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Abstract. We consider the analogue of Lévy area, defined as an iterated
stochastic integral, obtained by replacing two independent component one-
dimensional Brownian motions by the mutually non-commuting momen-
tum and position Brownian motions P and Q of either Fock or non-Fock
quantum stochastic calculus, which are also stochastically independent in
a certain sense. We show that the resulting quantum Lévy area is trivially
distributed in the Fock case, but has a non-trivial distribution in non-Fock
quantum stochastic calculus which, after rescaling, interpolates between the
trivial distribution and that of classical Lévy area in the “infinite tempera-
ture” limit. We also show that it behaves differently from the classical Lévy
area under a kind of time reversal, in both the Fock and non-Fock cases.
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1. INTRODUCTION

Lévy’s stochastic area [8] can be defined in terms of iterated stochastic inte-
gration as

1

2

∫
0¬x<y<t

(
dX(x)dY (y)− dY (x)dX(y)

)
,

where X and Y are independent one-dimensional Brownian motions. The Lévy
area formula for the characteristic function of this is

(1.1) E
[
exp

{
iλ

2

∫
0¬x<y<t

(
dX(x)dY (y)− dY (x)dX(y)

)}]
= sech

1

2
λt.

It has many interesting connotations. For example, the corresponding distribution
is one of the Meixner family [9] and there are connections to integrable systems,
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Bernoulli and Euler polynomials, values of the Riemann zeta function, etc. For a
recent review see [7].

In quantum stochastic calculus [10] the “momentum” and “position” Brow-
nian motions do not commute so that it is not a physically meaningful question
to ask whether they are independent. Nevertheless we shall show in Theorem 2.1
below that they enjoy a property that in classical probability is tantamount to in-
dependence. The purpose of this article is to explore what becomes of Lévy area
when X and Y are replaced by P and Q.

For an alternative approach to this quantum Lévy area motivated by Lévy’s
original martingale definition, see [4].

2. THE MOMENTUM AND POSITION PROCESSES
IN FOCK AND NON-FOCK QUANTUM STOCHASTIC CALCULUS

The usual form of quantum stochastic calculus (see [10]) takes place in the
Fock space, denoted by H, over the Hilbert space h = L2(R+), which may con-
veniently be defined as the closed linear span of the so-called exponential vectors(
e(f), f ∈ h

)
satisfying

⟨e(f), e(g)⟩H = exp ⟨f, g⟩h.

The Weyl operators, W (f), f ∈ h, are the unitary operators on H whose actions
on exponential vectors are

W (f)e(g) = exp

(
−1
2
∥f∥2 − ⟨f, g⟩

)
e(f + g)

(we use a probabilistic normalisation in which in effect Planck’s constant h is set
equal to 4π rather than the physicist’s normalisation 2π, so that our Weyl operator
W (f) is the physically normalised Wphys(

√
2f)). The Weyl operators satisfy the

canonical commutation relations (ccr)

(2.1) W (f)W (g) = exp (−i Im ⟨f, g⟩)W (f + g).

The momentum and position processes P =
(
P (t)

)
t∈R+ and Q =

(
Q(t)

)
t∈R+ ,

respectively, are the families of self-adjoint operators inH defined by

(2.2) exp
(
ixP (t)

)
=W (xχ[0,t]), exp

(
iyQ(t)

)
=W (iyχ[0,t]), x, y ∈ R,

where χ[0,t] ∈ h denotes the indicator function of the interval [0, t] ⊂ R+. Each
process is commutative in the sense that for arbitrary x, y ∈ R and t, u ∈ R+

exp
(
ixP (t)

)
exp

(
iyP (u)

)
= exp

(
iyP (u)

)
exp

(
ixP (t)

)
,

exp
(
ixQ(t)

)
exp

(
iyQ(u)

)
= exp

(
iyQ(u)

)
exp

(
ixQ(t)

)
.

Furthermore, the processes P and Q are both standard Brownian motions in the
vacuum state Ω = e(0) in the sense that, for example, P satisfies the following:
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• the vacuum charateristic function

(2.3) EΩ

[
exp

(
ixP (t)

)]
= exp

(
− t
2
x2

)
,

where for an operator K on H, Ee(0) [K] = ⟨e(0),Ke(0)⟩, so that the quantum
random variable P (t) is normally distributed with mean zero and variance t;

• it begins anew independently of the past at each time s ∈ R+ in the sense
that

EΩ

[
K exp

(
ix
(
P (s+ t)− P (s)

))]
= EΩ [K]EΩ

[
exp

(
ixP (t)

)]
,

whenever K is an element of the pre-s von Neumann algebra generated by the
Weyl operators W (f) for which f = fχ[0,s].

