= ∅, then the double in-
equality (2.1) must hold (the same proof as that of Lemma 2.1).

A similar approach to the one used in the Z+-valued case, coupled with results
in Huillet et al. [10], will lead to a full description of C(m, λ, α). Instead, we will
use the Poisson mixtures approach of van Harn and Steutel [9] to extend the results
of Section 2 to distributions on R+.

We recall that if Nc(·) is a Poisson process with intensity c > 0 and X is
an R+-valued random variable (rv) independent of Nc(·), then the Z+-valued rv
Nc(X) is called a Poisson mixture with mixing rv X . Its pgf Pc(z) is given by

(3.1) Pc(z) = φ
(
c(1− z)

) (|z| ¬ 1
)
,

where φ is the LST of X .
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THEOREM 3.1. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m) sat-
isfy (2.1). Let φ(τ) be the LST of a distribution on R+. The following assertions
are equivalent.

(i) φ(·) belongs to C(m,λ, α).
(ii) For every c > 0, Pc(·) of (3.1) belongs to D(m,λ, α).

(iii) One of the following two conditions holds, with γ being the unique so-
lution to

∑m
i=1 λiα

γ
i = 1 and γ necessarily in (0, 1]:

(iii1) (lnα1, . . . , ln αm) are commensurable with period ln α for some α ∈
(0, 1) and φ(τ) is the LST of a semistable distribution on R+ with exponent γ and
order α (and hence of orders α1, . . . , αm). Moreover, φ(τ) admits the representa-
tion

(3.2) φ(τ) = exp{−τγg(| ln τ |)}, τ ­ 0,

where g(·) is a nonnegative periodic function defined over the real line, with peri-
ods − lnα and − ln αi, i = 1, . . . ,m.

(iii2) (lnα1, . . . , ln αm) are noncommensurable and φ(τ) is the LST of a sta-
ble distribution on R+ with exponent γ.

P r o o f. (i)⇒ (ii). By (3.1), if φ(τ) is a solution to (1.3), then for any c > 0,
Pc(z) is a solution to (1.4).

(ii)⇒ (iii). By Theorem 2.1, there exists γ ∈ (0, 1], a unique solution to
m∑

i=1

λiα
γ
i = 1,

such that for any c > 0, Pc(z) is either discrete semistable or discrete stable. More
specifically, if (lnα1, . . . , ln αm) are commensurable with period ln α for some
α ∈ (0, 1), then

(3.3) Pc(z) = exp
{−(1− z)γgc

(| ln(1− z)|)}, 0 ¬ z < 1,

where gc(·) is a nonnegative periodic function defined over [0,∞), with periods
− ln α and − lnαi, i = 1, . . . ,m. If 0 ¬ τ < c < c′, then by (3.1)

(3.4) φ(τ) = Pc(1− τ/c) = Pc′(1− τ/c′).

Therefore, by (3.3),

c−γgc

(| ln(τ/c)|) = c′−γgc′
(| ln(τ/c′)|)

for any 0 < τ < c < c′. Let

g(x) = lim
c→∞ c−γgc(|x− ln c|), x ∈ R.

It is easy to see that g(x) is periodic with periods − lnα, − ln α1, . . . ,− lnαm.
The representation (3.2) follows then from (3.3) and (3.4). Hence φ(τ) is the LST
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of a semistable distribution on R+. Now, if (lnα1, . . . , ln αm) are noncommen-
surable, then, by Theorem 2.1, Pc(z) is discrete stable with exponent γ for every
c > 0 (recall that γ is independent of c). Therefore,

(3.5) ln Pc(z) = −ac(1− z)γ , 0 ¬ z < 1,

for some ac > 0. Combining (3.4) and (3.5), we obtain ac = ac′(= a) for any
c, c′ > 0 and ln φ(τ) = −aτγ , τ ­ 0. Therefore, φ(τ) is the LST of a stable dis-
tribution on R+.

(iii)⇒ (i). The proof in the discrete case (Theorem 2.1) carries over verbatim.
The details are skipped. ¥

We present two corollaries next. Their proofs are omitted.
We will denote by I(R+) the set of LST’s of the infinitely divisible distribu-

tions on R+.

COROLLARY 3.1. Assume that m ­ 1, 0 < αi < 1, λi > 0 (i = 1, . . . , m)
satisfy (2.1). Then

C(m,λ, α) ⊂ I(R+).

We denote by SS+(α), α ∈ (0, 1), the set of semistable distributions on R+

with order α and by S+ the set of stable distributions on R+. We have

S+ =
⋂

0<α<1

SS+(α).

