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Abstract. Smoothing is a common method used in nonparametric
statistics and on many occasions it has been noted that it may result in
an asymptotic variance reduction or increase of efficiency. Another well-
known effect associated with smoothing is that it introduces a small bias.
In the first part of the paper we show that if the influence function of a
Hadamard-differentiable statistical functional or its derivative have jumps,
then functionals of a kernel-smoothed cumulative distribution function may
have lower asymptotic variance than the variance of the original functional.
This extends and unifies previous results and shows detailed conditions un-
der which the asymptotic variance reduction by smoothing can be achieved.
The smoothing however introduces a small bias of order O(h2), where h

is a smoothing parameter. In the second part of the paper we discuss the
optimal balance between the bias and variance reduction.
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1. INTRODUCTION

The concept of statistical functionals T (F ), considered as functions of F ∈ F ,
where F is a class of cumulative distribution functions (cdfs) on R and F is a cdf
of a sample X1, X2, . . . , Xn of size n, goes back to von Mises [34] and has proved
very fruitful. We recall that T (F̂n), obtained by evaluation of T at the empirical
cumulative distribution function F̂n, is called an empirical functional and is a sim-
ple and natural estimator of T (F ). Hadamard differentiability of T implies that
the empirical functional is asymptotically normal. Hence, differentiable statisti-
cal functionals have been at the core of the asymptotic theory and we refer to [10],
[33], and [32] for recent advances. They also played a significant role in robustness
theory and methodology (cf. [1], [20], [18]). Examples of common differentiable
statistical functionals include quantiles, M-, L- and R-estimators (cf. [30], [10]
or [33]).
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Over time it was found that in the cases of smooth cdfs F a kernel-smoothed
empirical cdf F̃n has lower mean square error for large sample sizes than F̂n, and
hence F̃n is an asymptotically better estimator of the cdf F than F̂n; cf. [28] or [4].
The concept of kernel-smoothing appeared in various branches of statistics ranging
from nonparametric curve estimation ([29], [25]–[27], [36]), bootstrap ([7], [3],
[8], [14], [15]) to quantiles ([2], [22]–[24], [5], [6]).

In [2], [28], [9], [6], [4], to name only a few references, it has been noticed
that smoothing may have a tendency to reduce the variance, but the reduction is
of the order of the smoothing parameter and disappears in the limit. Fernholz [13]
considered the effect of kernel smoothing on variance reduction from a general
point of view. She has shown, under some additional assumptions, that for von
Mises functionals with some piecewise linear influence functions, the asymptotic
variance of the functional taken at the smoothed empirical distribution function is
lower than that evaluated at the empirical distribution function. This approach has
been unnecessarily restricted to so-called regular kernels, requiring convergence of
the smoothing parameter to zero at a suboptimal pace o(n−1/2) (cf. Definition 1 of
regular kernels in [12]). The regular kernels are needed to retain the convergence
of the smoothed empirical processes to a Brownian bridge (cf. [11] and [31]), as
in the case of the classic Donsker theorem, but this condition is not necessary
for smoothing to achieve a variance reduction. Fernholz [12] derived under fairly
general assumptions the influence function (IF ) of von Mises functionals given by

(1.1) T̃ (F ) = T (K ∗ F ),

where ∗ denotes a convolution and K is a cdf of an analyst choice, called a kernel
cdf. The functionals of the form (1.1) will be referred to in the paper as smoothed or
kernel-smoothed functionals. The resulting empirical functionals will be referred to
as smoothed empirical functionals and they coincide with the functional evaluated
at the kernel-smoothed empirical cumulative distribution function (ecdf). If K is a
cdf of a symmetric distribution and is twice differentiable, then for differentiable
T the influence function IFT̃ ,F is given by

