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Abstract. We study fluid models of an open, subcritical multiclass
queueing network with the earliest-deadline-first (EDF) service discipline
and we provide a characterization of the corresponding invariant manifold.
We show that the invariant states exhibit nonlinear state space collapse. Con-
sequences of these findings for diffusion limits for EDF queueing networks
are also discussed.
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1. INTRODUCTION

The earliest-deadline-first (EDF) discipline, also called earliest-due-date-first-
served (EDDFS), is the rule where each customer has a deadline, assigned upon
arrival at the network, and the customer with the earliest deadline is selected for
service at each station of the network. It is a well-studied protocol, especially in
computer and manufacturing systems; see, e.g., [12], [19]. In spite of theoretical
and practical importance of stochastic EDF queueing networks, there are still few
mathematically rigorous results for such systems. In [4], it was shown that fluid
limits of the performance processes for a non-preemptive strictly subcritical EDF
network satisfy the first-in-system-first-out (FISFO) fluid model equations. It was
also proved in this paper that a sufficiently rich class of FISFO fluid models is
stable. This, by a variation of Theorem 4.2 of [6], implies stability of the network
under consideration. This stability result was extended in [13] to preemptive strictly
subcritical EDF networks with fixed customer routes and to a broad class of net-
works (including preemptive and non-preemptive EDF) with impatient customers.
In [7], a diffusion approximation for measure-valued state descriptors of a preemp-
tive EDF GI/G/1 queue was provided. Recently, a similar diffusion approximation
for a preemptive EDF GI/G/1 queue with reneging was found [15]. The results of
[7] have been generalized in [22] to preemptive EDF feedforward networks. A fur-
ther generalization to the case of acyclic networks, with or without preemption, was
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given in [17]. However, the latter result rests on a strong assumption implying the
existence of a heavy traffic limit for the corresponding real-valued workload pro-
cess. Currently, we are able to verify this assumption only in a number of special
cases. To summarize, although a lot is known for a single class, single server EDF
system, it seems that satisfactory asymptotic theory for multiclass EDF queueing
networks with feedback is still to be developed.

In the late 90’s, a new modular approach to diffusion approximations for
open multiclass queueing systems was developed [1]–[3], [20], [21]. This approach
may be summarized informally as follows. Consider a multiclass queueing net-
work with servers indexed by j = 1, . . . , J and customer classes indexed by k =
1, . . . ,K. First, we define fluid models of the queueing network under consider-
ation and identify their invariant states. It is crucial for the subsequent analysis
that there exists a linear lifting map ∆: RJ

+ → RK
+ mapping the workload vec-

tor W (∞) =
(
Wj(∞)

)
j=1,...,J

to the corresponding queue length vector Z(∞)=(
Zk(∞)

)
k=1,...,K

in an invariant state of the fluid model, i.e., in any such state,

(1.1) Z(∞) = ∆W (∞).

In fact, the structure of ∆ in known examples is rather simple, since for every k
there exists a number δk such that Zk(∞) = δkWj(∞), where station j serves
class k customers. The next step is to show that fluid models of the network un-
der consideration are asymptotically stable, i.e., they converge to invariant states:(
W (t), Z(t)

)
→

(
W (∞), Z(∞)

)
, t→∞, and, consequently, in such fluid models

(1.2) Z(t) ≈ ∆W (t), t≫ 1.

Next, we analyze a sequence of queueing networks, indexed by a parameter r,
which is asymptotically critical, i.e., the traffic intensity ρrj at station j in the r-th
system converges to 1 for each j. The consequence of (1.2) is that for large r,

(1.3) Z
r
(t) ≈ ∆W

r
(t), t≫ 1,

where Z
r (W r) is the fluid-scaled queue length (workload) vector in the r-th sys-

tem. This follows from the fact that fluid models (Z,W ) approximate the paths
(Z

r
,W

r
) as r gets large. The relation (1.3) is used to show that under appropriate

initial conditions and model parameters a multiplicative state space collapse holds:

(1.4) ∥Ẑr(·)−∆Ŵ r(·)∥T /∥Ŵ r(·) ∨ 1∥T
P−→ 0

for every T > 0, where Ẑr (Ŵ r) is the diffusion-scaled queue length (workload)
vector in the r-th system, ∥ · ∥T is the supremum norm on [0, T ] and P−→ denotes
convergence in probability. The condition (1.4), together with an invariance prin-
ciple for semimartingale reflected Brownian motions [20], is used to prove that

(1.5) (Ŵ r, Ẑr)⇒ (W̃ , Z̃),

where⇒ denotes weak convergence, W̃ is a Brownian motion reflected obliquely
in an orthant, with appropriate drift θ, diffusion matrix Γ and reflection matrix R,
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and Z̃ = ∆W̃ . The relation (1.5) will be referred to as a conventional heavy traffic
limit theorem [10]. We would like to stress that the vector θ and the matrices Γ and
R determining the reflected Brownian motion W depend on the matrix ∆.

This approach was used in [3] and [21] to obtain new heavy traffic limit the-
orems for FIFO (first-in first-out) networks of Kelly type and for HLPPS (head-
of-the-line proportional processor sharing) networks. See also [5] for other appli-
cations of this technique. Let us note that the approach described above was orig-
inally developed for head-of-the-line (HL) service disciplines. Recal that an HL
service discipline requires that service within each class is on the FIFO basis and
the proportions of each server’s time devoted to various customer classes are con-
stant between changes of the arrival and departure processes. (Some measurability
and nonanticipativity conditions are also required, see [21] for details.) However,
a modification of this technique was later used to obtain a heavy traffic limit for a
GI/G/1 processor sharing queue, which is clearly not HL [9], [18], [8].

Bramson ([4], p. 81) and Williams (private communication) posed a question
whether the above modular approach can be applied, at least in some situations, to
EDF queueing networks. This paper is the first step in answering this question. We
introduce fluid models of EDF queueing networks and we characterize the associ-
ated invariant manifold, which turns out to have a much more complicated structure
than its known counterparts, e.g., for FIFO or HLPPS networks. In particular, in the
EDF case, the lifting map ∆ in (1.1) is nonlinear. Thus, while it is plausible that
an appropriate extension of the techniques from [1]–[3], [20], [21] to the EDF case
can be made, we do not expect such an extension to be straightforward. In fact, in
the light of the above-mentioned dependence of θ, Γ and R on ∆, it is reasonable to
conjecture that the limiting heavy traffic workload distribution in the EDF case (if
it exists) is, in general, a reflected diffusion with state-dependent coefficients and
the reflection direction not necessarily constant on a given face of the nonnegative
orthant. In other words, some EDF networks may exhibit unconventional heavy
traffic behavior. In a subsequent paper [14] we verify this conjecture, providing an
example of a simple feedforward FISFO (a special case of EDF) queueing network
with asymptotically stable fluid model and unconventional heavy traffic diffusion
approximation. The analysis in [14] depends heavily on the main results of this
paper, in particular on nonlinearity of the mapping ∆. The example from [14]
shows that the heavy traffic conjecture from [10], stating that a FIFO network has
a conventional heavy traffic approximation if and only if its fluid model is asymp-
totically stable, cannot be generalized to other service disciplines, even in the case
of feedforward networks with the HL property. Let us also mention that while an
example of a closed network with somewhat related unconventional heavy traffic
limit is known [11], we are not aware of an open network with protocol other than
EDF, which gives rise to an unconventional heavy traffic limit.

This paper is organized as follows. Section 2 presents the basic notation and
definitions. It also describes EDF queueing networks and their fluid models. Sec-
tion 3 presents the main results of the paper and provides an example of nonlin-
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earity of the mapping ∆. In Section 4 we introduce the notions of the frontier and
the null set of an invariant EDF fluid model, the former one being an analog of
a frontier for an EDF queueing system introduced in [7]. We also prove several
properties of invariant states involving these notions. The main results of the paper
are shown in Section 5.

2. EDF NETWORKS AND THEIR FLUID MODELS

2.1. Basic notation. The following notation will be used throughout the paper.
Let N = {1, 2, . . .}, let R be the set of real numbers, and R+ = [0,∞). The Borel
σ-field on R will be denoted by B(R). For n ∈ N, put Rn

+ for (R+)
n, the positive

orthant in Rn. For a, b ∈ R, we write a ∨ b for the maximum of a and b, a ∧ b
for the minimum of a and b, and a+ for a ∨ 0. For a, b ∈ Rn, a = (a1, . . . , an),
b = (b1, . . . , bn), the vector (a1b1, . . . , anbn) will be denoted by a ◦ b. All vectors
in the paper are to be interpreted as column vectors. For a finite set B, |B| denotes
the cardinality of B. Denote byM the set of all finite, nonnegative measures on
B(R) with the Lévy–Prokhorov metric

ρ(µ, ν) = inf {ϵ > 0 : µ(B) ¬ ν(Bϵ) + ϵ, ν(B) ¬ µ(Bϵ) + ϵ for all B ∈ B(R)}

for µ, ν ∈M, where

Bϵ = {x ∈ R : inf
y∈B
|x− y| ¬ ϵ}.

