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Abstract. We consider natural and general exponential families
(Qm)m∈M on Rd parametrized by the means. We study the submodels
(Qθm1+(1−θ)m2

)θ∈[0,1] parametrized by a segment in the means domain
from the point of view of the Fisher information. Such a parametrization
allows for a parsimonious model and is particularly useful in practical sit-
uations when hesitating between two parameters m1 and m2. The most in-
teresting cases are multivariate Gaussian and Wishart models with matrix
parameters.
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1. INTRODUCTION

The Fisher information is a key concept in mathematical statistics. Its impor-
tance stems from the Cramér–Rao inequality which says that the covariance of any
unbiased estimator T (X1, . . . , Xn) of an unknown parameter θ is bounded by the
inverse of the Fisher information: Varθ(T ) −

(
I(θ)

)−1 is semi-positive definite.
The efficiency of an estimator is based on the equality in this inequality. For some
recent applications of the Fisher information in modern statistics see [1], [6], [2],
[16].

The objective of this work is to study the Fisher information for exponential
families (Qm)m∈M parametrized by a segment of means [m1,m2].

Exponential families of distributions are extensively used in statistics and in-
tensively studied, cf. [7]–[10]. They are the only models for which the Cramér–Rao
bound is always attained. A parametrization of the family by a segment instead
of the whole means domain allows us to obtain a parsimonious model when the
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means domain is high-dimensional. The parametrization of the mean parameter by
a segment is particularly useful in practical situations when hesitating between two
equally convenient mean values m1 and m2. Such parametrization will also serve
in sequential data collection, when an updated estimate of a parameter largely dif-
fers from the previous estimate.

In this paper we prove explicit formulas for the Fisher information of the expo-
nential families (Qθm1+(1−θ)m2

)θ∈[0,1] if the full model is either the multivariate
Gaussian family of known mean and unknown covariance matrix or a family of
Wishart distributions with unknown scale parameter.

The paper is organized as follows. In Section 2, basic definitions and results on
Fisher information and exponential families are recalled. Section 3 contains new
results on the Fisher information of exponential Gaussian and Wishart subfamilies
parametrized by a segment of means [m1,m2]. When m1 and m2 are colinear, we
construct efficient estimators for the segment parameter θ.

2. PRELIMINARIES

DEFINITION 2.1. Consider a σ-finite measurable space (Ω,A, ν) with a fam-
ily of probability density functions fs, s ∈ S ⊂ Rd, dominated by ν. Let ls = ln fs.
Assume that the function s 7→ ls(ω) is differentiable for every ω ∈ Ω. Consider
the gradient l′s of the map s 7→ ls as a random vector on the statistical model
(Ω,A, fsdν). Suppose that it satisfies Es(∥l′s∥2) <∞. The Fisher information ma-
trix is defined by I(s) = Es(l′sl′s

T ).

In the sequel we restrict our attention to exponential statistical models.

DEFINITION 2.2. Let T : Ω→ Rd. Set

S =
{
s : K(s) = ln

∫
exp{⟨s, T ⟩}dν <∞

}
⊂ Rd.

We suppose that the set S has a non-empty interior S0.
The general exponential family generated by the measure ν and the map T is

the family

(2.1)
{
dPs(T, ν) = exp{⟨s, T ⟩ −K(s)}dν = fsdν : s ∈ S

}
.

Let µ be the image of the measure ν by T on Rd. The natural exponential family
associated with the above general exponential family is the family of probability
distributions defined by

(2.2)
{
dPs(µ) = exp{⟨s, x⟩ −K(s)}dµ : s ∈ S

}
.

Natural exponential families may be viewed as a special case of general expo-
nential families with Ω ⊂ Rd, T (ω) = ω and ν = µ.
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As usual, Es denotes the integral on the exponential model
(
Ω,A, (Ps)s∈S

)
,

where Ps = Ps(T, ν). We have ls = exp{⟨s, T ⟩ −K(s)}. Theorem 2.7.1 in [8]
ensures that the cumulant function K and the function s 7→ ls(ω) are analytic
on S0. Moreover, the derivatives with respect to s can be carried out under the
integral sign in

1 =
∫
exp{⟨s, T ⟩ −K(s)}dν

as long as s ∈ S0. This gives, by taking the derivatives and by integration by parts,

(2.3)
Esl′s = 0,

−Esl′′s = I(s).

Similarly, we obtain the mean and the covariance:

m(s) = Es(T ) = K ′(s),(2.4)
v(s) = Covs(T ) = K ′′(s).(2.5)

From (2.3) and (2.5) it follows that the Fisher information of a general exponential
family Ps(T, ν) equals, for s ∈ S0,

(2.6) I(s) = K ′′(s) = v(s).