But the two Brownian motions P and Q do not commute with each other; in
fact, they satisfy the commutation relation

[P (t), Q(u)] = −2i(t ∧ u)I,

where t ∧ u denotes the minimum of t and u, and I is the identity operator, in the
sense that

(2.4) exp
(
ixP (t)

)
exp

(
iyQ(u)

)
= exp(2ixyt ∧ u) exp

(
iyQ(u)

)
exp

(
ixP (t)

)
,

as follows from (2.1).
We shall also use another non-Fock pair of mutually non-commuting Brown-

ian motions Pσ and Qσ satisfying the same commutation relations constructed as
follows. Let there be given a real number σ > 1 called the variance. In the tensor
productH⊗ H̄, where H̄ denotes the Hilbert dual space ofH, define operators

Wσ(f) =W

(√
σ2 + 1

2
f

)
⊗

(
W

(√
σ2 − 1

2
f

))−
, f ∈ h,

where for a bounded operatorK onH, K̄ denotes the operator K̄ψ̄ = (Kψ)−, and
ψ̄ denotes the element χ 7→ ⟨ψ, χ⟩ of H̄. Then the family Wσ =

(
Wσ(f), f ∈ h

)
satisfies the ccr (2.1). Moreover, in the state Ωσ = Ω ⊗ Ω̄, the processes Pσ and
Qσ got by replacing W in (2.2) by Wσ are Brownian motions of variance σ2 in the
sense that instead of (2.3) we have

(2.5) EΩσ

[
exp

(
ixPσ(t)

)]
= EΩσ

[
exp

(
ixQσ(t)

)]
= exp

(
− tσ2

2
x2

)
.

We shall find another realisation [1] of the non-Fock quantum Brownian mo-
tions Pσ and Qσ useful. Denote by (C2,F ,P) the Wiener space realisation of two-
dimensional standard classical Brownian motion, so that C2 is the space of contin-
uous R2-valued functions ω = (ω1, ω2) on R+ with ω(0) = 0, F is the σ-field of
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subsets of C2 generated by the evaluationsX(t, ω) = ω1(t), Y (t, ω) = ω2(t), ω =
(ω1, ω2) ∈ C2, and P is two-dimensional Wiener measure, which makes the pro-
cesses X and Y into independent standard unit-variance Brownian motions. In
the Hilbert space tensor product Hσ = H⊗ L2(C2,F ,P), equipped with the unit
vector Ω⊗ 1, where 1 is the constant function 1(ω) = 1 on C2, we may define

Pσ(t) = P (t)⊗ I +
√

(σ2 − 1)I ⊗multX(t),(2.6)

Qσ(t) = Q(t)⊗ I +
√

(σ2 − 1)I ⊗multY (t),(2.7)

multF denoting the operator of multiplication by the function F on L2(C2,F ,P).
More rigorously we may define the corresponding Weyl operators as

(2.8)
exp

(
ixPσ(t)

)
= exp

(
ixP (t)

)
⊗ exp

(
ix
√
(σ2 − 1)multX(t)

)
,

exp
(
iyQσ(t)

)
= exp

(
iyQ(t)

)
⊗ exp

(
ix
√
(σ2 − 1)multY (t)

)
.

Then it can be verified that both Pσ and Qσ again satisfy (2.5), where now Ωσ is
the unit vector Ω⊗ 1C2 , as well as the commutation relations (2.4).

In the rest of the paper we shall denote by the same symbol (P,Q) the pair
consisting either of the Fock momentum and position Brownian motions or the pair
(Pσ, Qσ) as defined in either of the alternative ways above, making clear which is
intended where necessary. The same symbol E will similarly denote either EΩ

or EΩσ .
Because of their mutual non-commutativity, in orthodox quantum theory it is

not possible to measure P and Q simultaneously and it is therefore meaningless
from the point of view of quantum physics to speak of their stochastic indepen-
dence. Nevertheless, they retain a property that in classical probability is tanta-
mount to independence, namely factorization of joint characteristic functions, in
the sense of Theorem 2.1 which follows below.