It is known that ρ is a complete metric onM inducing the weak topology. Finally,
let ρn = ρ× . . .× ρ be the product metric on the n-fold Cartesian productMn.

2.2. EDF networks. This paper contains a characterization of the invariant
manifold for a family of fluid models corresponding to queueing networks with
EDF service discipline. To motivate the introduction of these fluid models, we first
provide a brief description of the corresponding queueing networks.

We consider a network consisting of J single server stations, indexed by
j = 1, . . . , J . The network is populated by K customer classes, indexed by k =
1, . . . ,K. There is a stationary external arrival process with rate αk associated with
each class k. In particular, if αk = 0, there are no external arrivals to class k. We
put α = (α1, . . . , αK). A customer of class k receives service at a unique station
j, written k ∈ C(j) or j = s(k). Let mk be the mean service time for the class k
and let m = (m1, . . . ,mK). Upon being served at station j, a customer of class k
immediately becomes a customer of class l with probability pkl, independently of
its past history. Thus, the probability that a customer of class k leaves the network
after completion of service equals 1−

∑K
l=1 pkl. The routing matrix P = (pkl) is

assumed to be transient, i.e., such that the matrix

(2.1) Q , (I − P ′)−1 = I + P ′ + (P ′)2 + . . .
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exists, where ′ denotes the transpose. We define the total arrival rate vector

(2.2) λ = (λ1, . . . , λK) = Qα.

Without loss of generality we assume that λk > 0 for each k. Next, we define the
traffic intensity at station j as

(2.3) ρj =
∑

k∈C(j)
mkλk.

When ρj ¬ 1 (ρj < 1, ρj = 1) for each j, the network is called subcritical (strictly
subcritical, critical). Class k customers entering the network have initial lead
times with cumulative distribution function (c.d.f.) Gk. For notational convenience,
we define Gk for every k = 1, . . . ,K, including classes with no external arrival
streams. For k such that αk = 0, Gk may be chosen in an arbitrary way and this
choice does not affect any further considerations. We put G = (G1, . . . , GK). To
simplify the presentation, we assume that

(2.4) y∗k , sup{y ∈ R : Gk(y) < 1} <∞

for k = 1, . . . ,K, but all the results of this paper and their proofs remain valid,
after appropriate modifications, in a more general case in which for k = 1, . . . ,K,

(2.5)
∞∫
0

(
1−Gk(y)

)
dy <∞.

To determine whether customers meet their timing requirements, one must keep
track of each customer’s lead time, where

lead time = initial lead time − time elapsed since arrival

for customers coming to the system after time zero and

lead time = initial lead time − current time

for initial customers, i.e., those who are present in the network at time zero.
Customers are served at each station according to the EDF discipline. That is,

the customer with the shortest remaining lead time, regardless of class, is selected
for service at each station. Late customers (customers with negative lead times)
stay in the system until served to completion. Two types of EDF network protocols
may be considered. In the preemptive case preemption occurs when a customer
more urgent than the customer in service arrives (we assume preempt-resume). In
EDF networks without preemption customer service continues until he is served to
completion, even if a more urgent customer enters the station.
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2.3. EDF fluid models. Fluid models are deterministic, continuous analogs of
queueing networks, in which individual customers are replaced by a divisible com-
modity (fluid) of K types or classes, indexed by k = 1, . . . ,K, which change as
the fluid moves between stations j = 1, . . . , J until it leaves the system. In anal-
ogy with customers of queueing networks described above, class k fluid arrives
exogeneously to a unique station j = s(k) with rate αk and initial lead time distri-
bution Gk, it is processed at s(k) with mean service time mk and changes class to l
with transition probability pkl after service completion. As in the case of queueing
networks, we say that a fluid model is subcritical (strictly subcritical, critical) if
ρj ¬ 1 (ρj < 1, ρj = 1) for each j, where ρj are given by (2.3). Fluid models are
defined rigorously in terms of the appropriate fluid model equations.

Fluid models for EDF queueing networks consist of the six-tuples of vectors

(2.6) X(t, s) =
(
Z(t, s),W (t, s), A(t, s), D(t, s), T (t, s), Y (t, s)

)
,

where t ­ 0, s ∈ R, the vectors Z(t, s),W (t, s), A(t, s), D(t, s), T (t, s) are in-
dexed by k = 1, . . . ,K and the vector Y (t, s) is indexed by j = 1, . . . , J . Here
Zk(t, s) denotes the amount of class k fluid with lead times less than or equal to s
at time t and Wk(t, s) represents the workload for station s(k) associated with this
fluid, i.e., the amount of time necessary for the server s(k) to process it to comple-
tion (provided that the station devotes all its capacity to it, without processing any
other fluids at the same time). The quantity Ak(t, s) (Dk(t, s)) denotes the amount
of fluid with lead times at time t less than or equal to s which has arrived at (de-
parted from) class k by time t and Tk(t, s) represents the amount of work devoted
to this fluid by server s(k) by time t. Finally, Yj(t, s) denotes the cumulative idle-
ness by time t at station j with regard to service of fluids with lead times at time
t less than or equal to s. The vectors defining X are the continuous analogs of the
corresponding quantities in the EDF queueing network described in Section 2.2.
We assume that all the components of X are continuous and nonnegative, with
A(·, s − ·), D(·, s − ·), T (·, s − ·), Y (·, s − ·) nondecreasing in each coordinate,
A(0, s) = D(0, s) = T (0, s) = 0 and Y (0, s) = 0 for s ∈ R. We also assume that
every coordinate of A(t, ·), D(t, ·), T (t, ·), −Y (t, ·), Z(t, ·) and W (t, ·) is nonde-
creasing for t ­ 0. The EDF fluid model equations, defining the model, are:

A(t, s) = α ◦
∫ t

0
G(s+ η) dη + P ′D(t, s),(2.7)

Z(t, s) = Z(0, t+ s) +A(t, s)−D(t, s),(2.8)

T (t, s) = m ◦D(t, s),(2.9) ∑
k∈C(j) Tk(t, s) + Yj(t, s) = t,(2.10)

Yj(t, s− t) can only increase in t if
∑

k∈C(j) Zk(t, s− t) = 0,(2.11)

W (t, s) = m ◦ Z(t, s),(2.12)

where t ­ 0, s ∈ R, j = 1, . . . , J . A system (2.6) satisfying the equations (2.7)–
(2.12) will be called an EDF fluid model. The terms α, m, P and G are the model
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data, given in advance. By (2.7), the external arrival process to class k has the form

(2.13) αk

t∫
0

Gk(s+ η) dη.

This can be explained as follows. A customer who has entered the network through
the buffer k at time ξ ∈ (0, t] and has lead time not greater than s at time t had lead
time upon arrival not greater than s + t − ξ. The rate with which such customers
enter the system is αkGk(s + t − ξ), so the total number of such arrivals in the
interval [0, t] is αk

∫ t

0
Gk(s+ t− η) dη, which is the same as (2.13). The equations

(2.7), (2.8) and (2.10) hold regardless of the service protocol under consideration.
The equation (2.11) characterizes the EDF service discipline. The equations (2.9)
and (2.12) imply that the number of partially served customers in the pre-limit EDF
system is negligible under fluid scaling. This is obvious in the non-preemptive
case, but it requires a proof for preemptive EDF networks; see Corollary 3.8 in
[7], Corollary 4.8 in [22], Corollary 4.7 in [17] and Proposition 6.1 in [13] for the
corresponding arguments in some special cases.

In what follows, we shall make the following assumption on the initial condi-
tion, which is compatible with the definition of y∗k.

ASSUMPTION 2.1. We have

(2.14) Z(0, max
k:αk>0

y∗k) = lim
s→∞

Z(0, s).

In particular, under the assumptions (2.4) and (2.14), the support of the mea-
sure with the distribution function Zk(0, ·) is bounded above for each k. Of course,
if (2.4) does not hold for some k with αk > 0, (2.14) can be regarded as a tautology.

An important special case of the EDF fluid model equations may be obtained
by putting Gk(y) = I[0,∞)(y) for each k, so that (2.7) simplifies to

(2.15) A(t, s) = α
(
t+ (s ∧ 0)

)+
+ P ′D(t, s).