The following result is proved in [10].

PROPOSITION 2.1. The map s 7→ m(s) = Es(T ) = K ′(s) is an analytic dif-
feomorphism from S0 to the open set M = m(S0) ⊂ Rd called the domain of the
means of the family.

Let ψ :M → S0,m 7→ ψ(m) = (K ′)−1(m) denote the inverse of the “mean”
diffeomorphism K ′. The general exponential family, parametrized by the domain
of the means M , is given by the family of distributions

(2.7) Q(m,T, ν)(dω) = e⟨ψ(m) , T (ω)⟩−K(ψ(m))ν(dω), m ∈M.

The mean of the family (2.7) is equal to m. We denote the covariance of the
family (2.7) by V (m) and, by (2.5), we have

(2.8) V (m) = v
(
ψ(m)

)
= K ′′

(
ψ(m)

)
.

The function V : m ∈M → V (m) is called the variance function of the exponen-
tial family.

In order to avoid confusion, when the parameter of an exponential family is
the mean m, we will denote the Fisher information by J(m).
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THEOREM 2.1. The Fisher information of the exponential family (2.7) equals

(2.9) J(m) = V (m)−1 = ψ′(m),

where V (m) is the variance function of the exponential family, given by (2.8).

P r o o f. By Definition 2.1 and by the chain rule,

J(m) = ψ′(m)T I
(
ψ(m)

)
ψ′(m) on M.

Since ψ(m) = (K ′)−1(m), we have ψ′(m) =
[
K ′′

(
ψ(m)

)]−1. Thus, using for-
mula (2.6), we get

J(m) =
[
K ′′

(
ψ(m)

)]−1
= V (m)−1. �

REMARK 2.1. Note a striking contrast in the formulas (2.6) and (2.9) for the
Fisher information of an exponential family parametrized either by the canonical
parameter s ∈ S0 or by the mean m ∈ M . Indeed, in the first case we have the
equality I

(
ψ(m)

)
= V (m), in the second J(m) = V (m)−1.

Finally, consider a general exponential family parametrized by a segment of
means. Let A ̸= 0, B ∈ Rd. Define Θ = {θ ∈ R : θA+B ∈M}. The set Θ ⊂ R
is open becauseM is open. Suppose that Θ ̸= ∅. The parametrization by a segment
of means I ⊂ Θ consists in considering the submodel

(2.10) {Q(θA+B, T, ν) : θ ∈ I}.

Such models contain the case
{
Q
(
θm1 + (1− θ)m2, T, ν

)
: θ ∈ [0, 1]

}
when one

hesitates between two different estimations m1,m2 ∈M of the true mean m of an
exponential family (2.7).

The following corollary gives the Fisher information of a general exponential
family parametrized by a segment of means. By analogy to the notation J(m), we
denote this information by J(θ).

COROLLARY 2.1. The Fisher information of the model {Q(θA + B, T, ν) :
θ ∈ I} equals

(2.11) J(θ) = AT V (θA+B)−1A.

P r o o f. We use Definition 2.1 and the chain rule as in the proof of Theo-
rem 2.1 for the reparametrization f : I→M,f(θ) = θA+B with f ′(θ) = A. We
conclude by Theorem 2.1. �
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3. THE FISHER INFORMATION OF GAUSSIAN AND WISHART FAMILIES
PARAMETRIZED BY A SEGMENT OF MEANS

In this section we study the Fisher information for multivariate Gaussian and
Wishart exponential families. These families are parametrized by symmetric posi-
tive definite matrices. Therefore, we first adapt the presentation to suit this case.
We denote by Rk×m the space of real matrices with k rows and m columns,
and by A ⊗ B the Kronecker product of two matrices. We use the usual nota-
tion ⟨A,B⟩ = Tr(ATB) for the scalar product of two matrices. The operator Vec
converts a k ×m matrix A into a vector Vec(A) ∈ Rkm by stacking the columns
one underneath the other. The Vec operator is commonly used in applications of
the matrix differential calculus in statistics, cf. [13], [15].

The following properties of the Kronecker product are used in this work (cf.
[13], pp. 32 and 35). For non-singular square matricesA,B we have (A⊗B)−1 =
A−1 ⊗ B−1. For all matrices A, B and C such that the product ABC is well
defined we have

(3.1) Vec(ABC) = (CT ⊗A)Vec(B).