COROLLARY 3.2. If α1 and α2 in (0, 1) are such that ln α1 and ln α2 are
noncommensurable, then

S+ = SS+(α1) ∩ SS+(α2).

We conclude with an example.

EXAMPLE 3.1. Let m,α, λ1, λ2, α1, α2, γ, and ψ(x) be as in Example 2.1.
We define the function

φ(τ) = exp
{−
∞∫
0

(1− e−τx)x−1−γψ(lnx) dx
}
, τ ­ 0.

Since
∫∞

1
x−1−γψ(lnx) dx <∞, it follows by Theorem 4.3, Chapter III, in Steu-

tel and van Harn [15] that φ(τ) is the LST of an infinitely divisible distribution
on R+. Moreover, a simple change of variable argument leads to

ln φ(τ) = −τγg(ln τ), τ > 0,

with

g(τ) =
∞∫
0

(1− e−x)x−1−γψ(lnx− τ) dx, τ ­ 0.
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Since ψ(x) is periodic with period − ln α and lnα1 and ln α2 are commensurable
with period ln α, it follows that g(τ) has periods ln αi, i = 1, 2. Therefore, by
Theorem 3.1 (or by direct calculation), φ(·) ∈ C(2, λ, α) and φ(·) is semistable
with exponent γ and orders α1 = α and α2 = α2.

REMARK 3.1. As in the discrete case (see Remark 2.1), a different example
can be constructed with γ, α, α1, α2 as above and

φ(τ) = exp
{−
∞∫
0

(1− e−τf(x)) dx
}
, τ ­ 0,

with f(x) given by (2.13). φ(τ) is the LST of a semistable distribution on R+ with
exponent γ and order α (Proposition 5.1 of Bouzar [5]), from which it follows that
φ(·) ∈ C(2, λ, α).

4. THE SOLUTION SET OF EQUATION (1.4) WITH αi > 0, i = 1, . . . , m

In this section, we discuss the solution set of equation (1.4) assuming αi > 0,
i = 1, . . . , m (instead of αi ∈ (0, 1)). We restrict the solution set to those pgf’s
P (z) of distributions of infinitely divisible Poisson mixtures that satisfy (1.4) for
every z ¬ 1. Such pgf’s are defined over (−∞, 1] (see (3.1)) and have no zeros over
(−∞, 1). As a result, P (1−αi + αiz) is well defined for all αi > 0, i = 1, . . . ,m,
and z ¬ 1. Finally, we will exclude the trivial case α = 1, where 1 = (1, 1, . . . , 1).

We denote by IPM(m,λ, α) the solution set described above.

LEMMA 4.1. Assume αi, λi > 0, i = 1, . . . , m, and α 6= 1. If

IPM(m,λ, α) 6= ∅,
then
(4.1)

∑

{i: αi=1}
λi < 1.

Moreover, if {i : αi = 1} = ∅, we set
∑
{i: αi=1} λi = 0.

P r o o f. Assume that P (·) ∈ IPM(m,λ, α). It follows from (1.4) that

(4.2)
(
1− ∑

{i: αi=1}
λi

)
lnP (z) =

∑

{i: αi 6=1}
λi ln P (1− αi + αiz), z ¬ 1,

with
∑
{i: αi=1} λi = 0 if {i : αi = 1} = ∅. Since α 6= 1, there exists 1 ¬ i0 ¬ m

such that αi0 6= 1. Suppose αi0 < 1. Then P (1 − αi0) < 1 (otherwise, P (·) ≡ 1
over [1− αi0 , 1], which would imply the corresponding distribution is degenerate).
Setting z = 0 in (4.2), and noting that ln P (s) ¬ 0 for every s ¬ 1, we have

(
1− ∑

{i: αi=1}
λi

)
ln P (0) ¬ λi0 ln P (1− αi0) < 0,
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which implies (4.1). If αi0 > 1, then letting z = 1 − 1/(2αi0) in (4.2), it follows
(as in the case αi0 < 1) that

(
1− ∑

{i: αi=1}
λi

)
ln P

(
1− 1/(2αi0)

) ¬ λi0 ln P (1/2) < 0,

which again implies (4.1). ¥

We now state and prove the main result of the section.