The equations (2.8)–(2.12), (2.15) will be referred to as the FISFO fluid model
equations. If we change the coordinates (t, s) to (t, s̃), where s̃ = s− t, in (2.8)–
(2.11), (2.15), we obtain the FISFO fluid model equations introduced in [4]:

A(t, s̃) = α(t ∧ s̃) + P ′D(t, s̃),(2.16)

Z(t, s̃) = Z(0, s̃) +A(t, s̃)−D(t, s̃),(2.17)

Dk(t, s̃) = T k(t, s̃)/mk for k = 1, . . . ,K,(2.18) ∑
k∈C(j) T k(t, s̃) + Y j(t, s̃) = t for j = 1, . . . , J,(2.19)

Y j(t, s̃) can only increase in t when
∑

k∈C(j) Zk(t, s̃) = 0,(2.20)
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for t, s̃ ­ 0. In (2.16)–(2.20), the coordinate s̃ represents the arrival times of cus-
tomers (fluids) to the network, rather than their lead times. However, it seems that
for the sake of the characterization of the corresponding invariant manifold, the
equations (2.8)–(2.12), (2.15) (and, more generally, (2.7)–(2.12)) are more conve-
nient than (2.16)–(2.20), see Remark 3.1 to follow.

If we take fluid limits, i.e., the limits of sample paths along subsequences under
scaling which is linear in both time and space (called fluid or hydrodynamic scal-
ing) obtained from a single EDF network, then the initial lead time distributions
disappear in the limit, giving rise to the FISFO fluid models. This has been proved
in [4] in the case of no preemption and in [13] for preemptive EDF networks with
fixed customer routes. In this paper, we chose to consider more general EDF fluid
models satisfying (2.7)–(2.12) with nontrivial lead time distributions Gk, which
may be useful in the asymptotic analysis of a sequence of EDF networks where
the initial lead time distributions dilate with the same rate as the space scaling pa-
rameter. Thanks to such lead time scaling, employed, e.g., in [7], [15]–[17], [22],
the customer lead times are “realistic”, i.e., they are of the same order as the queue
lengths and the sojourn times, so a typical customer has a reasonable chance to
have his job done on time. In contrast, fluid and diffusion scaling of a critical net-
work without scaling the corresponding lead times leads to a model in which most
(if not all) incoming customers are late in (or sufficiently close to) the limit, which
is not a desirable feature for a real-time queueing model. Also, the characterization
of the invariant manifold, which is the topic of this paper, is not substantially more
difficult in the case of general initial lead time distributions Gk.

2.4. Paths and multi-indices. Let

K =
{
(k1, . . . , kn) : n ∈ N, k1, . . . , kn ∈ {1, . . . ,K}, αk1pk1k2 . . . pkn−1kn > 0

}
,

where pk1k2 . . . pkn−1kn should be interpreted as 1 for n = 1. The elements of K
will be called multi-indices. They represent paths of finite length which are being
followed with positive probability by customers (fluids) since their arrival to the
network. For k = (k1, . . . , kn) ∈ K, let pk = pk1k2 . . . pkn−1kn , αk = αk1pk and
ρk = mknαk. Also, for k as above, let b(k) = k1 and e(k) = kn be the begin-
ning and the end of the path k, respectively, and let S(k) = {s(k1), . . . , s(kn−1)},
which should be interpreted as ∅ if n = 1. In other words, S(k) is the set of servers
encountered by customers following the path k before they become class e(k) cus-
tomers. For k ∈ K, k ∈ {1, . . . ,K} and j ∈ {1, . . . , J}, we write k ∈ C̃(k) if
e(k) = k and k ∈ C(j) if e(k) ∈ C(j). Let K0(j) = {(k) : k ∈ C(j), αk > 0} be
the set of multi-indices of length one corresponding to customer classes that enter
station j ∈ {1, . . . , J} from outside the system and let J0 =

{
j ∈ {1, . . . , J} :

K0(j) ̸= ∅
}

be the set of stations that serve as the entry point for at least one ex-
ternal arrival process. For m = 1, . . . , J − 1 and j1, . . . , jm, j ∈ {1, . . . , J}, let
Kj1,...,jm

m (j)=
{
k∈K : k∈C(j),S(k)⊆{j1, . . . , jm}

}
be the set of paths of cus-

tomers eventually visiting station j who visit only stations in the set {j1, . . . , jm}
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before arriving at j. We say that it is the set of paths which reach station j through
{j1, . . . , jm}. Finally, for m = 1, . . . , J − 1 and j1, . . . , jm ∈ {1, . . . , J}, let

J j1,...,jm
m =

{
j ∈ {1, . . . , J} : Kj1,...,jm

m (j) ̸= ∅
}
\ {j1, . . . , jm}

be the set of stations not in the set {j1, . . . , jm} that can be reached through
{j1, . . . , jm}.

DEFINITION 2.1. We say that a network is connected if for every two sta-
tions j and j′, j ̸= j′, there exist n ∈ N, j0, . . . , jn ∈ {1, . . . , J} such that j0 = j,
jn = j′, and for each i = 1, . . . , n, there exist ki1, . . . , k

i
mi
∈ {1, . . . ,K} such

that pki1ki2 . . . pkimi−1k
i
mi

> 0 and either ki1 ∈ C(ji−1), kimi
∈ C(ji), or ki1 ∈ C(ji),

kimi
∈ C(ji−1).
In other words, a network is conected if for any two stations there is a way

of reaching one station from the other by following fragments of paths indexed by
elements of K, not necessarily in the forward direction. In what follows, we fix an
EDF queueing network under consideration (which, for the sake of construction of
the corresponding fluid models, is completely determined by α, m, P , G and the
sets C(j), j = 1, . . . , J) and assume that it is connected.

2.5. Invariant states.

DEFINITION 2.2. An EDF fluid model of the form (2.6) is called invariant if
for all t ­ 0 and s ∈ R we have

Z(t, s) = Z(0, s).

In other words, an EDF fluid model is invariant if the customer instantaneous
lead time profiles Z(t, ·) (and thus, by (2.12), W (t, ·)) do not change with time. It
is easy to see that invariant EDF fluid models with ρj > 1 for some j do not exist.
Thus, in the remainder of the paper we assume that the network under consideration
is subcritical. We shall almost entirely focus on invariant EDF fluid models. The
coordinate t in Z(t, s) and W (t, s) of such models will usually be skipped.

DEFINITION 2.3. A vector L = (Lk)k=1,...,K of cumulative distribution func-
tions (c.d.f.’s) of finite nonnegative measures on R is called an invariant state of
an EDF fluid model if there exists an invariant EDF fluid model of the form (2.6)
such that for every s ∈ R,

L(s) = Z(s).

The set of all invariant states of EDF fluid models will be called the invariant
manifold and denoted by S.

Our first observation is that an invariant state completely determines the cor-
responding invariant EDF fluid model. This implies that we can think of S as of
the family of invariant fluid models.
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PROPOSITION 2.1. Let X be an invariant EDF fluid model of the form (2.6).
Then for t ­ 0, s ∈ R and j = 1, . . . , J,

A(t, s) = Q
(
α ◦

t∫
0

G(s+ η) dη + P ′
(
Z(t+ s)− Z(s)

))
,(2.21)

D(t, s) = Q
(
α ◦

t∫
0

G(s+ η) dη + Z(t+ s)− Z(s)
)
,(2.22)

Yj(t, s) = t−
∑

k∈C(j)
mk

{
Q
(
α ◦

t∫
0

G(s+ η)dη + Z(t+ s)− Z(s)
)}

k
.(2.23)

In particular, the invariant state Z(·) uniquely determines X.

P r o o f. Fix t ­ 0, s ∈ R. By (2.8) and the invariance of X, we have

(2.24) D(t, s) = Z(t+ s)− Z(s) +A(t, s).

Substituting (2.24) into (2.7), we get

(2.25) (I − P ′)A(t, s) = α ◦
t∫
0

G(s+ η) dη + P ′
(
Z(t+ s)− Z(s)

)
.

