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Abstract. We derive the limiting distributions of exceedances point
processes of randomly scaled weakly dependent stationary Gaussian se-
quences under some mild asymptotic conditions. In the literature analogous
results are available only for contracted stationary Gaussian sequences. In
this paper, we include additionally the case of randomly inflated stationary
Gaussian sequences with a Weibullian type random scaling. It turns out that
the maxima and minima of both contracted and inflated weakly dependent
stationary Gaussian sequences are asymptotically independent.
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1. INTRODUCTION

Let Xn, n ­ 1, be a standard stationary Gaussian sequence (ssGs), i.e., Xn’s
are N(0, 1) distributed and ρ(n) = E (X1Xn+1) = E (XjXn+j) for any j ­ 1. In
the seminal contribution [3], Berman proved that the maxima M̃n = max1¬k¬nXk

converge in distribution after normalization to a unit Gumbel random variable, i.e.,

lim
n→∞

P(M̃n ¬ ãnx+ b̃n) = exp
(
− exp(−x)

)
=: Λ(x) for all x ∈ R,

provided that the so-called Berman condition

(1.1) lim
n→∞

ρ(n) lnn = 0
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holds, where the norming constants ãn and b̃n are given by

ãn =
1√
2 lnn

and b̃n =
√
2 lnn− ln lnn+ ln 4π

2
√
2 lnn

.

Moreover, the maxima and the minima m̃n = min1¬k¬nXk are asymptotically
independent, cf. [4] and [10].

In applications, commonly the observations are randomly scaled, say due to
some inflation or deflation effects if financial losses are modeled, or caused by mea-
surement errors if observations are the outcome of a certain physical experiment.
Therefore, in order to model some general random scaling phenomena applicable
to original data, in this paper we consider Y = SX, Yn = SnXn, n ­ 1, assuming
that S, Sn, n ­ 1, are independent non-negative random variables with common
distribution function F being further independent of the standard Gaussian ran-
dom variables X,Xn, n ­ 1.

As shown in [7], if F has a finite upper endpoint xF ∈ (0,∞) and its survival
function is regularly varying, then the maxima Mn = max1¬k¬n Yk converge in
distribution after normalization to a unit Gumbel random variable with distribution
function Λ, provided that the Berman condition holds. If xF =∞ and Xn, n ­ 1,
are iid N(0, 1), the convergence of maxima Mn is shown under a different nor-
malization in [8] assuming further that F has a Weibullian tail behaviour (see (2.1)
below).

The objective of the paper is twofold: first for F with a Weibullian tail be-
haviour, it is of interest to establish the convergence of maxima of a randomly
scaled ssGs under the Berman condition; there is no result in the literature cov-
ering this case. Secondly, for both cases, i.e., for xF being a positive constant,
and xF =∞, we aim at establishing the same result as in [4], i.e., the asymptotic
independence of maxima and minima of randomly scaled weakly dependent ssGs.

Since by using a point process approach also the joint limiting distribution of
upper and lower order statistics can be easily established, we choose in this paper
a point process framework considering exceedances point processes. Numerous
authors dealt with the asymptotic behaviour of exceedances point processes; for
weakly dependent stationary sequences including Gaussian, see [9]–[12], [6], [1],
[2] and the references therein.

For un(s) = ans + bn, s ∈ R, with an > 0, bn ∈ R, we shall investigate the
weak convergence of bivariate point processes of exceedances of levels un(x) and
−un(y) formed by Yn, n ­ 1. Setting ξ1(n) = Yn, ξ2(n) = −Yn for n ­ 1 we
define as in [14] the bivariate exceedances point processes

(1.2) Nn(B,x) =
2∑

d=1

n∑
i=1

I

(
ξd(i) > un(xd),

i

n
∈ Bd

)

for B =
∪2

d=1(Bd × {d}) with Bd the Borel set on (0, 1], d = 1, 2, where I(·)
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denotes the indicator function. The marginal point processes are defined by

Nn,d(Bd, xd) =
n∑

i=1

I

(
ξd(i) > un(xd),

i

n
∈ Bd

)
, d = 1, 2.