We give first a rigorous definition, for arbitrary real numbers λ1, λ2, . . . , λm
and µ1, µ2, . . . , µn, and nonnegative numbers s1, s2, . . . , sm and t1, t2, . . . , tn, of
the unitary operator exp

{
i
(∑m

j=1 λjP (sj) +
∑n

k=1 µkQ(tk)
)}
. It is defined to

be the value W1 of the one-parameter unitary group (Wx)x∈R , where

Wx = exp(iτx2)
m∏
j=1

exp {ixλjP (sj)}
n∏

k=1

exp {ixµkQ(tk)}(2.9)

= exp(−iτx2)
n∏

k=1

exp {ixµkQ(tk)}
m∏
j=1

exp {ixλjP (sj)}

and

τ =
m∑
j=1

n∑
k=1

λjµk(sj ∧ tk).

That the two forms of Wx are equal and that the group relation WxWy = Wx+y

holds are consequences of (2.4). That the infinitesimal generator of this one-pa-
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rameter group acts on the appropriate intersection of domains as
∑m

j=1 λjP (sj) +∑n
k=1 µkQ(tk) may be verified by differentiating either form with respect to x and

setting x = 0.

THEOREM 2.1. For arbitrary real numbers λ1, λ2, . . . , λm, µ1, µ2, . . . , µn
and nonnegative s1, s2, . . . , sm, t1, t2, . . . , tn,

(2.10) E
[
exp

{
i
( m∑
j=1

λjP (sj) +
n∑

k=1

µkQ(tk)
)}]

= E
[
exp

{
i

m∑
j=1

λjP (sj)
}]

E
[
exp

{
i

n∑
k=1

µkQ(tk)
}]
.

P r o o f. We identify exp
{
i
(∑m

j=1 λjP (sj) +
∑n

k=1 µkQ(tk)
)}

as the Weyl
operatorW

(∑m
j=1 λjχ[0,sj ] + i

∑n
k=1 µkχ[0,tk]

)
(see [5] and [6]). Using the Weyl

operator vacuum expectation value

E [W (f)] = exp

(
−σ

2

2
∥f∥2

)
,

we have

E
[
exp

{
i
( m∑
j=1

λjP (sj) +
n∑

k=1

µkQ(tk)
)}]

= E
[
W

( m∑
j=1

λjχ[0,sj ] + i
n∑

k=1

µkχ[0,tk]

)]
= exp

(
−σ

2

2

∥∥ m∑
j=1

λjχ[0,sj ] + i
n∑

k=1

µkχ[0,tk]

∥∥2)
= exp

(
−σ

2

2

∞∫
0

∣∣ m∑
j=1

λjχ[0,sj ](x) + i
n∑

k=1

µkχ[0,tk](x)
∣∣2 dx)

= exp

(
−σ

2

2

∞∫
0

∣∣ m∑
j=1

λjχ[0,sj ](x)
∣∣2 dx) exp

(
−σ

2

2

∞∫
0

∣∣ n∑
k=1

µkχ[0,tk](x)
∣∣2 dx)

= E
[
W

(
− i

m∑
j=1

λjχ[0,sj ]

)]
E
[
W

( n∑
k=1

µkχ[0,tk]

)]
= E

[
exp

{
i

m∑
j=1

λjP (sj)
}]

E
[
exp

{
i

n∑
k=1

µkQ(tk)
}]
. �

3. QUANTUM LÉVY AREA

We define the quantum Lévy area process, in either Fock or non-Fock quantum
stochastic calculus, to be the linear combination of iterated quantum stochastic
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integrals [6]

L(t) =
1

2

∫
0¬x<y<t

(
dP (x)dQ(y)− dQ(x)dP (y)

)
.

Thus

L(t) = J t
0

(
1

2
{dP ⊗ dQ} − 1

2
{dQ⊗ dP}

)
,

where we extend by linearity the notation for iterated stochastic integrals

(3.1)
∫

a¬x1<x2<...<xm<b

dΛ1(x1)dΛ2(x2) . . . dΛm(xm)

= Jb
a ({dΛ1 ⊗ dΛ2 ⊗ . . .⊗ dΛm}),

dΛ1, dΛ2, . . . , dΛm ∈ {dP, dQ, dT} being differentials either of the processes P
or Q, or of the time process T (t) = tI.