THEOREM 4.1. Assume αi > 0, i = 1, . . . , m, and α 6= 1. A pgf P (·) belongs
to IPM(m,λ, α) if and only if one of the following two conditions holds, with γj ,
j = 1, 2, being the solutions to

∑m
i=1 λiα

γ
i = 1, and γj necessarily in (0, 1]:

(i) (lnα1, . . . , ln αm) are commensurable with period ln α for some α ∈
(0, 1) and either

(i1) γ1 = γ2 (= γ), and in this case P (z) is the pgf of a discrete semistable
distribution with exponent γ and order α, or

(i2) γ1 6= γ2, and in this case P (z) is the pgf of the convolution of two dis-
crete semistable distributions with respective exponents γ1, γ2 and common or-
der α.

(ii) (lnα1, . . . , ln αm) are noncommensurable and either
(ii1) γ1 = γ2 (= γ), and in this case P (z) is the pgf of a discrete stable

distribution with exponent γ, or
(ii2) γ1 6= γ2, and in this case P (z) is the pgf of the convolution of two dis-

crete stable distributions with respective exponents γ1, γ2.

P r o o f. We prove the “if” part first. Assume (i) holds. Under (i1), the proof
that P (z) is a solution to (1.4) is identical to the one given for the “if” part of
Theorem 2.1. Under (i2), P (z) admits the representation (see (2.5))

(4.3) P (z) = exp
{−

2∑

j=1

(1− z)γjgj

(| ln(1− z)|)}, 0 ¬ z < 1,

where gj(·) (j = 1, 2) is a nonnegative periodic function defined over R, with pe-
riod − lnα. Commensurability of the lnαi’s (with period ln α) implies that the
functions gj(·), j = 1, 2, in (4.3) admit − ln αi, i = 1, . . . , m, as periods as well.
Straightforward calculations imply that P (z) of (4.3) satisfies equation (1.4). By
Corollary 2 of Bouzar [6], any discrete semistable distribution is a Poisson mixture
where the mixing distribution is semistable, and thus infinitely divisible, on R+.
Hence

P (·) ∈ IPM(m,λ, α)

under (i1). The same conclusion is reached under (i2) as convolution preserves
the Poisson mixture representation and the infinite divisibility property. The exact
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same argument (with discrete stability replacing discrete semistability) carries over
if we assume (ii) holds. We note that in this case the functions g, g1, g2 in (2.5) and
(4.3) become constants. We omit the details.

We now prove the “only if” part. We will assume without loss of generality
that αi 6= αj for all i, j ∈ {1, . . . , m}, i 6= j. Let P (·) ∈ IPM(m,λ, α) and de-
fine f(x) = − ln[P (1 − e−x)], x ∈ R. f is nonnegative and, by (1.4) (recall the
latter holds for all z ¬ 1), f(x) satisfies (2.6) for all x ∈ R. Define the set function
µ by (2.7), where now δai (i = 1, . . . , m) is the Dirac point-mass measure on the
σ-field of the Borel sets of R. µ is a σ-finite measure on the σ-field of the Borel
sets of R. Note that µ({0}) = λi0 if there exists 1 ¬ i0 ¬ m such that αi0 = 1.
Otherwise, µ({0}) = 0. It follows by Lemma 4.1 that µ({0}) < 1. It is easily seen
that (2.6) can be rewritten in the form of the integral equation (1.6) in Theorem 1.2
(Deny’s theorem). The equation holds for every x ∈ R. By Theorem 1.2, there
exist exactly two solutions ηj ∈ R, j = 1, 2, of the equation

∑m
i=1 λiα

−ηj

i = 1,
j = 1, 2. Let γj = −ηj , j = 1, 2. Note

∑m
i=1 λiα

γj

i = 1, j = 1, 2. Proceeding
as in the proof of Theorem 2.1, if µ is arithmetic with some span κ > 0, then
(lnα1, . . . , ln αm) are commensurable with period κ. Letting α = e−κ ∈ (0, 1),
we have for every i ∈ {1, . . . ,m}, lnαi = ri ln α for some ri (necessarily) in Z.
By Theorem 1.2 (statement (i)), f(x) takes on the form (1.7) for some nonnegative
periodic Borel measurable functions g1 and g2 with period κ = − ln α. The repre-
sentation (4.3) for P (z) ensues from the change of variable z = 1 − e−x (we are
restricting (1.7) to x ­ 0). If γ1 = γ2 (= γ), then equation (4.3) reduces to (2.5)
with g(·) = g1(·) + g2(·). This implies that P (z) satisfies (1.2) with λ = α−γ , and
hence P (z) is the pgf of a discrete semistable distribution with exponent γ and
order α. The fact that γ ∈ (0, 1] follows from Lemma 2.1 (ii). If γ1 6= γ2, we let

Pj(z) =
{

exp
{−(1− z)γjgj

(| ln(1− z)|)} if 0 ¬ z < 1,
1 if z = 1

for j = 1, 2. We show that Pj(z), j = 1, 2, is the pgf of a discrete semistable
distribution. Since gj(·) is nonnegative, we see by (4.3) that

0 ¬ (1− z)γjgj

(| ln(1− z)|) ¬ − ln P (z), 0 ¬ z < 1 and j = 1, 2.