In order to study the weak convergence of Nn we need to formulate certain as-
sumptions on the random scaling S. Our first model concerns the case where S
has a Weibullian type tail behaviour with xF =∞, whereas the second one deals
with S having a regular tail behaviour at xF . For both cases we investigate the con-
vergence in distribution of Nn, and further, as in [4], we prove that maxima and
minima are asymptotically independent.

The rest of the paper is organized as follows. Section 2 gives the main results.
Proofs and auxiliary results are displayed in Section 3.

2. MAIN RESULTS

In order to proceed with the main results we need to specify our models for
the random scaling S ­ 0 with distribution function F . We consider first the case
where S has a Weibullian type tail behaviour, i.e., for given positive constants L, p

(2.1) F (u) = P (S > u) =
(
1 + o(1)

)
g(u) exp(−Lup) as u→∞,

where g is an ultimately monotone function satisfying limt→∞ g(tx)/g(t) = xα

for all x > 0 with some α ∈ R. Commonly, if the latter asymptotic relation holds,
then g is referred to as a regularly varying function at infinity with index α. The
assumption (2.1) is crucial for finding the tail asymptotics of Y = SX , where S
and X are independent and X has an N(0, 1) distribution. Indeed, in view of [1],

(2.2) P (Y > u) ∼ (2 + p)−1/2g(Q−1u2/(2+p)) exp(−Tu(2p)/(2+p))

as u→∞, where

(2.3) T := 2−1Q2 + LQ−p, Q := (Lp)1/(2+p).

Hence (2.2) shows that Y has also a Weibullian type distribution. We state next our
first result for this Weibullian type scaling model.

THEOREM 2.1. Let Xn, n ­ 1, be a stationary Gaussian sequence satisfying
(1.1), and let Nn be the bivariate point process given by (1.2) with Sn, n ­ 1, such
that their common distribution function F satisfies (2.1). If further there exist some
sequences un(x), n ­ 1, x ∈ R, such that for any x ∈ R

(2.4) lim
n→∞

nP
(
Y > un(x)

)
= exp(−x),

then Nn converge in distribution to a Poisson process N on
∩2

d=1

(
(0, 1]× {d}

)
with intensity µ(B) =

∑2
d=1 exp(−xd)m(Bd), where m denotes the Lebesgue

measure on (0, 1].
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REMARK 2.1. If (2.1) holds with g(x) = Cxα, C > 0, then in view of [1]

P (Y > u) ∼ (2 + p)−1/2CQ−αu(2α)/(2+p) exp(−Tu(2p)/(2+p)) as u→∞.

Consequently, (2.4) holds according to [5], p. 155, with un(x) = anx+ bn, x ∈ R,
and Q,T as in (2.3), where

an =
2 + p

2p
T−(2+p)/(2p)(lnn)(2−p)/(2p),

bn =

(
lnn

T

)(2+p)/(2p)

+ an

(
α

p
ln(T−1 lnn) + ln(2 + p)−1/2CQ−α

)
.

Applying Theorem 2.1 we derive below the joint limiting distribution of the
kth maxima and the lth minima which are stated as follows.

COROLLARY 2.1. For positive integers k and l, let M (k)
n and m

(l)
n denote the

kth largest and the lth smallest of Yn, n ­ 1. Then under the conditions of Theo-
rem 2.1, for x, y ∈ R we have

(2.5) lim
n→∞

P
(
M (k)

n ¬ un(x),m
(l)
n > −un(y)

)
= exp

(
− exp(−x)− exp(−y)

) k−1∑
i=0

exp (−ix)
i!

l−1∑
j=0

exp (−jy)
j!

.

Next, we consider the case where S has a finite upper endpoint, say xF = 1.
As in [7] we shall suppose that for any u ∈ (ν, 1) with some ν ∈ (0, 1)

(2.6) P (Sτ > u) ­ P (S > u) ­ P (Sγ > u)

holds with Sγ , Sτ two non-negative random variables which have a regularly vary-
ing survival function at one with non-negative index γ and τ , respectively. By
definition Sα, α ­ 0, is regularly varying at one with index α if the distribution
function of Sα has upper endpoint equal to one and further

lim
u→∞

P (Sα > 1− x/u)

P (Sα > 1− 1/u)
= xα, x > 0.