In this paper we use the following convention of the matrix differential calculus:
if a function f : Rk×p → Rn×m is differentiable then its derivative is a matrix
f ′(x) ∈ Rnm×kp such that

(3.2) Vec
(
df(x)(u)

)
= f ′(x)Vec(u), u ∈ Rk×p.

The only exception we will make is the derivative of a function K : Rk×m → R,
for which the following convention is used: the derivative of K is not a row vector
but the matrix K ′(x) ∈ Rk×m related to the differential of K by dK(x)(u) =
⟨K ′(x), u⟩ = Tr

(
K ′(x)Tu

)
for all u ∈ Rk×m. This convention is needed to give

sense to formula (2.4) for the mean of an exponential family.
The following lemma is useful for the derivation of an alternative formula

for the Fisher information of an exponential family parametrized by a segment of
means and satisfying an additional condition (3.3). We will see that this condition
holds for Gaussian and Wishart models.

LEMMA 3.1. Assume that, for all m ∈M,

(3.3) ⟨m, ψ(m)⟩ = C

for some constant C ∈ R. Then, for all u ∈M,

(3.4) ⟨m, dψ(m)(u)⟩ = −⟨u, ψ(m)⟩.

P r o o f. By (3.3) it follows that the differential of the function g : M → R,
m 7→ ⟨m, ψ(m)⟩ is zero. Therefore, dg(m)(u)=⟨m, dψ(m)(u)⟩+⟨u, ψ(m)⟩=0
for all m,u ∈M and (3.4) holds true. �
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COROLLARY 3.1. Let {Q(θA + B, T, ν)(dω) : θ ∈ I} be an exponential
model parametrized by a segment of means M ⊂ Rk×m . If the condition (3.3)
holds then the Fisher information of the model equals

(3.5) J(θ) = − d2

dθ2
[
K
(
ψ(θA+B)

)]
.

P r o o f. Let h(θ) = K
(
ψ(θA+B)

)
and f(θ) = θA+B. We want to com-

pute h′′(θ). If θ, u ∈ R,

dh(θ)(u) = dK
(
ψ
(
f(θ)

))(
dψ

(
f(θ)

)(
df(θ)(u)

))
=

⟨
K ′

(
ψ
(
f(θ)

))
, dψ

(
f(θ)

)(
df(θ)(u)

)⟩
=

⟨
f(θ), dψ

(
f(θ)

)(
df(θ)(u)

)⟩
= −

⟨
df(θ)(u), ψ

(
f(θ)

)⟩
= −u

⟨
A, ψ

(
f(θ)

)⟩
,

where we used successively: the convention onK ′ introduced after (3.2), the equal-
ity K ′ ◦ ψ(m) = m, Lemma 3.1 and the formula df(θ)(u) = uA. Thus we have
h′(θ) = −

⟨
A, ψ

(
f(θ)

)⟩
. Now, starting as in the computation of h′(θ) and using

(3.2), we get

h′′(θ) = −
⟨
A, dψ

(
f(θ)

)
(A)

⟩
= −Vec(A)T Vec

(
dψ

(
f(θ)

)
(A)

)
= −Vec(A)Tψ′(θA+B)Vec(A).

We conclude using (2.9) and Corollary 2.1. �

3.1. Exponential families of Gaussian distributions. We denote by Sd the vec-
tor space of d× d symmetric matrices and by S+d the open cone of positive definite
matrices.

Recall the construction of the multivariate Gaussian model {N(u,Σ); Σ ∈
S+d } as a general exponential family. We consider Ω = Rd equipped with a nor-
malized Lebesgue measure ν(dω) = dω/(2π)d/2, the vector space Sd and the map

T : Rd → Sd, T (ω) = −1
2
(ω − u)(ω − u)T .

The image of T is contained in the opposite of the cone of semi-positive definite
matrices of rank one. For s ∈ S+d , we have∫

Ω

e⟨s,T (ω)⟩ν(dω) =
1

(2π)d/2

∫
Rd

e−
1
2
Tr(s(ω−u)(ω−u)T )dω = (det s)−1/2
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and the integral is infinite otherwise. Thus S = S+d and the cumulant function is

K(s) = −1
2
ln det(s), s ∈ S = S+d .

The general exponential family is therefore

Ps(T, ν)(dω) =
1

(2π)d/2
e⟨s ,−

1
2
(ω−u)(ω−u)T ⟩+ 1

2
ln det(s)dω(3.6)

=
(det s)1/2

(2π)d/2
e−

1
2
(ω−u)T s(ω−u)dω,

which is the family of Gaussian distributions N(u, s−1) on Rd with a fixed mean
u ∈ Rd, parametrized by s = Σ−1, the inverse of the covariance matrix Σ supposed
to be invertible.