Multiplying (2.25) from the left by Q and using (2.1), we obtain (2.21). Putting
(2.21) into (2.24) and applying the fact that, by (2.1), I +QP ′ = Q, we get (2.22).
Substituting (2.22) into (2.9) and using (2.10), we have (2.23). The last claim fol-
lows immediately from (2.9), (2.12) and (2.21)–(2.23). �

3. MAIN RESULTS

Let J1 = |{j : ρj = 1}| and let J2 = J − J1. In particular, the network is
critical (strictly subcritical) if J1 = J (J1 = 0). Without loss of generality we can
assume that ρ1 = . . . = ρJ1 = 1, ρJ1+1 < 1,. . . ,ρJ < 1. For k ∈ K, let Sc(k) =
S(k) ∩ {1, . . . , J1}, i.e., Sc(k) is the set of critical servers encountered by cus-
tomers following the path k before they become class e(k) customers. In the case
of J1 ­ 1 we define Π as the set of all permutations π = (π1, . . . , πJ1) of 1, . . . , J1
such that πm ∈ J π1,...,πm−1,J1+1,...,J

J2+m−1 , m = 1, . . . , J1, i.e., the station πm can be
reached through {π1, . . . , πm−1, J1 + 1, . . . , J}. For π ∈ Π, we set

Dπ = {y ∈ RJ1 : yπ1 ­ . . . ­ yπJ1
, yπm ¬ max

k∈Kπ1,...,πm−1,J1+1,...,J

J2+m−1 (πm)

y∗b(k) ∀m}.

Let D =
∪

π∈ΠDπ. For k = 1, . . . ,K and y ∈ R, let us define

(3.1) Hk(y) =
∞∫
y

(
1−Gk(η)

)
dη.
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Each function Hk is finite by (2.4) (or (2.5)). We put H = (H1, . . . ,HK). Next,
we define the mapping Φ = (Φ1, . . . ,ΦJ1) : D → RJ1

+ by the formula

(3.2) Φj(y1, . . . , yJ1) =
∑

k∈C(j)
ρk[Hb(k)(yj)−Hb(k)( min

i∈Sc(k)
yi)]

+,

j = 1, . . . , J1. Here and elsewhere in this paper, the minimum (maximum) taken
over the empty set should be interpreted as ∞ (−∞). Note that the series (3.2)
converges. Indeed, for any j, by the definition of ρk and (2.1)–(2.3), we have

(3.3) Φj(y1, . . . , yJ1) ¬
∑

k∈C(j)
ρk max

k′=1,...,K
Hk′(yj)

¬
∑

k∈C(j)
mk

{(
I + P ′ + (P ′)2 + . . .

)
α
}
k

max
k′=1,...,K

Hk′(yj)

= ρj max
k′=1,...,K

Hk′(yj).

PROPOSITION 3.1. The function Φ is a homeomorphism of D onto RJ1
+ .

The proof of this proposition and an explicit algorithm for inverting Φ may be
obtained by an appropriate extension of the proof of Proposition 5.5 in [17].

The main result of this paper is the following theorem.

THEOREM 3.1 (Characterization of the invariant manifold). For J1 ­ 1
and F = (Fj)j=1,...,J1 ∈ RJ1 , let ZF =

(
ZF
k (·)

)
k=1,...,K

, where for s ∈ R,
(3.4)

ZF
k (s) =


0, s(k) > J1,∑
k∈C̃(k)

αk[Hb(k)(Fs(k))−Hb(k)(s ∧ min
i∈Sc(k)

Fi)]
+, s(k) ¬ J1.

Also, let X(F ) be the vector of functions of the form (2.6) with Z(t, s) = ZF (s)
for all t ­ 0, s ∈ R, and satisfying (2.9), (2.12) and (2.21)–(2.23). Let SD =
{ZF : F ∈ D} if J1 ­ 1 and let SD = {0} otherwise, where 0 is the vector of K
distribution functions corresponding to the zero measure: 0k ≡ 0, k = 1, . . . ,K.
Then S = SD.

Intuitively, this result may be explained as follows. As it should be expected,
the invariant queue length (workload) vanishes at strictly subcritical stations. For
a critical station j, Fj is the lead time of the fluid currently in service at j. By
the fact that the EDF service discipline is used, there is no mass with lead times
smaller than Fj at this station. We will later show that all the fluid with lead times
greater than Fj which visits server j along its route is currently either at j, or
upstream (see (4.4) of Proposition 4.1). Consequently, for k ∈ C(j), the fluid fol-
lowing the path k which is currently at station j must have lead times not greater
than mini∈Sc(k) Fi, since otherwise it has not left one of the upstream critical
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stations along the path k. In particular, in spite of the assumed Markovian rout-
ing between customer classes, the invariant states form a complex, highly non-
Markovian structure, which is not observed in the case of FIFO, HLPPS or other
previously investigated service protocols. Another consequence of the above fact is
that the network topology implies an ordering of Fj , j = 1, . . . , J1. For example,
if C(j) = {k}, where k = (k1, k2), j′ = s(k1) ̸= j = s(k2), then Fj ¬ Fj′ , since
the fluid currently served at j must have left the station j′ by this time. In general,
such ordering relations are much more complicated and, together with the condi-
tion (2.4), they imply that F = (Fj)j=1,...,J1 ∈ D. The appearance of Hb(k) in the
term corresponding to k in (3.4) is not surprising, because Hb(k) corresponds (up
to a multiplicative factor) to the stationary excess distribution associated with the
lead time distribution Gb(k) of the fluid following the path k.

Define the mapping Ψ = (Ψ1, . . . ,ΨK) : D → RK
+ by

(3.5) Ψk(y1, . . . , yJ1) =
∑

k∈C̃(k)
αk[Hb(k)(ys(k))−Hb(k)( min

i∈Sc(k)
yi)]

+,

if s(k) ¬ J1 and Ψk ≡ 0 otherwise. An argument similar to (3.3) shows that the
series in (3.5) and the analogous series in the definition of ZF converge.

COROLLARY 3.1 (Lifting map). For w = (wj)j=1,...,J1 ∈ RJ1
+ , X

(
Φ−1(w)

)
is

the unique invariant EDF fluid model with workload wj = lims→∞
∑

k∈C(j)Wk(s)

at station j for each j = 1, . . . , J1. In particular, the map ∆ : RJ1
+ → RK

+ given
by the formula

(3.6) ∆ = Ψ ◦ Φ−1

maps the workload vector w to the corresponding queue length vector

z = (zk)k=1,...,K , zk = lim
s→∞

Zk(s),

in the invariant EDF fluid model X
(
Φ−1(w)

)
.

REMARK 3.1. It is easy to check that if we define an invariant FISFO fluid
model by the equations (2.16)–(2.20) (instead of (2.8)–(2.12), (2.15)), requiring
that Z(t, s̃) = Z(0, s̃) for all t, s̃ ­ 0, then the corresponding invariant manifold
consists of a single state 0.

3.1. Example. Perhaps the most striking consequence of Theorem 3.1 is that
the mapping ∆ = (∆1, . . . ,∆K) in Corollary 3.1 is, in general, nonlinear, even
in the acyclic FISFO case. Note that while general EDF networks with Markovian
routing are not necessarily HL, all FISFO networks with fixed customer routes
enjoy the HL property.
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EXAMPLE 3.1. Let us consider a critical FISFO fluid model with J=J1=2,
K = 4, s(1) = s(4) = 1, s(2) = s(3) = 2, α1 > 0, α3 > 0, α2 = α4 = 0 and

P =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.
We have Π = {(1, 2), (2, 1)}, D = (−∞, 0]× (−∞, 0], H1(y) = H3(y) = (−y)+
and the mapping Φ : D → R2

+ is given by

Φ1(y1, y2) = −ρ(1)y1 + ρ(3,4)[y2− y1]
+, Φ2(y1, y2) = ρ(1,2)[y1− y2]

+− ρ(3)y2.

One may check by direct computation that for (w1, w2) ∈ R2
+ such that w2 ­

ρ(3)w1/ρ(1), we have

∆1(w1, w2) = w1/m1, ∆2(w1, w2) = α1(w2 − ρ(3)w1/ρ(1)),

∆3(w1, w2) = α3(m2w1/m1 + w2), ∆4(w1, w2) = 0,

and for (w1, w2) ∈ R2
+ such that w2 < ρ(3)w1/ρ(1),

∆1(w1, w2) = α1(w1 +m4w2/m3), ∆2(w1, w2) = 0,

∆3(w1, w2) = w2/m3, ∆4(w1, w2) = α3(w1 − ρ(1)w2/ρ(3)).

In particular, ∆ is nonlinear.

REMARK 3.2. It is easy to see that for every FISFO network, Φ and ∆ are
piecewise linear, i.e., the domain of each of these maps can be decomposed by a
finite number of hyperplanes into disjoint sets such that the corresponding mapping
is linear on each of these sets. In fact, for Φ (∆), these sets coincide with Dπ

(Φ(Dπ)), π ∈ Π. In the general EDF case, neither Φ nor ∆ is piecewise linear.