The recent contribution [7] derives the limit distribution of maxima of Yi, 1 ¬ i
¬ n, under the modified Berman condition, i.e.,

(2.7) lim
n→∞

ρ(n)(lnn)1+∆ϵ = 0,

where ∆ϵ = 2(γ − τ) + ϵ and some ϵ > 0. Our last result below extends the main
finding of [7] establishing the weak convergence of the bivariate exceedances point
process when S is bounded.
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THEOREM 2.2. Let Nn be defined as in (1.2) with Sn satisfying (2.6). If con-
dition (2.7) is satisfied, then Nn converge in distribution as n→∞ to a Poisson
processN on

∩2
d=1

(
(0, 1]×{d}

)
with intensity µ(B) =

∑2
d=1 exp (−xd)m(Bd),

where m denotes the Lebesgue measure on (0, 1].

REMARK 2.2. (a) Under the assumptions of Theorem 2.2 for x, y ∈ R the
equality (2.5) holds. Hence, in particular, the maxima and minima are asymptoti-
cally independent in both models for the tail behaviour of S.

(b) If S is regularly varying at one with some index γ, then the claim of The-
orem 2.2 holds under the Berman condition, i.e., the modified Berman condition
should be imposed with ∆ϵ = 0.

3. FURTHER RESULTS AND PROOFS

LEMMA 3.1. Let S,Zn, n ­ 1, be independent positive random variables sat-
isfying

exp(−L̃0u
p1) ¬ P (S > u) ¬ exp(−L0u

p1)

and
exp(−L̃nu

p2) ¬ P (Zn > u) ¬ exp(−Lnu
p2)

for all u large with p1, p2, L̃n, Ln, n ­ 0, positive constants such that L̃n, Ln ∈
[a, b] for all n ­ 0 with a < b two finite positive constants. If further S∗ is a posi-
tive random variable independent of Zn, n ­ 1, satisfying

lim
u→∞

P (S > u)

P (S∗ > u)
= c ∈ (0,∞),

then we have uniformly in n as u→∞

P (SZn > u) ∼ cP(S∗Zn > u).

P r o o f. Let Gn, n ­ 1, be the distribution function of Zn. By the indepen-
dence of S and Zn, for all u large

H(u) := P(SZn > u)

­ P(S > up2/(p1+p2))P(Zn > up1/(p1+p2)) ­ exp(−2bu(p1p2)/(p1+p2)).

Further, for c1 > 0 small enough and all u large we have

c1up1/(p1+p2)∫
0

P(S > u/s) dGn(s) ¬ P(S > c−11 up2/(p1+p2))

¬ exp(−ac−p11 u(p1p2)/(p1+p2)) = o
(
H(u)

)
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and for some large c2 > 0

∞∫
c2up1/(p1+p2)

P(S > u/s) dGn(s) ¬ P(Zn > c2u
p1/(p1+p2))

¬ exp(−acp22 u(p1p2)/(p1+p2)) = o
(
H(u)

)
.

Therefore, for δu = c1u
p1/(p1+p2) and λu = c2u

p1/(p1+p2) we have

P (SZn > u) ∼
λu∫
δu

P (S > u/s) dGn(s).

Since further limu→∞ u/λu =∞, for any s ∈ [δu, λu] we have u/s ­ u/λu →∞
as u→∞. Consequently, for any ε > 0, s ∈ [δu, λu]

c(1− ε) ¬ P (S > u/s)

P (S∗ > u/s)
¬ c(1 + ε)

holds uniformly in n for all u large, implying that

P (SZn > u) ∼ c
λu∫
δu

P (S∗ > u/s) dGn(s) ∼ P (S∗Zn > u)

as u→∞ holds also uniformly in n, and thus the claim follows. �

LEMMA 3.2. Let Ln, n ­ 1, be as in Lemma 3.1 and let Zn, n­1, be positive
random variables such that

Gn(z) := P (Zn > z) = exp (−Lnz
q)

for some q > 0 and all z > 0. If further Zn, n ­ 1, are independent of a non-
negative random variable S which satisfies (2.1), then we have uniformly in n

(3.1)

P(SZn > u) ∼

√
2πLp

p+ q
Ap/2

n u(pq)/[2(p+q)]g(Anu
q/(p+q)) exp(−Dnu

(pq)/(p+q))

as u→∞, where Dn = (L+ Lpq−1)Ap
n and An = (qLn)

1/(p+q)(Lp)−1/(p+q).