IFT̃ ,F (x) = IFT,F∗K ∗ k(x),(1.2)

where k(x) = K ′(x) is the corresponding symmetric probability density function
(pdf), called a kernel. The presence of F ∗ K in the subscript of the influence
function is a bit of a nuisance in characterizing the cases where smoothing implies
a variance reduction and implies the necessity of a kind of a Lipschitz condition.
While in the proof of Proposition 1 in [13] the problem of replacing F ∗K with F
was solved simply by assuming that this replacement results in only a suitable small
change of the influence function, Proposition 2 of [13] was proved only in the case
IFT̃ ,F (x) = IFT,F ∗ k(x). Hence Proposition 2 of [13] remains proved only in the
cases where IFT,F∗K=IFT,F . This condition is met for Huber’s M-functional of a
center of symmetry or for Hampel’s M-functional with odd redescending influence
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function, cf. [13], p. 35. The scope of Propositions 1 and 2 in [13] asserting that
smoothing implies a variance reduction is restricted to functionals with influence
functions of the form α0 + α1Hx (Proposition 1) or α0 + α2|x| + α3x (Proposi-
tion 2), where Hx is a cdf of a probability distribution concentrated at point x.

In the present paper we advance the Fernholz theory [13] to more general
functionals allowing fairly general influence functions which are piecewise twice
continuously differentiable (cf. Definition 5.1 in the Appendix). We also relax the
assumption of regular sequences of kernels and even allow the smoothing parame-
ter h to be fixed and not varying with the sample size n. This however introduces
a bias of order O(h2) of the functional T̃ (F ) when compared with T (F ). In [24]
in Figures 1–7 details of the variance reduction and bias behaviour in the case of
smoothed empirical quantiles were reported. Similar effects can be observed in the
cases of other functionals with discontinuous influence functions as well.

The paper is organized as follows. In Section 2 we briefly recall basic proper-
ties of influence functions and of kernel smoothing used in the following sections.
In Section 3 we present the main results of the paper on the effects of smoothing
on the asymptotic bias and variance. We show that a number of statistical function-
als common in robust statistics meet conditions required for variance reduction of
the first or of the second order. In Section 4 we combine the obtained results for
the asymptotic bias and variance and derive the optimal improvement of the mean
square error (MSE) achievable by kernel smoothing. The MSE reduction achieved
by smoothing is decreasing with the sample increase.

2. PRELIMINARIES

For the convenience of the reader and to make the paper more self-contained
we begin by recalling some definitions and well-known links between influence
functions of functionals and asymptotic variances of empirical functionals and
kernel-smoothed empirical functionals.

Throughout the paper we will assume that F is a convex set of all probability
distribution functions on R. We will consider F as a subset of the space D of
càdlàg functions (i.e. having left-hand side limits and continuous from the right)
and equipped with a topology of uniform convergence.

2.1. Influence functions. A statistical functional T : F → R is Hadamard dif-
ferentiable at a cdf F if there exists a continuous linear functional T ′F : D → R
such that for every compact set C in D such that C ∩ F is non-empty we have

lim
t→0

sup
G∈C∩F

T
(
(1− t)F + tG

)
− T (F )− tT ′F (G− F )
t

= 0.(2.1)

Let us recall that by imposing other conditions on the class of sets C in (2.1)
one can obtain different types of differentiability. In particular, by taking for C fi-
nite sets one obtains a Gâteaux differentiability while by taking for C balls of a fi-
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nite radius one obtains Fréchet differentiability. While both Hadamard and Fréchet
differentiability imply asymptotic normality of empirical functionals, the notion of
Gâteaux differentiability is too weak to guarantee this property. Moreover, in con-
trast with Gâteaux differentiability, for both Hadamard and Fréchet differentials a
chain rule remains valid. Clearly, the requirement for a functional to be Hadamard
differentiable is weaker than the requirement of Fréchet differentiability.