4. FRONTIERS AND NULL SETS

In this section we define the frontiers and the null set of an invariant state
(Definitions 4.1 and 4.2) and we use these notions to show several properties of
invariant EDF fluid models. Proposition 4.1 shows that all the incoming fluid with
lead times greater than the frontier at station j and visiting this station along its
route is still either at j or upstream. It also implies Theorem 3.1 for strictly sub-
critical networks (Corollary 4.1) and shows that invariant EDF fluid models are,
in some sense, maximal (compare (4.3) with (4.4), see also (4.6)). Proposition 4.2
shows that the frontiers and the null set determine the corresponding invariant EDF
fluid model uniquely. In Proposition 4.3 we show that the vector of the frontiers
corresponding to an invariant EDF fluid model with nonzero total mass at every
critical station belongs to the set D. Finally, Lemma 4.2 establishes partial order-
ing and an upper bound for the frontiers.
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DEFINITION 4.1. Let X be an EDF fluid model of the form (2.6). Let t ­ 0
and let j ∈ {1, . . . , J} be such that

∑
k∈C(j) Zk(t, ·) is not identically equal to

zero. The quantity Fj(t) = inf
{
s ∈ R :

∑
k∈C(j) Zk(t, s) > 0

}
will be called the

frontier at station j at time t.

In other words, Fj(t) is the left endpoint of the support of the measure with
the distribution function

∑
k∈C(j) Zk(t, ·). By the continuity of Z,

(4.1)
∑

k∈C(j)
Zk

(
t, Fj(t)

)
= 0.

If the EDF fluid model X is invariant (which will usually be assumed in the sequel),
then Fj(t) is constant in t. In this case, the variable t in Fj(t) will be skipped.

DEFINITION 4.2. Let X be an invariant EDF fluid model of the form (2.6).
The setN (X) =

{
j ∈ {1, . . . , J} :

∑
k∈C(j) Zk(·) ≡ 0

}
will be called the null set

of X.

In what follows, we will sometimes writeN instead ofN (X), when it is clear
from the context what fluid model X we have in mind. Note that for an invariant
state X, Fj is defined iff j /∈ N . The following lemma is a restatement of (2.11)
for an invariant EDF fluid model.

LEMMA 4.1. Let X be an invariant EDF fluid model of the form (2.6). For
every j /∈ N and every t ­ 0, s ∈ R such that s− t > Fj , we have

(4.2)
∑

k∈C(j)
mk

{
Q
(
Z(s− t)− Z(s− t− dt)

)}
k

=
(
1−

∑
k∈C(j)

mk

{
Q
(
α ◦G(s− t)

)}
k

)
dt.

P r o o f. By (2.23), we have

Yj(t, s− t) = t−
∑

k∈C(j)
mk

{
Q
(
α ◦

t∫
0

G(s− η)dη + Z(s)− Z(s− t)
)}

k
.

By (2.11), for s− t > Fj , Yj(t, s− t) does not grow in t, which implies (4.2). �

In the sequel, we will need the following refinement of Lemma 4.1.

PROPOSITION 4.1. Let X be an EDF fluid model of the form (2.6). For every
s1 < s2 and for t large enough,

(4.3) Q
(
Z(t, s2)− Z(t, s1)

)
¬ λ(s2 − s1)−Q

(
α ◦

s2∫
s1

G(η)dη
)
.
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Moreover, if the EDF fluid model X is invariant, then {j : ρj < 1} ⊆ N and for
every j /∈ N , k ∈ C(j) and s2 > s1 ­ Fj ,

(4.4)
{
Q
(
Z(s2)− Z(s1)

)}
k
=

{
Q
[
α ◦

(
H(s1)−H(s2)

)]}
k
.

P r o o f. By (2.7) and (2.8), we have

Z(t, s) = Z(0, t+ s) + α ◦
t∫
0

G(s+ η)dη − (I − P ′)D(t, s),

which, by (2.1), implies

QZ(t, s) = QZ(0, t+ s) +Q
(
α ◦

t∫
0

G(s+ η)dη
)
−D(t, s).

Thus, by (2.14), for fixed s1 ¬ s2 and t ­ 0 large enough,

(4.5) Q
(
Z(t, s2)− Z(t, s1)

)
= Q

(
α ◦

( s2+t∫
s1+t

G(η)dη −
s2∫
s1

G(η)dη
))
−

(
D(t, s2)−D(t, s1)

)
¬ Qα(s2 − s1)−Q

(
α ◦

s2∫
s1

G(η)dη
)
,

which, by (2.2), implies (4.3). Now assume that the EDF fluid model X is invariant,
j /∈ N and s2 > s1 ­ Fj . We have

s2 − s1 −
∑

k∈C(j)
mk

{
Q
(
α ◦

s2∫
s1

G(η)dη
)}

k
=

∑
k∈C(j)

mk

{
Q
(
Z(s2)−Z(s1)

)}
k

¬ ρj(s2 − s1)−
∑

k∈C(j)
mk

{
Q
(
α ◦

s2∫
s1

G(η)dη
)}

k
,

where the equality follows from (4.2) and the inequality from (4.3) and (2.3). Since
ρj ¬ 1, this is possible only if ρj = 1 and equality holds on every coordinate
k ∈ C(j) of (4.3), i.e., for every k ∈ C(j),{

Q
(
Z(s2)− Z(s1)

)}
k
= λk(s2 − s1)−

{
Q
(
α ◦

s2∫
s1

G(η)dη
)}

k

=
{
Q
(
α ◦

s2∫
s1

(
1−G(η)

)
dη

)}
k

=
{
Q
[
α ◦

(
H(s1)−H(s2)

)]}
k
,

(4.6)

where (2.2) and (3.1) were used for the second and third equation, respectively. �
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An immediate consequence of Proposition 4.1 is that Theorem 3.1 holds in the
strictly subcritical case.

COROLLARY 4.1. If the network is strictly subcritical, then S = {0}.
Indeed, in this case, by Proposition 4.1, for any invariant EDF fluid model X,

N = {1, . . . , J}, which implies that Z ≡ 0.
We have thus characterized the invariant manifold for a strictly subcritical

network. From now on, we assume that J1 ­ 1.

PROPOSITION 4.2. The setN =N (X) and the frontiers Fj , j∈{1, . . . , J}\N,
determine the corresponding invariant EDF fluid model X uniquely.

P r o o f. By Proposition 2.1, it suffices to show that the coordinate Z(·) of X
is determined uniquely by N and (Fj). Let n = |N |. If n = J , then Z ≡ 0 and
there is nothing to prove. Assume that n < J . Without loss of generality we can
also assume that {1, . . . , J} \ N = {1, . . . , J − n}. Let π = (π1, . . . , πJ−n) be a
permutation of 1, . . . , J − n such that

(4.7) Fπ1 ­ Fπ2 ­ . . . ­ FπJ−n .

We proceed by induction. Let Fπ0 =∞ and assume for some i∈{1, . . . , J−n}, the
increments of Z are determined uniquely byN and (Fj) on the interval [Fπi−1 ,∞)
(for i = 1, the hypothesis is vacuous). Our aim is to show that they are also deter-
mined uniquely by this data on [Fπi , Fπi−1), and thus on [Fπi ,∞).

Let K(i) =
∪J−n

j=i C(πj) and let

L(i) = {1, . . . ,K} \ K(i) =
∪
j∈N
C(j) ∪

i−1∪
j=1

C(πj).

By the definitions of N and Fj , together with (4.7), we have

(4.8) Zk(Fπi−1)− Zk(Fπi) = 0, k ∈ L(i).

Thus, for k ∈ K(i) and s1, s2 ∈ [Fπi , Fπi−1), s1 ¬ s2,

(4.9)
{
Q
(
Z(s2)− Z(s1)

)}
k
=

{
Q(i)

(
Z(i)(s2)− Z(i)(s1)

)}
k
,

where Q(i) = (Qkl)k,l∈K(i) and Z(i) = (Zk)k∈K(i) . Let P (i) = (p
(i)
kl )k,l∈K(i) , where

p
(i)
kl = pkl +

∞∑
n=1

∑
k1,...,kn∈L(i)

pkk1pk1k2 . . . pknl

is the probability that a class k customer moves to class l, visiting only stations
fromN ∪ {π1, . . . , πi−1} along the way. It is easy to see that Q(i) = I + (P (i))′ +
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(P (i))′

)2
+ . . ., so Q(i) is invertible and (Q(i))−1 = I − (P (i))′. By (4.9) and (4.4),

for Fπi ¬ s1 < s2 < Fπi−1 ,

(4.10) Q(i)
(
Z(i)(s2)− Z(i)(s1)

)
=

({
Q
[
α ◦

(
H(s1)−H(s2)

)]}
k

)
k∈K(i)

.