P r o o f. If (2.1) holds, by Lemma 3.1, we have for all u large

P (SZn > u) =
∞∫
0

P(Zn > u/s) dF (s) ∼
c2uq/(p+q)∫
c1uq/(p+q)

P(Zn > u/s) dF (s)

∼
c2uq/(p+q)∫
c1uq/(p+q)

exp(−Lnu
qs−q) dF (s)

∼
c2uq/(p+q)∫
c1uq/(p+q)

exp(−Lnu
qs−q) d

(
g(s) exp(−Lsp)

)
.
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Using similar arguments to those in the proof of Theorem 2.1 in [8] we obtain as
u→∞

P (SZn > u)

∼ Lp
c2uq/(p+q)∫
c1uq/(p+q)

sp−1g(s) exp(−Lnu
qs−q − Lsp) ds

= LpAp
nu

(qp)/(p+q)

×
c2An∫
c1An

zp−1g(Anu
q/(p+q)z) exp

(
−Ap

nu
(pq)/(p+q)(Lpq−1z−q + Lzp)

)
dz

∼

√
2πLp

p+ q
Ap/2

n u(pq)/[2(p+q)]g(Anu
q/(p+q)) exp(−Dnu

(pq)/(p+q)),

where

Dn = (L+ Lpq−1)Ap
n and An = (qLn)

1/(p+q)(Lp)−1/(p+q).

Thus the proof is complete. �

LEMMA 3.3. Assume that the distribution function F of a random variable S
satisfies (2.1), and further (2.4) holds. Then we have

n
n−1∑
k=1

|ρ(k)|
∞∫
0

∞∫
0

exp

(
− (ũn/s)

2 + (ũn/t)
2

2
(
1 + |ρ(k)|

) )
dF (s) dF (t)→ 0

as n→∞, where ũn = un(x).

P r o o f. Using similar arguments to those in Lemma 4.3.2 in [10], we put
ιn = [nβ ] and σ = maxk­1 |ρ(k)| < 1, where β is any positive constant such that
β < 2(1 + σ)−p/(2+p) − 1. According to (2.4) and (2.2) we have

exp(−T ũ(2p)/(2+p)
n ) ∼ Cg−1(Q−1ũ2/(2+p)

n )n−1

and

ũn ∼
(
lnn

T

)(2+p)/(2p)

,

where T and Q are defined in (2.3), and C is a positive constant which may change
from line to line.

Using (3.1) with q = 2 and Lk = 1/2
(
1 + |ρ(k)|

)
and splitting the sum into
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two parts, we get

n
n−1∑
k=1

|ρ(k)|
∞∫
0

∞∫
0

exp

(
− (ũn/s)

2 + (ũn/t)
2

2
(
1 + |ρ(k)|

) )
dF (s) dF (t)

¬ Cn
n−1∑
k=1

|ρ(k)|ũ(2p)/(2+p)
n g2(Akũ

2/(2+p)
n )

× exp
(
−2

(
1 + |ρ(k)|

)−p/(2+p)
T ũ(2p)/(2+p)

n

)
= Cn

( ιn∑
k=1

+
n−1∑

k=ιn+1

)
|ρ(k)|ũ(2p)/(2+p)

n

× g2(Akũ
2/(2+p)
n ) exp

(
−2

(
1 + |ρ(k)|

)−p/(2+p)
T ũ(2p)/(2+p)

n

)
.