So, in the paper we shall assume that the functionals T (F ) are Hadamard
differentiable and we refer the reader either to [10], Section 3.1, or to [35], Sec-
tion 2.6, or to Chapter 3.9 of [33] for further details and a comprehensive presenta-
tion of the theory. The derivative of a functional T can be conveniently described
by using the influence function (IF ) introduced in [16] and [17], which is easy to
calculate and is given by

(2.2) IFT,F (x) = T ′F (Hx − F ) =
[
d

dt
T
(
(1− t)F + tHx

)]
t=0

,

where Hx denotes the cdf of a probability distribution concentrated at a single
point x. We recall that the IF appears in the formula for the asymptotic variance
of T (F̂n):

√
n
(
T (F̂n)− T (F )

)
→ N

(
0, σ2T (F )

)
,(2.3)

where

(2.4) σ2T (F ) =
∫ (

IFT,F (x)
)2
F (dx),

cf. [21], p. 15, and where the limiting distribution in (2.3) is studied under F . The
influence function IF also coincides with the Gâteaux derivative of the functional
T at H = Hx − F . Hence, it is easy to get the form

T ′F (G− F ) =
∫
IFT,F (x)G(dx)

of the derivative of the functional T at F in the particular direction H = G − F .
Similarly, in the case of a general function H of bounded variation we have

(2.5) T ′F (H) =
∫
IFT,F (x) (F +H) (dx) =

∫
IFT,F (x)H(dx).

Note that the expected value of the influence function is zero, i.e.∫
IFT,F (x)F (dx) = 0.

Clearly, if the functional T is Hadamard differentiable, it is Gâteaux differentiable,
and hence its derivative T ′F must be of the form (2.5). In the paper we shall assume
that the considered influence functions are bounded.



Variance reduction by smoothing revisited 83

2.2. Kernel-smoothed functionals. In the following we shall assume that k(x)
is a symmetric probability density function on [−1, 1] with cdf K(x) and, for a
scale parameter h > 0, we use the notation

kh(x) =
1

h
k

(
x

h

)
and Kh(x) = K

(
x

h

)
,

respectively. The scale parameter h is also referred to as a smoothing parameter.
Whenever we need to discuss the smoothing parameter varying with the sample
size n we will write hn. A kernel-smoothed cdf F is given by

(2.6) F̃h(x) = Sh (F ) (x) =
∫
Kh (x− s)F (ds) = Kh ∗ F (x),

where ∗ denotes a convolution.
The replacement of the empirical cdf F̂n in (2.3) with a kernel-smoothed es-

timator F̃h,n of the cdf F has been considered in a number of papers, cf. [25],
[11]–[13], [37], [31], [15] and the references cited there. In statistical applications
this approach appears to be justified as the kernel-smoothed estimator F̃h,n of the
cdf F is asymptotically superior to the empirical cdf F̂n, cf. [28] and [4].

By evaluating the functional T at F̃h(x) we deal with a composed functional

(2.7) T̃h (F ) = T ◦ Sh (F ) = T (F̃h).

We recall the following result which, when a stronger assumption of Hadamard
differentiability is met, can be obtained as a direct consequence of the chain rule
for Hadamard differentials.

PROPOSITION 2.1 (Fernholz [12], Proposition 2). If the functional T is Gâ-
teaux differentiable in a vicinity of F containing F̃h, then T̃h (F ) is Gâteaux dif-
ferentiable at F with influence function given by

IFT̃h,F
(x) =

∫
IFT,F∗Kh

(x− s)kh (s) ds = IFT,Kh∗F ∗ kh(x).(2.8)

Note that if T is Hadamard differentiable in a vicinity of F containing F̃h,
then, by (2.3), we have the following asymptotic distribution:

(2.9)
√
n
(
T̃h(F̂n)− T̃h(F )

)
→ N

(
0, σ2

T̃h
(F )

)
with asymptotic variance σ2

T̃h
given by (2.4), which, in the present case with T

being replaced with T̃h, equals

(2.10) σ2
T̃h

(F ) =
∫ (

IFT̃h,F
(x)

)2
F (dx).
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3. SENSITIVITY OF THE ASYMPTOTIC DISTRIBUTION TO SMOOTHING

Formulae (2.8)–(2.10) imply that smoothing affects the asymptotic distribu-
tion of the corresponding empirical functionals. In the present section we show
under fairly general assumptions the explicit dependence of the bias and asymp-
totic variance on the smoothing parameter h, expanding the particular results of
[13] to the general case.