THEOREM 3.1. E
[ ∫

a¬x1<x2<...<xm<b
dΛ1(x1)dΛ2(x2) . . . dΛm(xm)

]
= 0

unless dΛ1 = dΛ2 = . . . = dΛm = dT.

P r o o f. By the martingale property of stochastic integrals against either dP
or dQ we have

E
[ ∫
a¬x1<x2<...<xm<b

dΛ1(x1)dΛ2(x2) . . . dΛm(xm)
]
= 0

unless dΛm = dT. But then, by the same argument,

E
[ ∫
a¬x1<x2<...<xm<b

dΛ1(x1)dΛ2(x2) . . . dΛm−1(xm−1)dT (xm)
]

=
b∫
a

{
E
[ ∫
a¬x1<x2<...<xm

dΛ1(x1)dΛ2(x2) . . . dΛm−1(xm−1)
]}
dxm

= 0

unless dΛm−1 = dT, and by repetition we find successively that the original ex-
pectation vanishes unless dΛm = dΛm−1 = dΛm−2 = . . . = dΛ1 = dT. �

To find the distribution of the quantum random variable L(t) we investigate its
moments by combining Theorem 3.1 with the fact that products of arbitrary iterated
integrals of form (3.1) are themselves linear combinations of such integrals.

To see this we introduce the algebra of Itô differentials Iσ = C⟨dP, dQ, dT ⟩,
equipped with the quantum Itô multiplication rule

(3.2)

dP dQ dT

dP σ2dT −idT 0
dQ idT σ2dT 0
dT 0 0 0
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We equip the complex vector space

T (Iσ) = C⊕Iσ ⊕ (Iσ ⊗ Iσ)⊕ (Iσ ⊗ Iσ ⊗ Iσ)⊕ . . .

of arbitrary tensors over Iσ with the sticky shuffle product αβ = γ (see [2] and [3])
where the components of rank 0, 1, 2, 3, . . . of the tensor

γ = γ0 ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ . . .

are defined in terms of those of α and β by

γN =
∑

A∪B={1,2,...,N}
αA
|A|β

B
|B|.

Here the sum is over all ordered pairs (A,B) of not necessarily disjoint subsets
whose union is {1, 2, . . . , N} . The symbol αA

|A| indicates that the component α|A|
of rank |A| of the tensor α is to occupy the tensor product of those |A| copies of
Iσ within ⊗NIσ labelled by the |A| integers in A, so that, with βB|B| defined in
the same way, all N integers in {1, 2, . . . , N} are occupied, and when A ∩ B is
nonempty, double occupancies are reduced to single by using the multiplication
rule (3.2) in Iσ. Then we have

Jb
a(α)J

b
a(β) = Jb

a(αβ),

in the weak sense that, in the Fock case,

(3.3) ⟨Jb
a(α
†)e(f), Jb

a(β)e(g)⟩ = ⟨e(f), Jb
a(αβ)e(g)⟩,

where α† is the natural adjoint of α in T (Iσ). In the non-Fock case we may replace
the exponential vectors in (3.3) by the action of the Weyl operators Wσ(f), Wσ(g)
on the vector Ωσ.

By iteration of the sticky shuffle product each positive power
(
L(t)

)n of the
quantum Lévy area can be expressed as a linear combination of iterated integrals
of form (3.2) where the interval [a, b[ = [0, t[. In view of Theorem 3.1, only the
“purely sticky” terms, in which each occurrence of either dP or dQ is multiplied
by another term dP or dQ in accordance with the quantum Itô table (3.2) to give
dT, can contribute to the nth moment µn = E

[(
L(t)

)n]
. In particular, µn must

vanish when n is odd.

4. TRIVIALITY OF QUANTUM LÉVY AREA IN THE FOCK CASE

THEOREM 4.1. In the Fock case σ2 = 1, all positive moments µn vanish.

P r o o f. We introduce the creation and annihilation processes

dA† =
1

2
(Q− iP ), dA =

1

2
(Q+ iP ).
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Using the basis
(
dA†, dA, dT

)
of the Itô algebra, in the Fock case the quantum Itô

table (3.2) becomes

(4.1)

dA† dA dT

dA† 0 0 0
dA dT 0 0
dT 0 0 0

while the quantum Lévy area is given by

L(t) = J t
0

(
i({dA† ⊗ dA} − {dA⊗ dA†})

)
.