Multiplying (4.10) from the left by (Q(i))−1 we get the increments of Z(i) (and
thus, by (4.8), of Z) on the interval [Fπi , Fπi−1). This ends the inductive proof, es-
tablishing uniqueness of the increments of Z with givenN and (Fj) on [FπJ−n ,∞).
By (4.7) and the definition of Fj , Z ≡ 0 on (−∞, FπJ−n). �

PROPOSITION 4.3. Let X be an invariant EDF fluid model with null setN (X)
= {J1 + 1, . . . , J} and frontiers F = (Fj)j=1,...,J1 . Then F ∈ D.

P r o o f. We will first construct a permutation π ∈ Π such that

(4.11) Fπ1 ­ Fπ2 ­ . . . ­ FπJ1
.

Let B1 = {1, . . . , J1} and I1 = {j ∈ B1 : Fj = maxi∈B1 Fi}. We will show that

(4.12) I1 ⊆ J J1+1,...,J
J2

.

Let j ∈ I1 and let k ∈ C(j). By (2.7) and (2.24), for t ­ 0 and s ∈ R we have

Ak(t, s) = αk

t∫
0

Gk(s+ η)dη +
K∑

k1=1

pk1kDk1(t, s)

= αk

t∫
0

Gk(s+ η)dη +
K∑

k1=1

pk1k
(
Zk1(t+ s)− Zk1(s) +Ak1(t, s)

)
.

Using (2.7) and (2.24) once again, we get

Ak(t, s) =
K∑

k1=1

pk1k
(
Zk1(t+ s)− Zk1(s) + αk1

t∫
0

Gk1(s+ η)dη
)

+ αk

t∫
0

Gk(s+ η)dη +
K∑

k1,k2=1

pk2k1pk1kDk2(t, s)

=
K∑

k1=1

pk1k
(
Zk1(t+ s)− Zk1(s) + αk1

t∫
0

Gk1(s+ η)dη
)

+ αk

t∫
0

Gk(s+ η)dη +
K∑

k1,k2=1

pk2k1pk1k
(
Zk2(t+ s)− Zk2(s) +Ak2(t, s)

)
.
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Using (2.7), (2.24) again and iterating, we obtain

(4.13) Ak(t, s) = αk

t∫
0

Gk(s+ η)dη

+
∞∑
n=1

K∑
k1,...,kn=1

pknkn−1 . . . pk1k
(
Zkn(t+ s)−Zkn(s)+αkn

t∫
0

Gkn(s+ η)dη
)
.

The series in (4.13) converges by (2.1). Note that (4.13) may be rewritten as

(4.14) Ak(t, s) = αk

t∫
0

Gk(s+ η)dη

+
∑

s(k1)∈B1

pk1k
{
Q
(
Z(t+ s)− Z(s) + α ◦

t∫
0

G(s+ η)dη
)}

k1

+
∞∑
n=2

∑
s(k1),...,s(kn−1)/∈B1

∑
s(kn)∈B1

pknkn−1 . . . pk1k

×
{
Q
(
Z(t+ s)− Z(s) + α ◦

t∫
0

G(s+ η)dη
)}

kn
+

∞∑
n=1

∑
s(k1),...,s(kn)/∈B1

pknkn−1 . . . pk1k
(
Zkn(t+s)−Zkn(s)+αkn

t∫
0

Gkn(s+η)dη
)
.

By Proposition 4.1, Zkn ≡ 0 for s(kn) /∈ B1. This, together with (2.4), (2.14) and
(4.4), implies that for s > Fj = maxi∈B1 Fi and t large enough,

(4.15) Ak(t, s)−Ak(t, Fj)

=
∑

s(k1)∈B1

pk1k
{
Q
(
Z(Fj)− Z(s) + α ◦ [H(Fj)−H(s)]

)}
k1

+ αk

(
s− Fj −

s∫
Fj

Gk(η)dη
)
+
∞∑
n=2

∑
s(k1),...,s(kn−1)/∈B1

∑
s(kn)∈B1

pknkn−1 . . . pk1k

×
{
Q
(
Z(Fj)− Z(s) + α ◦ [H(Fj)−H(s)]

)}
kn

+
∞∑
n=1

∑
s(k1),...,s(kn)/∈B1

αknpknkn−1 . . . pk1k
(
s− Fj −

s∫
Fj

Gkn(η)dη
)

= αk

(
s− Fj −

s∫
Fj

Gk(η)dη
)

+
∞∑
n=1

∑
s(k1),...,s(kn)/∈B1

αknpknkn−1 . . . pk1k
(
s− Fj −

s∫
Fj

Gkn(η)dη
)
.
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Suppose that (4.12) is false. Let j ∈ I1 \ J J1+1,...,J
J2

. Then for every k ∈ C(j)
(4.15) vanishes. Indeed, the fact that j /∈ J J1+1,...,J

J2
implies that αk = 0 and, for

s(k1), . . . , s(kn) /∈ B1, αknpknkn−1 . . . pk1k = 0. By (2.8), (2.4), (2.14) and (4.15),
for s and t as above,

0 ¬ Zk(s)− Zk(Fj) = Ak(t, s)−Ak(t, Fj)−
(
Dk(t, s)−Dk(t, Fj)

)
¬ Ak(t, s)−Ak(t, Fj) = 0.

Thus, by (4.1),
∑

k∈C(j) Zk(s) =
∑

k∈C(j)
(
Zk(s) − Zk(Fj)

)
= 0 for s > Fj ,

which contradicts the definition of Fj . We have proved (4.12).
Let n1 = |I1| and let π1, . . . , πn1 be such that I1 = {π1, . . . , πn1}. Then, by

(4.12), for m = 1, . . . , n1, πm ∈ J J1+1,...,J
J2

⊆ J π1,...,πm−1,J1+1,...,J
J2+m−1 and Fπ1 =

. . . = Fπn1
> maxi/∈{π1,...,πn1} Fi. If n1 = J1, the permutation π ∈ Π satisfying

(4.11) has been found, otherwise we continue our construction inductively as fol-
lows.

Assume that for some nk ∈ {1, . . . , J1 − 1}, the numbers π1, . . . , πnk
have

been chosen so that

πm ∈ J π1,...,πm−1,J1+1,...,J
J2+m−1 , m = 1, . . . , nk,(4.16)

Fπ1 ­ . . . ­ Fπnk
> max

i/∈{π1,...,πnk
}
Fi.(4.17)

(We have just proved the validity of this assumption for k = 1.) Let

Bk+1 = B1 \ {π1, . . . , πnk
}, Ik+1 = {j ∈ Bk+1 : Fj = max

i∈Bk+1

Fi}.

We want to get

(4.18) Ik+1 ⊆ J
π1,...,πnk

,J1+1,...,J

J2+nk
.

The argument is similar to the one given above, with I1, J J1+1,...,J
J2

and B1 re-

placed by Ik+1, J π1,...,πnk
,J1+1,...,J

J2+nk
and Bk+1, respectively. The only difference is

that, in general, the terms Zkn(t+ s), Zkn(s) with s(kn) ∈ {π1, . . . , πnk
} in (4.14)

(with B1 replaced by Bk+1) do not vanish. However, for s(kn) ∈ {π1, . . . , πnk
}

and s ∈ (Fj , Fπnk
), by (4.17) and the definition of the frontier, Zkn(s) = Zkn(Fj)

= 0. For t large enough, it follows that Zkn(t + s) = Zkn(t + Fj) by (2.14).
Hence, for s ∈ (Fj , Fπnk

), (4.15) (with B1 replaced by Bk+1) holds and the argu-
ment goes through as in the case of k = 1. Let nk+1 = nk + |Ik+1| and choose
πnk+1, . . . , πnk+1

so that Ik+1 = {πnk+1, . . . , πnk+1
}. By (4.18), the condition

(4.16) holds with k replaced by k + 1. The definition of the set Ik+1 implies that
(4.17) also holds with k replaced by k + 1. The inductive step is complete.
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When the above construction terminates, we have a permutation π ∈ Π satis-
fying (4.11). We will show that F ∈ Dπ. Suppose that F /∈ Dπ. By (4.11) and the
definition of Dπ, this implies that for some m ∈ {1, . . . , J1},

(4.19) Fπm > max
k∈Kπ1,...,πm−1,J1+1,...,J

J2+m−1 (πm)

y∗b(k).