Let us note that Hadamard differentiability implies that for smooth F the func-
tionals T̃h(F ) and T (F ) differ only by O(h2). Indeed, we have

THEOREM 3.1. If the functional T is Hadamard differentiable and F is twice
differentiable with both derivatives in D, then

(3.1) T̃h(F ) = T (F ) +O(h2).

P r o o f. For F twice differentiable with bounded derivatives one can show in
a standard way (cf. [19]) that

F ∗Kh (x) =
∫
F (x− y) dKh (y)(3.2)

= F (x) +
κ2
2
f ′ (x)h2 + o(h2),

where κ2 is the second moment of K and o
(
h2

)
holds uniformly over x. Since T

is Hadamard differentiable (in fact, the Gâteaux differentiability is sufficient here),
we get

T̃h(F ) = T (F ∗Kh) = T

(
F (x) +

κ2
2
f ′(x)h2 + o(h2)

)
(3.3)

= T (F ) +
κ2
2
h2T ′(f ′) + o(h2). �

REMARK 3.1. Theorem 3.1 under stronger assumptions of Fréchet differen-
tiability of the functional T and for regular sequences of smoothing parameters hn
with fast convergence to zero has been proved in [13].

In a similar way one can show that for smooth F the influence functions at F
and at F ∗Kh differ at continuity points only by O(h2).

PROPOSITION 3.1. Under the assumptions of Theorem 3.1 and if IFT,F (·) is
continuous at a vicinity of x, then we have

(3.4) IFT,F∗Kh
(x) = IFT,F (x)−

κ2
2
h2T ′(f ′) + o(h2).
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P r o o f. By the definition of the influence curve (2.2) and by using (3.2) to
obtain the second equality, we have

IFT,F∗Kh
(x) =

=

[
d

dϵ
T
(
F ∗Kh + ϵ(Hx − F ∗Kh)

)]
ϵ=0

=

[
d

dϵ
T

((
F +

κ2
2
f ′h2 + o(h2)

)
+ ϵ

(
Hx −

(
F +

κ2
2
f ′h2 + o(h2)

)))]
ϵ=0

=

[
d

dϵ
T

(
F + ϵ(Hx − F ) +

κ2
2
f ′h2 + o(h2)− ϵ

(
κ2
2
f ′h2 + o(h2)

))]
ϵ=0

=

[
d

dϵ

(
T
(
F + ϵ(Hx − F )

)
+ T ′

(
κ2
2
f ′h2 + o(h2)

)
− ϵT ′

(
κ2
2
f ′h2 + o(h2)

))]
ϵ=0

=

[
d

dϵ

(
T
(
F + ϵ(Hx − F )

))]
ϵ=0

− κ2
2
h2T ′(f ′) + o(h2)

= IFT,F (x)−
κ2
2
h2T ′(f ′) + o(h2). �

The representation (3.4) of the influence function at a smoothed probabil-
ity distribution has similar impact on the values of the second moments of the
smoothed influence functions.

LEMMA 3.1. Under the assumptions of Theorem 3.1 and if the influence func-
tion (2.2) has at most a finite number of discontinuity points, then we have∫ (

IFT,Kh∗F ∗ kh(x)
)2
F (dx) =

∫ (
IFT,F ∗ kh(x)

)2
F (dx) +O(h2).(3.5)

P r o o f. The influence functions are bounded and F has no atoms. Hence, by
using (3.4) we have the inequality

(3.6)
∣∣∫ (

IFT,Kh∗F ∗ kh(x)
)2
F (dx)−

∫ (
IFT,F ∗ kh(x)

)2
F (dx)

∣∣
=

∣∣∫ (IFT,Kh∗F − IFT,F ) ∗ kh(x) (IFT,Kh∗F + IFT,F ) ∗ kh(x)F (dx)
∣∣ ¬ Ch2

valid for small h and for some positive constant C. This proves the lemma. �

It is useful however to note that in the particular cases where

(3.7) IFT,Kh∗F (x) = IFT,F (x)

we clearly have

(3.8)
∫ (

IFT,Kh∗F ∗ kh(x)
)2
F (dx) =

∫ (
IFT,F ∗ kh(x)

)2
F (dx).