Since g(·) is ultimately monotone, assume without loss of generality that it is ul-
timately increasing. By the assumption that g(·) is a regularly varying function
at infinity with index α, using the Potter bound (see, e.g., [13], [6]) for arbitrary
ε > 0, k ­ 1 we have

g(Akũ
2/(2+p)
n ) ¬ g(Q−1ũ2/(2+p)

n ) ¬ Cũ[2(α+ε)]/(2+p)
n

for all n large. Hence the first part is dominated by

Cnnβũ(2p)/(2+p)
n g2(Q−1ũ2/(2+p)

n ) exp
(
−2(1 + σ)−p/(2+p)T ũ(2p)/(2+p)

n

)
= Cn1+βũ(2p)/(2+p)

n g2(Q−1ũ2/(2+p)
n )

(
exp(−T ũ(2p)/(2+p)

n )
)2(1+σ)−p/(2+p)

¬ Cn1+βũ(2p)/(2+p)
n g2(Q−1ũ2/(2+p)

n )
(
g(Q−1ũ2/(2+p)

n )n
)−2(1+σ)−p/(2+p)

¬ Cn1+β−2(1+σ)−p/(2+p)
(lnn)1+[2(α+ε)/p](1−(1+σ)−p/(2+p)) → 0

as n→∞ since 1 + β − 2(1 + σ)−p/(2+p) < 0.
Next set σ(l) = maxk­l |ρ(k)| < 1. We may further write

Cn
n−1∑

k=ιn+1

|ρ(k)|ũ(2p)/(2+p)
n g2(Akũ

2/(2+p)
n )

× exp
(
−2

(
1 + |ρ(k)|

)−p/(2+p)
T ũ(2p)/(2+p)

n

)
¬ Cn2σ(ιn)ũ

(2p)/(2+p)
n g2(Q−1ũ2/(2+p)

n )

× exp
(
−2

(
1 + σ(ιn)

)−p/(2+p)
T ũ(2p)/(2+p)

n

)
¬ Cn2σ(ιn)ũ

(2p)/(2+p)
n g2(Q−1ũ2/(2+p)

n ) exp(−2T ũ(2p)/(2+p)
n )

× exp
(
2Tσ(ιn)ũ

(2p)/(2+p)
n

)
¬ Cσ(ιn)ũ(2p)/(2+p)

n exp
(
2Tσ(ιn)ũ

(2p)/(2+p)
n

)
.
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Using now (1.1) we get as n→∞

σ(ιn)ũ
(2p)/(2+p)
n ∼ T−1σ(ιn) lnn ¬ T−1max

k­ιn
|ρ(k)| lnn→ 0,

where the exponential term tends to one and the remaining product tends to zero.
Thus the proof is complete. �

LEMMA 3.4. Let Xn, n ­ 1, be an ssGs satisfying (1.1), and let Sn, n ­ 1,
be independent random variables satisfying (2.1) being further independent of
Xn. Additionally, assume that the survival function of Yn = SnXn satisfies (2.4).
Further, if 0 < θ < 1 and In is an interval containing kn ∼ θn members, we have

lim
n→∞

sup
x,y∈R

∣∣P(− un(y) < m(In) ¬M(In) ¬ un(x)
)

− exp
(
−θ

(
exp(−x) + exp(−y)

))∣∣ = 0,

where M(In) = maxi∈In Yi and m(In) = mini∈In Yi.

P r o o f. Let Zn, n ­ 1, be independent random variables with the same dis-
tribution as X1 and define Mn = max1¬i¬n SiZi and mn = min1¬i¬n SiZi. For
x, y ∈ R, using the assumption (2.4), i.e.,

lim
n→∞

nP
(
S1Z1 > un(x)

)
= exp(−x),(3.2)

lim
n→∞

nP
(
S1Z1 ¬ −un(y)

)
= exp(−y),(3.3)

and by Theorem 1.8.2 in [10] we have

(3.4) lim
n→∞

sup
x,y∈R

∣∣P(− un(y) < mn ¬Mn ¬ un(x)
)
− Λ(x)Λ(y)

∣∣ = 0.