Therefore, limz↑1 Pj(z) = 1, which implies that Pj(z) is left-continuous at z = 1.
We will assume without loss of generality that γ1 < γ2. By applying (4.3), we have
for any n ­ 1 and 0 ¬ z < 1

lnP (1− α−n + α−nz)

= α−nγ2

[
1 +

g1

(| ln(1− z)|)

g2

(| ln(1− z)|)(1− z)γ1−γ2αn(γ2−γ1)

]
ln P2(z),
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which implies that

(4.4) P2(z) = lim
n→∞[P (1− α−n + α−nz)]α

nγ2
, 0 ¬ z ¬ 1.

Since P (z) is the pgf of an infinitely Poisson mixture (P (z) = φ(1− z) for some
infinitely divisible LST φ(·)), so is P (1 − α−n + α−nz) for every n ­ 1. This
implies that [P (1− α−n + α−nz)]α

nγ2 is infinitely divisible for every n ­ 1. We
conclude from (4.4), and the left-continuity of P2(z) at z = 1, that P2(z) is an (in-
finitely divisible) pgf (see Steutel and van Harn [15], Theorem 4.1, Appendix A).
Since P2(z) satisfies (1.2) (with λ = αγ2), it has to be the pgf of a discrete semi-
stable distribution with exponent γ2, necessarily in (0, 1] (again, by Lemma 2.1),
and order α. A similar argument leads to the limiting result

P1(z) = lim
n→∞[P (1− αn + αnz)]α

−nγ1
, 0 ¬ z ¬ 1,

which, combined with the left-continuity of P1(z), in turn leads to P1(z) being the
pgf of discrete semistable distribution with exponent γ1, necessarily in (0, 1], and
order α.

Finally, if µ is not arithmetic, then, necessarily, (lnα1, . . . , lnαm) are non-
commensurable. By Theorem 1.2 (statement (ii)), there exists c1, c2 ­ 0 such that

f(x) = c1 exp{−γ1x}+ c2 exp{−γ2x}, x ∈ R,

or, equivalently,

ln P (z) = −c1(1− z)γ1 − c2(1− z)γ2 , 0 ¬ z ¬ 1.

A similar, but much simpler, argument as the one that established (i) above leads
to (ii1) and (ii2). The details are omitted. ¥

The main result in Ben Alaya and Huillet [3], Theorem 3.1 therein, can be
deduced from Theorem 4.1. We state the result below. The proof is not provided as
it is similar to that of our Theorem 3.1.

We will denote by IC(m,λ, α) the set of LST’s of infinitely divisible distri-
butions on R that satisfy (1.3) for some αi, λi > 0, i = 1, . . . , m, and α 6= 1.

THEOREM 4.2. Assume αi, λi > 0, i = 1, . . . , m, and α 6= 1. Let φ(τ) be
the LST of an infinitely divisible distribution on R+. The following assertions are
equivalent.

(i) φ(τ) belongs to IC(m,λ, α).
(ii) For every c > 0, Pc(z) of (3.1) belongs to IPM(m,λ, α).

(iii) One of the following two conditions holds, with γj , j = 1, 2, being the
solutions to

∑m
i=1 λiα

γ
i = 1, and γj necessarily in (0, 1]:

(iii1) (lnα1, . . . , ln αm) are commensurable with period ln α for some α ∈
(0, 1) and either

(iii1a) γ1 = γ2 (= γ), and in this case φ(τ) is the LST of a semistable distri-
bution on R+ with exponent γ and order α, or
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(iii1b) γ1 6= γ2, and in this case φ(τ) is the LST of the convolution of two
semistable distributions on R+ with respective exponents γ1 and γ2, and common
order α.

(iii2) (lnα1, . . . , ln αm) are noncommensurable and either
(iii2a) γ1 = γ2 (= γ), and in this case φ(τ) is the LST of stable distribution

on R+ with exponent γ, or
(iii2b) γ1 6= γ2, and in this case φ(τ) is the LST of the convolution of two

stable distributions on R+ with respective exponents γ1 and γ2.
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