Let us recall here the common presence of M-functionals in the literature on ro-
bustness, where conditions (3.7) and (3.8) are met. Indeed, if M -function is even,
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in the case of minimization of EFM(X − θ), or M ′ is odd, in the case of solv-
ing the equation EFM

′(X − θ) = 0, then for symmetric kernel k and probability
distributions F with a symmetry center θ, the solution coincides with θ and is not
affected by the kernel k. Consequently, the functional is not affected by kernel
smoothing and this entails condition (3.7).

To reduce the burden of notation in the remaining part of the paper we will
write

ψ(x) = IFT,F (x).

If ψ (x) is in the class K (we refer to Definition 5.1 in the Appendix for the defini-
tion of the class K and of the symbols ∆j and ∆′j denoting jumps of the influence
function and its derivative, respectively), then by Theorem 5.1 we get

∫ (
ψ(x) ∗ kh(x)

)2
F (dx) =

∫ (
ψ(x)

)2
F (dx) + hI1 + h2 (I2 + I3) + o(h2),

(3.9)

where

I1 =

[ 1∫
−1

(
K (u)− 1

2

)2

du− 1

2

] m∑
j=1

f (xj)∆
2
j ,(3.9a)

I2 = κ2
∫
ψ (x)ψ′′ (x)F (dx),(3.9b)

I3 = κ2
m∑
j=1

f (xj) [ψ (xj−)∆′j − ψ′ (xj−)∆j ],(3.9c)

and where f = F ′. Since K is a non-degenerate cdf of a symmetric distribution on
[−1, 1], we have [ 1∫

−1

(
K (u)− 1

2

)2

du− 1

2

]
< 0.

This implies that if the influence function has jumps, then I1 < 0 and the asymp-
totic variance decreases with h on some interval (0, h0) for a suitable h0 > 0.

Let us also note that condition (3.7) is met by many common functionals in
robust statistics, in particular by M-functionals with a symmetric M -function and
with a translation parameter and for symmetric distribution functions F .

The following Theorems 3.2–3.4 are direct consequences of Theorem 5.1.

THEOREM 3.2. Under the assumptions of Theorem 3.1 and if the influence
function ψ ∈ K has discontinuity points (jumps), then I1 < 0, and for small h the
asymptotic variance σ2

T̄h
(F ) is of the form

(3.10) σ2T̄h
(F ) = σ2T (F ) + I1h+O(h2),

i.e. it is decreasing as a function of h for small h > 0.
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This case corresponds to an asymptotic variance reduction which is of the
order of the smoothing parameter h and includes quantiles, discrete linear combi-
nation of quantiles, α-Winsorized means, etc., which have influence functions with
jumps, cf. [20], pp. 56–58.

In the remaining cases a smaller reduction of the variance can be achieved, i.e.
of order O(h2).

THEOREM 3.3. Under the assumptions of Theorem 3.1, if condition (3.7) is
met and if the influence function ψ ∈ K is continuous, piecewise linear, convex for
x < 0 and concave for x > 0, then I1 = I2 = 0 and I3 < 0. Hence, for small h,
the asymptotic variance σ2

T̄h
(F ) is of the form

(3.11) σ2T̄h
(F ) = σ2T (F ) + I3h

2 + o(h2),

i.e. it is decreasing as a function of h for small h > 0.

This case corresponds to the second order of the asymptotic variance reduction
and includes Huber and α-trimmed mean M-estimators, cf. [20], p. 58.