Further, if (2.1) holds, since Sn, n ­ 1, are independent with common distribu-
tion function F , by a direct application of the Berman inequality (see [12]) and
Lemma 3.3 we obtain∣∣P(− un(y) < mn ¬Mn ¬ un(x)

)
− P

(
− un(y) < mn ¬Mn ¬ un(x)

)∣∣
¬

∫
[0,∞]n

∣∣∣∣P(
n∩

k=1

{
−un(y)

sk
< Xk ¬

un(x)

sk

})
−P

(
n∩

k=1

{
−un(y)

sk
< Zk ¬

un(x)

sk

})∣∣∣∣ dF (s1) . . . dF (sn)

¬ Cn
n−1∑
k=1

∞∫
0

∞∫
0

|ρ(k)| exp
(
− (wn/s)

2 + (wn/t)
2

2
(
1 + |ρ(k)|

) )
dF (s) dF (t)

→ 0 as n→∞,
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where wn = min
(
|un(x)|, |un(y)|

)
. Thus by (3.4) we have

lim
n→∞

sup
x,y∈R

∣∣P(− un(y) < mn ¬Mn ¬ un(x)
)
− Λ(x)Λ(y)

∣∣ = 0.

Now let vn = u[n/θ]. Using (3.2) and (3.3) we get

lim
n→∞

nP
(
S1Z1 > vn(x)

)
= θ exp(−x)

and
lim
n→∞

nP
(
S1Z1 ¬ −vn(y)

)
= θ exp(−y),

and hence

(3.5) lim
n→∞

sup
x,y∈R

∣∣P(− vn(y) < mn ¬Mn ¬ vn(x)
)

− exp
(
−θ

(
exp(−x) + exp(−y)

))∣∣ = 0.

Since Sn, n ­ 1, are independent and have a common distribution function F , by
the stationarity of Xn, n ­ 1, we obtain

P
(
− un(y) < m(In) ¬M(In) ¬ un(x)

)
= P

( ∩
i∈In
{−un(y) < SiXi ¬ un(x)}

)
=

∫
(0,∞)kn

P
(

kn∩
i=1

{
−un(y)

si
< Xi ¬

un(x)

si

})
dF (s1) . . . dF (skn)

= P
(
− un(y) < mkn ¬Mkn ¬ un(x)

)
.

Hence, replacing n by kn in (3.5) establishes the claim. �

REMARK 3.1. Under the conditions of Lemma 3.4, we have

lim
n→∞

sup
x∈R

∣∣P(M(In) ¬ un(x)
)
− exp

(
−θ exp (−x)

)∣∣ = 0.

LEMMA 3.5. Let I1, I2, . . . , Il (with l a fixed number) be disjoint subintervals
of {1, 2, . . . , n} such that Ii has kn,i ∼ θin elements, where θi are fixed positive
constants with θ :=

∑l
i=1 θi ¬ 1. Then, under the assumptions of Lemma 3.4, we

have

P
( l∩
i=1

{−un(y) < m(Ii) ¬M(Ii) ¬ un(x)}
)

−
l∏

i=1

P
(
− un(y) < m(Ii) ¬M(Ii) ¬ un(x)

)
→ 0 as n→∞.
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P r o o f. Since Xn, n ­ 1, is a stationary random sequence, using Berman’s
inequality and Lemma 3.3, we have

∣∣P( l∩
i=1

{−un(y) < m(Ii) ¬M(Ii) ¬ un(x)}
)

−
l∏

i=1

P
(
− un(y) < m(Ii) ¬M(Ii) ¬ un(x)

)∣∣
=

∣∣P( l∩
i=1

∩
j∈Ii
{−un(y) < SjXj ¬ un(x)}

)
−

l∏
i=1

P
( ∩
j∈Ii
{−un(y) < SjXj ¬ un(x)}

)∣∣
¬

∫
(0,∞)θ̂l

∣∣P( l∩
i=1

Âi

)
−

l∏
i=1

P(Âi)
∣∣ dF (s1) . . . dF (sθ̂l)

¬ θ̂l

θ̂l∑
k=1

∞∫
0

∞∫
0

|ρ(k)| exp
(
− (wn/s)

2 + (wn/t)
2

2
(
1 + |ρ(k)|

) )
dF (s)dF (t)

→ 0 as n→∞,

where Âi =
∩θ̂i

j=θ̂i−1+1
{−un(y)/sj < Xj ¬ un(x)/sj} with

θ̂i =
i∑

j=1

[θjn], θ̂0 = 0, wn = min
(
|un(x)|, |un(y)|

)
.

Thus the proof is complete. �

REMARK 3.2. Under the conditions of Lemma 3.5, we have

lim
n→∞

∣∣P( l∩
i=1

{M(Ii) ¬ un(x)}
)
−

l∏
i=1

P
(
M(Ii) ¬ un(x)

)∣∣ = 0.