Let B = {π1, . . . , πm−1, J1+1, . . . , J}, k ∈ C(πm) and let s > Fπm . The relation
(4.11), together with the reasoning similar to that in (4.13)–(4.15), implies that for
t large enough,

0 ¬ Ak(t, s)−Ak(t, Fπm)

=
∑

k∈Kπ1,...,πm−1,J1+1,...,J

J2+m−1 (πm)

αk

t∫
0

(
Gb(k)(s+ η)−Gb(k)(Fπm + η)

)
dη

+
∑

k∈Kπ1,...,πm−1,J1+1,...,J

J2+m−1 (πm)\{(k)}

pk
(
Zb(k)(Fπm)− Zb(k)(s)

)
¬ 0,

(4.20)

since Gb(k)(s+ η) = Gb(k)(Fπm + η) = 1 for k ∈ Kπ1,...,πm−1,J1+1,...,J
J2+m−1 (πm) and

η ­ 0 by (4.19), so the integral in (4.20) vanishes. Thus,

Ak(t, s)−Ak(t, Fπm) = 0,

which, as in the proof of (4.11), implies that
∑

k∈C(πm) Zk(s) = 0, and this con-
tradicts the definition of Fπm . �

LEMMA 4.2. Let X be an invariant EDF fluid model withN = N (X) and let
F = (Fj)j∈{1,...,J}\N be the corresponding frontiers. Then for j∈{1, . . . , J}\N ,

(4.21) Fj < sup
k∈C(j)

(y∗b(k) ∧ min
i∈S(k)\N

Fi).

P r o o f. Suppose that for some j ∈ {1, . . . , J} \ N the inequality (4.21) is
false, i.e.,

(4.22) y∗b(k) ¬ Fj or min
i∈S(k)\N

Fi ¬ Fj

for every k ∈ C(j). Let B =
{
i ∈ {1, . . . , J}\N : Fi ¬ Fj

}
, k∈C(j) and s>Fj .
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Using (4.13) and proceeding as in (4.14) and (4.15), we get, for t large enough,

(4.23) Ak(t, s)−Ak(t, Fj)

=
∑

s(k1)∈B
pk1k

{
Q
(
Z(Fj)− Z(s) + α ◦ [H(Fj)−H(s)]

)}
k1

+ αk

(
s− Fj −

s∫
Fj

Gk(η)dη
)
+
∞∑
n=2

∑
s(k1),...,s(kn−1)/∈B

∑
s(kn)∈B

pknkn−1 . . . pk1k

×
{
Q
(
Z(Fj)− Z(s) + α ◦ [H(Fj)−H(s)]

)}
kn

+
∞∑
n=1

∑
s(k1),...,s(kn)/∈B

αknpknkn−1 . . . pk1k
(
s− Fj −

s∫
Fj

Gkn(η)dη
)

+
∞∑
n=1

∑
s(k1),...,s(kn)/∈B

pknkn−1 . . . pk1k
(
Zkn(Fj)− Zkn(s)

)
.

The first two terms on the right-hand side of (4.23) vanish by (4.4). The next two
terms vanish because, by (4.22), αk > 0 implies y∗k ¬ Fj and for k1, . . . , kn such
that αknpknkn−1 . . . pk1k > 0 and s(k1), . . . , s(kn) /∈ B, y∗b(k) ¬ Fj . Finally, the
fifth term is nonpositive. Thus, Ak(t, s)−Ak(t, Fj) = 0, which, as in the proof of
Proposition 4.3, leads to a contradiction. �

5. PROOFS OF THE MAIN RESULTS

In this section we prove Theorem 3.1 and Corollary 3.1. First (Definition 5.1),
we introduce a family of (vectors of) c.d.f.s ZF,A which belong to the invariant
manifold (Lemma 5.1) and, moreover, any invariant state with frontiers F and null
set N can be represented as ZF,N (Corollary 5.2). The proofs of Theorem 3.1 and
Corollary 3.1 follow.

DEFINITION 5.1. LetA be a set such that {J1+1, . . . , J} ⊆ A ⊆ {1, . . . , J},
let Ac = {1, . . . , J} \ A and let F = (Fj)j∈Ac ∈ R|Ac|. We define

ZF,A =
(
ZF,A
k (·)

)
k=1,...,K

,

where for s(k) ∈ A we have ZF,A
k (s) ≡ 0 and for s(k) ∈ Ac,

ZF,A
k (s) =

∑
k∈C̃(k)

αk[Hb(k)(Fs(k))−Hb(k)(s ∧ min
i∈S(k)∩Ac

Fi)]
+.

Also, let X(F,A) be the vector of functions of the form (2.6) with Z(t, s) =
ZF,A(s) for all t ­ 0, s ∈ R, and satisfying (2.9), (2.12), (2.21)–(2.23).
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LEMMA 5.1. For any F and A as above, ZF,A ∈ S. Moreover, for j ∈ Ac,
j /∈ N

(
X(F,A)

)
if and only if

(5.1) Fj < sup
k∈C(j)

(y∗b(k) ∧ min
i∈S(k)∩Ac

Fi),

and (5.1) implies that Fj is the frontier of X(F,A) at station j.

P r o o f. By definition, X(F,A) satisfies (2.9) and (2.12). It is easy to check
that it is also continuous and satisfies (2.7), (2.8) and (2.10). Thus, to prove that
ZF,A ∈ S, it suffices to show that X(F,A) has the required nonnegativity and
monotonicity properties, and satisfies (2.11). We will first check that Dk(·, s − ·)
and Dk(t, ·) are nondecreasing for each k = 1, . . . ,K. By (2.22), together with
Definition 5.1,

(5.2) Dk(t, s− t) =
K∑
l=1

Qklαl

s∫
s−t

Gl(η)dη

+
∑

l:s(l)∈Ac

Qkl

∑
l∈C̃(l)

αl

[
Hb(l)

(
(s− t) ∨ Fs(l)

)
−Hb(l)(s ∧ min

i∈S(l)∩Ac
Fi)

]+
.

By (2.1),

(5.3)
K∑
l=1

Qklαl

s∫
s−t

Gl(η)dη =
∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk
s∫

s−t
Gk1(η)dη,

where for n = 0, αk1pk1k2 . . . pknk and Gk1 should be understood as αk and Gk,
respectively. Using (2.1) again and changing the order of summation, we get

(5.4)
∑

l:s(l)∈Ac

Qkl

∑
l∈C̃(l)

αl

[
Hb(l)

(
(s− t) ∨ Fs(l)

)
−Hb(l)(s ∧ min

i∈S(l)∩Ac
Fi)

]+
= I{s(k)∈Ac}

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk

×
[
Hk1

(
(s− t) ∨ Fs(k)

)
−Hk1(s ∧ min

i∈{s(k1),...,s(kn)}∩Ac
Fi)

]+
+

∑
l1:s(l1)∈Ac

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknl1pl1k

×
[
Hk1

(
(s− t) ∨ Fs(l1)

)
−Hk1(s ∧ min

i∈{s(k1),...,s(kn)}∩Ac
Fi)

]+
+

∑
l1:s(l1)∈Ac

K∑
l2=1

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknl1pl1l2pl2k

×
[
Hk1

(
(s− t) ∨ Fs(l1)

)
−Hk1(s ∧ min

i∈{s(k1),...,s(kn)}∩Ac
Fi)

]+
+ . . .
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=
∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk

×
{
I{s(k)∈Ac}

[
Hk1

(
(s− t) ∨ Fs(k)

)
−Hk1(s ∧ min

i∈{s(k1),...,s(kn)}∩Ac
Fi)

]+
+ I{s(kn)∈Ac}

[
Hk1

(
(s− t) ∨ Fs(kn)

)
−Hk1(s ∧ min

i∈{s(k1),...,s(kn−1)}∩Ac
Fi)

]+
+ . . .+ I{s(k1)∈Ac}

[
Hk1

(
(s− t) ∨ Fs(k1)

)
−Hk1(s)

]+}
.