THEOREM 3.4. Under the assumptions of Theorem 3.1, if condition (3.7) is
met and if the function ψ ∈ K is twice differentiable with continuous and bounded
derivatives, odd, non-decreasing, convex for x < 0 and concave for x > 0, then
I1 = I3 = 0, and I2 < 0. Hence, for small h, the asymptotic variance σ2

T̄h
(F ) is

of the form

(3.12) σ2T̄h
(F ) = σ2T (F ) + I2h

2 + o(h2),

i.e. it is decreasing as a function of h for small h > 0.

The last case corresponds to the second order of the asymptotic variance
reduction and includes M-estimators with convex three times differentiable M-
functions with bounded derivatives convex for x < 0 and concave for x > 0.

4. MEAN SQUARE ERROR OF THE SMOOTHED FUNCTIONALS

Theorems 3.2–3.4 show how the asymptotic variance of the smoothed func-
tionals depends on the smoothing parameter h and the corresponding dependence
of bias on h was derived in (3.3). In the present section we will briefly discuss be-
haviour of the mean square error of the smoothed functionals corresponding to the
optimal choice of the smoothing parameter h. For simplicity and, as is standard for
smoothing techniques, we will consider only the major parts of the variance and
bias, disregarding the little ‘o’ contributions. We shall use the abbreviation AMSE
for the resulting approximate mean square error. In the case of Theorem 3.2 com-
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bined with (3.3) we have, for b = (κ2/2)T
′(f ′),

AMSE =
σ2T (F )

n
+
I1
n
h+ b2h4,

which is minimized by hn =
(
|I1|/(4b2)

)1/3
n−1/3, and hence

(4.1) AMSE ­
σ2T (F )

n
− 3

8
3
√
2 |I1|4/3 b−2/3

1

n4/3
.

In a similar way, Theorems 3.2 and 3.3 combined with (3.3) imply, for j = 2
or 3, respectively, the following

AMSE =
σ2T (F )

n
+
Ij
n
h2 + b2h4,

which is minimized by hn =
√
I2j /(2b

2)n−1/2, and hence

(4.2) AMSE ­
σ2T (F )

n
− 1

4

I2j
b2

1

n2
.

In both cases of (4.1) and (4.2), the reduction of AMSE caused by the smoothing
decreases with the sample size and decreases much faster in the latter case.

5. APPENDIX

DEFINITION 5.1. We denote by K a class of functions ψ(x) for which there
exist points xj such that the following two conditions are satisfied:

• ψ (x) is twice continuously differentiable on intervals (xj , xj+1) with one-
sided limits

ψ(r) (xj−) , ψ(r) (xj+)

for j = 1, . . . ,m and r = 0, 1, 2, respectively, where

−∞ = x0 < x1 < . . . < xm < xm+1 =∞;

• for j = 1, . . . ,m the xj’s are the only points where ψ or its first or second
derivatives have jumps.

Let

∆j = ψ (xj+)− ψ (xj−) ,
∆′j = ψ′ (xj+)− ψ′ (xj−) ,
∆′′j = ψ′′ (xj+)− ψ′′ (xj−)
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denote the jumps at point xj of the function ψ and of its first and second derivatives,
respectively. Let

κj =
1∫
−1
sjk(s)ds

denote the j-th moment of the kernel k. In the proof of Theorem 5.1 below we
need the following technical properties of symmetric kernels, which can be easily
derived using the symmetry of the probability distribution and integration by parts.

LEMMA 5.1. Suppose K (u) is a cdf of a symmetric distribution on [−1, 1]
with K ′ (u) = k (u) and with second moment κ2 > 0. Then we have

1∫
−1

u∫
−1
sk (s) dsdu = −κ2,

1∫
−1
K (u)

( u∫
−1
sk (s)

)
dsdu = −1

2

1∫
−1
s2k (s) ds = −1

2
κ2,

1∫
−1
u

(
K (u)− 1

2

)
du =

1

2
− 1

2
κ2.