P r o o f o f T h e o r e m 2.1. In view of [14] we need first to prove that the
marginal point processes of Nn,d converge weakly to a Poisson process Nd with
intensity exp(−xd), d = 1, 2. By Theorem A.1 in [10] for Nn,1(B1, x1), it is suf-
ficient to show that as n→∞

(P1) E
(
Nn,1

(
(s, t], x1

))
→ E

(
N1

(
(s, t], x1

))
= (t− s) exp (−x1), 0 < s < t ¬ 1;
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(P2) P
( k∩
i=1

{
Nn,1

(
(si, ti], x1

)
= 0

})
→ P

( k∩
i=1

{
N1

(
(si, ti], x1

)
= 0

})
= exp

(
−

k∑
i=1

(ti − si) exp(−x1)
)
,

where 0 < s1 < t1 ¬ s2 < t2 ¬ . . . ¬ sk < tk ¬ 1.
We have

E
(
Nn,1

(
(s, t], x1

))
= E

( ∑
i/n∈(s,t]

I
(
SiXi > un(x1)

))
=

∑
i/n∈(s,t]

P
(
SiXi > un(x1)

)
→ (t− s) exp(−x1) = E

(
N1

(
(s, t], x1

))
as n→∞,

where the above convergence follows from (2.4).
In order to show (P2) note first that for 0 < s < t ¬ 1

P
(
Nn,1

(
(s, t], x1

)
= 0

)
= P

(
M(In) ¬ un(x1)

)
,

where In = {[sn] + 1, . . . , [tn]}. Further, In contains kn integers with kn = [tn]−
[sn] ∼ (t − s)n as n→∞. Thus, in view of Remark 3.1 with θ = t − s < 1 we
have as n→∞

(3.6) P
(
Nn,1

(
(s, t], x1

)
= 0

)
→ exp

(
−(t− s) exp(−x1)

)
.

Next, let Ei be the set of integers {[sin] + 1, . . . , [tin]} with 0 < s1 < t1 ¬ s2 <
t2 ¬ . . . ¬ sk < tk ¬ 1. Then we have

P
( k∩

i=1

{
Nn,1

(
(si, ti], x1

)
= 0

})
= P

( k∩
i=1

{M(Ei) ¬ un(x1)}
)

=
k∏

i=1

P
(
Nn,1

(
(si, ti], x1

)
= 0

)
+

(
P
( k∩
i=1

{M(Ei) ¬ un(x1)}
)
−

k∏
i=1

P
(
M(Ei) ¬ un(x1)

))
.

By (3.6), we see that the first term converges to exp
(
−
∑k

i=1(ti − si) exp (−x1)
)

as n→∞. By Remark 3.2 the modulus of the remaining difference of terms tends
to zero. Consequently, Nn,1 converge weakly to a Poisson process N1 with inten-

sity exp (−x1). Since Yi
d
= −Yi, Nn,2 also converge weakly to a Poisson process

N2 with intensity exp (−x2).
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Now define the avoidance function of Nn as

FNn(B) = P
(
Nn,1(B1, x1) = 0, Nn,2(B2, x2) = 0

)
,

where B1 and B2 are defined below. To get the main result, it suffices to prove that

lim
n→∞

FNn(B)

exists for all B =
∪2

d=1

∪r
j=1(Bdj × {d}), where r are arbitrary positive integers,

Bdj = (sdj , tdj ], 0 < sd1 < td1 ¬ sd2 < td2 ¬ . . . ¬ sdr < tdr ¬ 1, and B1 =∪r
j=1B1j , B2 =

∪r
j=1B2j . We will show that

lim
n→∞

FNn(B) = exp
(
−m(B1) exp (−x1)−m(B2) exp (−x2)

)
.

For simplicity we consider only the case B1 ⊂ B2; other cases are similar. First
consider the case n(B2 \B1) = o(n), i.e., m(B1) = m(B2). Obviously,

0 ¬ P
(
− un(x2) < Yk ¬ un(x1), k/n ∈ B1

)
− P

(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
¬

∑
l:l/n∈B2\B1

P
(
− Yl > un(x2)

)
→ 0 as n→∞.