Since C⟨dA†, dA, dT ⟩ = C⟨dP, dQ, dT ⟩, Theorem 3.1 implies that expectations
of the form

E[J t
0({dΛ1 ⊗ dΛ2 ⊗ . . .⊗ dΛm})],

where each dΛj ∈ {dA†, dA, dT} vanishes, unless each dΛj = dT. In forming
contributions of iterated sticky shuffle powers of ({dA† ⊗ dA} − {dA⊗ dA†}) in-
volving only dT we must “stick”, by multiplication using the table (4.1), both com-
ponents of both the linearly independent terms dA† ⊗ dA and dA⊗ dA†occurring
in the first copy to either dA† or dA occurring in the sticky shuffle product of the
remaining copies. But since both dA†dA and dA†dA† are equal to zero, the re-
sult of sticking either term dA† ⊗ dA or dA⊗ dA† in this way will necessarily be
zero. �

Thus, in the Fock case, L(t) has the atomic distribution concentrated at zero.
But it has a nontrivial distribution in the non-Fock case σ2 > 1. In particular, since
the rescaled standard Brownian motions σ−1Pσ and σ−1Qσ satisfy

[σ−1Pσ(s), σ
−1Qσ(t)] = −2iσ−2 (t ∧ u) I,

they become commutative in the limit as σ2 →∞, so, when rescaled in the same
way, this distribution interpolates between the trivial distribution and that of the
classical Lévy area formula with characteristic function (1.1) as σ2 increases from
one to infinity.

5. TIME REVERSAL

The sticky shuffle product algebra T (Iσ) becomes a Hopf algebra [3] when
equipped with the coproduct ∆ : T (Iσ)→ T (Iσ)⊗ T (Iσ) for which(

∆(α)
)
m,n

= αm+n.

The coproduct corresponds to the independent increments property of Brownian
motion in that, for arbitrary a ¬ b ¬ c and α ∈ T (Iσ),

(5.1) Jc
a(α) = Jb

a(α)⊗ Jc
b (α).
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Here the operator on the right-hand side is the tensor product of operators on the
past and future Fock spaces (or tensor products of Fock spaces with their duals in
the case σ2 > 1) resulting from splitting at time b.

As a Hopf algebra T (Iσ) also has an antipode S : T (Iσ)→ T (Iσ) whose
action on first and second rank homogeneous elements of T (Iσ) is given by

(5.2) S{dΛ} = −{dΛ}, S{dΛ1 ⊗ dΛ2} = {dΛ2 ⊗ dΛ1}+ {dΛ1dΛ2}

(see [3] for the action on a general element which will not be needed here). The
antipode can be interpreted in terms of time reversal as follows. Let us agree to
define the map Jb

a when a > b by

Jb
a = Ja

b ◦ S.

Then the relation (5.1) continues to hold even when the condition a ¬ b ¬ c is
violated, modulo ampliations.

In view of (5.2), in both the Fock and non-Fock cases,

S {dP ⊗ dQ}={dQ⊗ dP} − i {dT}, S {dQ⊗ dP}={dP ⊗ dQ}+ i {dT},

so that

S ({dP ⊗ dQ} − {dQ⊗ dP}) = − ({dP ⊗ dQ} − {dQ⊗ dP})− 2i {dT}

and

S2 ({dP ⊗ dQ} − {dQ⊗ dP}) = {dP ⊗ dQ} − {dQ⊗ dP}+ 4i {dT}.

Consequently, quantum Lévy area is not only not invariant under this notion of
time reversal; it is not even invariant under double time reversal! Thus, it appears
to contain within itself an intrinsic arrow of time.

This is an essentially quantum phenomenon. It is well known that the antipode
S of a Hopf algebra must satisfy

(5.3) S2 = id

if it is either commutative or cocommutative. Thus the failure of the condition
(5.3) cannot be seen in the commutative Hopf algebra corresponding to classical
Itô calculus, in particular on classical Lévy area. Nor can it be seen in the quantum
case on the cocommutative sub-Hopf algebra of symmetric tensors of the Hopf
algebra T (Iσ) whose elements generate polynomials in the increments over the
interval [a, b[ of the basic processes P, Q and T under action of the iterated integral
map Jb

a. An interpretation of this intriguing phenomenon may perhaps be found in
the so-called “eventum mechanics” of V. P. Belavkin which interprets quantum
measurement as a continuous transfer of information from a random future to a
determined past.
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