For a given function ψ(x) let us denote by ψh(x) its kernel-smoothed version
given by

(5.1) ψh(x) =
∫
ψ(s)kh (x− s) ds = ψ ∗Kh (x).

The following theorem is at the core of the present paper and it will later be applied
with ψ being an influence function. It immediately implies basic relations between
asymptotic variances of smoothed and non-smoothed functionals. However, for
technical reasons, it is convenient to formulate the theorem in a context-free way.

THEOREM 5.1. Assume that ψ belongs to the class K with ψh its smoothed
version given by (5.1). Then, for symmetric kernels k = K ′ with support [−1, 1]
and for continuous cdf F with a probability density function f(x) = F ′(x), we
have

(5.2)
∫ (

ψh(x)
)2
F (dx) =

∫ (
ψ(x)

)2
F (dx)

+ h

[ 1∫
−1

(
K (u)− 1

2

)2

du− 1

2

] m∑
j=1

f (xj)∆
2
j

+ h2κ2
∫
ψ (x)ψ′′ (x)F (dx)

+ h2κ2
m∑
j=1

f (xj)
[
ψ (xj−)∆′j − ψ′ (xj−)∆j

]
+ o

(
h2

)
.
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P r o o f. To avoid simple and standard though lengthy calculations we give
here only the major steps of the proof based on Taylor expansions (detailed deriva-
tion is available on request from the first author). Let

ψh (x) = ψ ∗Kh (x) =
h∫
−h
ψ (x− s) kh (s) ds

and let h < 1
2 min{xj+1 − xj , j = 0, 1, . . . ,m}.

If x is such that (x− h, x+ h) does not contain any xj , then by the expansion
and the symmetry of the kernel k we get

ψh (x) =
h∫
−h
ψ (x− s) kh (s) ds(5.3)

=
h∫
−h

[
ψ (x)− sψ′ (x) + 1

2
s2ψ′′ (x) + o(h2)

]
kh (s) ds

= ψ (x) +
1

2
h2ψ′′ (x)κ2 + o

(
h2

)
.

If x ∈ (xj − h, xj + h), then x− xj ∈ [−h, h] and we have the following Taylor
expansion:

ψh (x) =

[
∆j + (x− xj)∆′j +

1

2
(x− xj)2∆′′j

]
K

(
x− xj
h

)
(5.4)

+

[
ψ (xj−) + (x− xj)ψ′ (xj−) +

1

2
(x− xj)2 ψ′′ (xj−)

]
− [∆′j + (x− xj)∆′′j ]h

(x−xj)/h∫
−1

sk (s) ds

− [ψ′ (xj−) + (x− xj)ψ′′ (xj−)]hκ1

+
h2

2
∆′′j

(x−xj)/h∫
−1

s2k (s) ds+
h2

2
ψ′′ (xj−)κ2 + o(h2).

Using (5.3) and (5.4) we get the following expansion for the left-hand side of (5.2):

(5.5)
∫ (

ψh(x)
)2
F (dx) =

∫ (
ψ(x)

)2
F (dx) + h2κ2

∫
ψ (x)ψ′′ (x)F (dx)

+
m∑
j=1

xj+h∫
xj−h

[(
ψh (x)

)2 − (
ψ (x) +

1

2
h2ψ′′ (x)κ2

)2 ]
F (dx) + o(h2).

Let us now consider one component of the sum in (5.5), assuming that the kernel
k is symmetric, and hence getting κ1 = 0. Using (5.4) and Lemma 5.1, after some
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algebra, we get

xj+h∫
xj−h

[(
ψh(x)

)2 − (
ψ(x) +

1

2
h2ψ′′(x)κ2

)2]
F (dx)

= hf(xj)∆
2
j

[ 1∫
−1

(
K(u)− 1

2

)2

du− 1

2

]
+ h2f(xj)κ2[ψ(xj−)∆′j − ψ′(xj−)∆j ] + o(h2).

By substituting the obtained expansion into (5.5) we get (5.2). �
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