Fix n, k1, . . . , kn. If {s(k1), . . . , s(kn), s(k)} ∩ Ac = ∅, then the corresponding
sum in the curled brackets in (5.4) vanishes. If {s(k1), . . . , s(kn), s(k)} ∩Ac ̸= ∅,
let

(
s(k1), . . . , s(kn), s(k)

)
∩ Ac = (j1, . . . , jm), i.e., let (j1, . . . , jm) be the sub-

sequence of the sequence
(
s(k1), . . . , s(kn), s(k)

)
obtained by deleting the servers

belonging to A. For A,B ∈ B(R), let µk1
B (A) =

∫
A∩B

(
1−Gk1(η)

)
dη. Then, by

(3.1), the sum in the curled brackets in (5.4) corresponding to n, k1, . . . , kn can be
rewritten as

(5.5)
(µk1

[Fjm ,mini=1,...,m−1 Fji
] + µk1

[Fjm−1
,mini=1,...,m−2 Fji

] + . . .+ µk1
[Fj1

,∞))[s− t, s]

= µk1
[mini=1,...,m Fji

,∞)[s− t, s] =

s∨mini=1,...,m Fji∫
(s−t)∨mini=1,...,m Fji

(
1−Gk1(η)

)
dη,

where the first equality can be verified by induction. The equations (5.2)–(5.5)
yield

(5.6) Dk(t, s− t) =
∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk
{ s∫

s−t
Gk1(η)dη

+ I{{s(k1),...,s(kn),s(k)}∩Ac ̸=∅}

s∨minj∈{s(k1),...,s(kn),s(k)}∩Ac Fj∫
(s−t)∨minj∈{s(k1),...,s(kn),s(k)}∩Ac Fj

(
1−Gk1(η)

)
dη

}
.

It is easy to check that for each n, k1, . . . , kn, the corresponding sum in the curled
brackets in (5.6) is nondecreasing in t and s. Thus, Dk(t, s − t) is nondecreasing
in both t and s. Consequently, by (2.7) and (2.9), all the coordinate functions of
A(t, s − t) and T (t, s − t) are nondecreasing in both t and s. By (2.10), Yj(t, s)
is nonincreasing in s for all j. The fact that Z(t, s) = ZF,A(s) and W (t, s) are
nonnegative and nondecreasing in s follows from Definition 5.1 and (2.12). Also,
D(0, s) = 0 for all s by (5.2). Thus, A(0, s) = 0, T (0, s) = 0 and Y (0, s) = 0 for
all s by (2.7), (2.9) and (2.10). This, together with the monotonicity of A(t, s− t),
D(t, s − t), T (t, s − t) in t, shows that A(t, s) ­ A(0, s − t) = 0, and simi-
larly D(t, s) ­ 0, T (t, s) ­ 0 for all t ­ 0, s ∈ R. Let j = 1, . . . , J . From (2.1)



312 Ł. Kruk

we have

ρj =
∑

k∈C(j)
mk(Qα)k =

∑
k∈C(j)

mk

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk.

This, together with (2.9), (2.10) and (5.6), implies that

(5.7) Yj(t, s− t) = (1− ρj)t+ ρjt−
∑

k∈C(j)
mkDk(t, s− t)

= (1− ρj)t+
∑

k∈C(j)
mk

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk
{ s∫

s−t

(
1−Gk1(η)

)
dη

− I{{s(k1),...,s(kn),j}∩Ac ̸=∅}

s∨minl∈{s(k1),...,s(kn),j}∩Ac Fl∫
(s−t)∨minl∈{s(k1),...,s(kn),j}∩Ac Fl

(
1−Gk1(η)

)
dη

}
= (1− ρj)t+

∑
k∈C(j)

mk

∞∑
n=0

K∑
k1,...,kn=1

αk1pk1k2 . . . pknk

×
s∧minl∈{s(k1),...,s(kn),j}∩Ac Fl∫

(s−t)∧minl∈{s(k1),...,s(kn),j}∩Ac Fl

(
1−Gk1(η)

)
dη

(recall that, by convention, the minimum taken over ∅ equals ∞). In particular,
Yj(t, s − t) is nondecreasing in t, and thus Yj(t, s) ­ Yj(0, s + t) = 0 for every
t ­ 0 and s ∈ R.

We now turn to the verification of (2.11). For j ∈ A there is nothing to prove.
Assume that j ∈ Ac, t ­ 0, s ∈ R and

∑
k∈C(j) Z

F,A
k (s − t) > 0. Thus, s − t >

Fj , so for every n, k1, . . . , kn we have s− t > minl∈{s(k1),...,s(kn),j}∩Ac Fl. More-
over, ρj = 1, since Ac ⊆ {1, . . . , J1}. Therefore, (5.7) implies that Yj(t, s − t)
= 0 and (2.11) holds. We have proved that ZF,A ∈ S.

The second claim of the lemma follows easily from the definition of the model
X(F,A). �

COROLLARY 5.1. SD ⊆ S.

This follows from Lemma 5.1, together with the fact that for the set A =
{J1 + 1, . . . , J}, ZF,A = ZF and X(F,A) = X(F ).

COROLLARY 5.2. Let X be an invariant EDF fluid model with N = N (X)
and let F = (Fj)j /∈N be the corresponding frontier. Then X = X(F,N ).

P r o o f. By Lemmas 4.2 and 5.1, the invariant EDF fluid models X, X(F,N )
have the same frontiers (Fj)j /∈N and the same null set N . Thus, the equality X =
X(F,N ) follows from Proposition 4.2. �
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P r o o f o f T h e o r e m 3.1. In the strictly subcritical case, Theorem 3.1
follows immediately from Corollary 4.1. Assume that the network is not strictly
subcritical. By Corollary 5.1, it suffices to prove that S ⊆ SD. Let X be an in-
variant EDF fluid model of the form (2.6), let N = N (X) and let F = (Fj)j /∈N
be the corresponding frontier. If N = {J1 + 1, . . . , J}, then Z ∈ SD by Propo-
sition 4.3 and Corollary 5.2. Assume that N0 = N \ {J1 + 1, . . . , J} ̸= ∅. Let
j0 = min{j : j ∈ N0}, N1 = N \ {j0}, and let

(5.8) Fj0 = inf{a ∈ R : ZF (a),N1 = Z},

where F (a)j = Fj for j /∈ N and F (a)j0 = a. The set in (5.8) is nonempty since,
by Lemma 5.1, for a0 = maxk=1,...,K y∗k, N

(
X
(
F (a0),N1

))
= N and the fron-

tiers of X and X
(
F (a0),N1

)
coincide, so ZF (a0),N1 = Z by Proposition 4.2. It is

also bounded below, because Lemma 5.1 implies that j0 /∈ N
(
X
(
F (a0),N1

))
for

a < (mink=1,...,K y∗k) ∧ (mini/∈N Fi). From the definition of ZF,A it is easy to see
that the infimum in (5.8) is attained, i.e., ZF (Fj0

),N1 = Z. Thus, by Lemma 5.1,
for j /∈ N ,

Fj < sup
k∈C(j)

(y∗b(k) ∧ min
i∈S(k)\N1

Fi).

Let ϵ > 0 be so small that for j ̸= N ,

(5.9) F ϵ
j < sup

k∈C(j)
(y∗b(k) ∧ min

i∈S(k)\N1

F ϵ
i ),

where F ϵ
j = Fj for j /∈ N and F ϵ

j0
= Fj0 − ϵ. Let F ϵ = (F ϵ

j )j /∈N1
and let X(1) =

X(F ϵ,N1), Z(1) = ZF ϵ,N1 . By the definition of X(1), together with (5.9) and
Lemma 5.1, we have N1 ⊆ N (X(1)) ⊆ N and the frontier of the invariant EDF
fluid model X(1) at station j /∈ N equals F ϵ

j = Fj . If N (X(1)) = N , then, by
Proposition 4.2, X(1) = X, which contradicts the definition (5.8) of Fj0 . Thus,
N (X(1)) = N1. IfN1 = {J1 + 1, . . . , J}, then Z(1) ∈ SD by Proposition 4.3 and
Corollary 5.2. If this is not the case, we repeat the above construction with X(1)

instead of X and iterate until we get X(n) with Z(n) ∈ SD. Moreover, it is easy to
see that for any η > 0 we have ρK(Z,Z(n)) ¬ η if we take ϵ small enough in all
the steps of the iteration. Therefore, ρ(Z,SD) ¬ η for every η > 0, so Z ∈ SD.
However, it is easy to check that SD is closed inMK , and thus Z ∈ SD. �

P r o o f o f C o r o l l a r y 3.1. Let X be an invariant EDF fluid model of the
form (2.6). By Theorem 3.1, there exists F ∈ D such that X = X(F ). In particular,
for k = 1, . . . ,K,

(5.10) zk = Ψk(F ).
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By (2.12) and (5.10), for j = 1, . . . , J1,

wj =
∑

k∈C(j)
mkzk =

∑
k∈C(j)

mkΨk(F ) = Φj(F ),

i.e., w = Φ(F ). Thus, by Proposition 3.1,

(5.11) F = Φ−1(w),

so, by (5.10), z = Ψ ◦ Φ−1(w). Uniqueness of the invariant EDF fluid model with
workload wj at station j=1, . . . , J1 follows from (5.11) and the fact that, by Theo-
rem 3.1, F ∈D determines the corresponding invariant state X(F ) uniquely. �
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