Consequently, by Lemmas 3.4 and 3.5, we have

lim
n→∞

P
(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
= lim

n→∞
P
(
− un(x2) < Yk ¬ un(x1), k/n ∈ B1

)
=

r∏
j=1

exp
(
−(t1j − s1j) exp (−x1)

) r∏
j=1

exp
(
−(t1j − s1j) exp (−x2)

)
= exp

(
−m(B1) exp(−x1)−m(B2) exp(−x2)

)
.

It suffices to prove the case of n(B2 \ B1) = O(n). Note that for any z > 0 we
have

P
(
− un(x2) < Yk ¬ un(x1), k/n ∈ B1;

− un(x2) < Yi ¬ un(z), i/n ∈ B2 \B1

)
¬ P

(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
¬ P

(
− un(x2) < Yk ¬ un(x1), k/n ∈ B1;

− un(x2) < Yi ¬ un(z), i/n ∈ B2 \B1

)
+ P

(
max(Yi, i/n ∈ B2 \B1) > un(z)

)
= P

(
− un(x2) < Yk ¬ un(x1), k/n ∈ B1;

− un(x2) < Yi ¬ un(z), i/n ∈ B2 \B1

)
+ 1− P

(
max(Yi, i/n ∈ B2 \B1) ¬ un(z)

)
.
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Applying Lemmas 3.4 and 3.5 once again, we obtain

exp
(
−m(B1)

(
exp(−x1) + exp(−x2)

))
× exp

(
−m(B2 \B1)

(
exp(−z) + exp(−x2)

))
¬ lim inf

n→∞
P
(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
¬ lim sup

n→∞
P
(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
¬ exp

(
−m(B1)

(
exp(−x1) + exp(−x2)

))
× exp

(
−m(B2 \B1)

(
exp(−z) + exp(−x2)

))
+ 1− exp

(
−m(B2 \B1) exp(−z)

)
.

Hence, letting z →∞ we have

lim
n→∞

P
(
Yk ¬ un(x1), k/n ∈ B1;−Yl ¬ un(x2), l/n ∈ B2

)
= exp

(
−m(B1) exp(−x1)−m(B2) exp(−x2)

)
.

This establishes the proof. �

P r o o f o f C o r o l l a r y 2.1. Notice that

P
(
M (k)

n ¬ un(x),m
(l)
n > −un(y)

)
= P

(
Nn,1

(
(0, 1], x

)
¬ k − 1, Nn,2

(
(0, 1], y

)
¬ l − 1

)
.

Hence the assertion follows by Theorem 2.1. �

P r o o f o f T h e o r e m 2.2. By Lemma 3.3 of [7] it follows that under the
condition (2.7)

lim
n→∞

n
n−1∑
k=1

|ρ(k)|
1∫
0

1∫
0

exp

(
−

(
un(x)/s

)2
+

(
un(x)/t

)2
2
(
1 + |ρ(k)|

) )
dF (s) dF (t) = 0.

Consequently, Lemmas 3.4 and 3.5 also hold for Sn satisfying (2.6). Hence we
complete the proof by utilizing similar arguments to those in the proof of Theo-
rem 2.1. �
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[14] M. Wiśniewski, On extreme-order statistics and point processes of exceedances in multi-
variate stationary Gaussian sequences, Statist. Probab. Lett. 29 (1996), pp. 55–59.

Enkelejd Hashorva
Department of Actuarial Science
University of Lausanne
Quartier UNIL-Dorigny, Bâtiment Extranef
CH-1015 Lausanne, Switzerland
E-mail: Enkelejd.Hashorva@unil.ch

Zuoxiang Peng
School of Mathematics and Statistics

Southwest University
400715 Chongqing, China
E-mail: pzx@swu.edu.cn

Zhichao Weng
Department of Actuarial Science
University of Lausanne
Quartier UNIL-Dorigny, Bâtiment Extranef
CH-1015 Lausanne, Switzerland
E-mail: zhichao.weng@unil.ch

Received on 26.6.2013;
revised version on 29.10.2013


	1 Introduction
	2 Main Results
	3 Further Results and Proofs
	References