The derivative of the function X ∈ Rd×d→detX is the cofactor matrix X♯

which equals (detX)(X−1)T when X is invertible. It follows that

m(s) = K ′(s) = −1
2
s−1, s ∈ S+d .

The means domain is M = −S+d and the inverse mean map is ψ(m) = −1
2m
−1.

The Gaussian general exponential family parametrized by m∈M=−S+d is there-
fore the family

(3.7) Q(m,T, ν) = N(u,−2m).

Up to a trivial affine change of parameter Σ = −2m, this parametrization by
the covariance parameter is more natural than the parametrization of the family(
N(u, s−1)

)
s∈S+d

by the canonical parameter s.

In order to compute the variance function, recall thatXX−1 = Id implies that
dX−1 = −X−1dX X−1 and (X−1)′ = −X−1⊗ X−1. Thus, we obtainK ′′(s) =
1
2s
−1 ⊗ s−1 and formula (2.8) implies that

(3.8) V (m) = 2m⊗m.

The Fisher information of the family
(
N(u, s−1)

)
s∈S+d

is I(s)= 1
2s
−1⊗s−1.

By Theorem 2.1 and formula (3.8), we infer that the Fisher information of the
model

(
N(u,−2m)

)
m∈−S+d

equals J(m) = 1
2m
−1 ⊗m−1.

COROLLARY 3.2. The Fisher information matrix of the Gaussian model(
N(u,Σ)

)
Σ∈S+d

is

J(Σ) =
1

2
Σ−1 ⊗ Σ−1.
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P r o o f. Using the chain rule and a reparametrization Σ = −2m we see that
the information for the new parameter Σ is J̃(Σ) = 1

2Σ
−1 ⊗ Σ−1 = J(Σ). �

Let us now consider Gaussian models parametrized by a segment of covari-
ances.

COROLLARY 3.3. Let C and D be two symmetric matrices and let I ⊂ R be
a non-empty segment such that I ⊂ Θ = {θ ∈ R : θC + D ∈ S+d }. The Fisher
information of the Gaussian model {N(u, θC +D), θ ∈ I} is

J(θ) =
1

2
Tr

(
C(θC +D)−1C(θC +D)−1

)
.

P r o o f. We use Corollary 3.2 and the chain rule with f(θ) = θC + D. It
follows that

J(θ) = Vec(C)TJ(θC +D)Vec(C)

=
1

2
Vec(C)T

(
(θC +D)−1 ⊗ (θC +D)−1

)
Vec(C).

Applying (3.1) we get

J(θ) =
1

2
Vec(C)T Vec

(
(θC +D)−1C(θC +D)−1

)
=

1

2
Tr

(
C(θC +D)−1C(θC +D)−1

)
. �

On the other hand, we have the following alternative formula for the informa-
tion J(θ).

COROLLARY 3.4. With the notation as above the Fisher information of the
Gaussian model {N(u, θC +D), θ ∈ I} is

(3.9) J(θ) = −1
2

d2

dθ2
(
ln det(θC +D)

)
.

P r o o f. Observe that the condition (3.3) holds for the Gaussian exponential
families Q(m, t, ν):

⟨m, ψ(m)⟩ = −1
2
Tr(mm−1) = −d

2
.

The modelN(u, θC +D) = N(u,−2m) = Q(m,T, ν), withm = θA+B ∈M
= −S+d , where A = −C/2 and B = −D/2. We apply Corollary 3.1 and the fact
that

K
(
ψ(θA+B)

)
= −1

2
ln det(θC +D).

Thus, formula (3.9) holds true. �
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Now we characterize the information J(θ) in terms of the eigenvalues of the
matrix D−1/2CD−1/2.

THEOREM 3.1. Let C and D be two symmetric matrices and let I ⊂ R be
a segment such that IC +D ⊂ S+d . Let us assume that a1, . . . , ad are the eigen-
values of the matrix D−1/2CD−1/2. Then the Fisher information of the Gaussian
model {N(u, θC +D), θ ∈ I} equals

(3.10) J(θ) =
1

2

d∑
j=1

(
aj

1 + ajθ

)2

.

P r o o f. The idea of the proof is to use formula (3.9). Let P (λ) be the char-
acteristic polynomial of the matrix D−1/2CD−1/2. We have

P (λ) = det(D−1/2CD−1/2 − λIn)
= det(D−1C − λIn) = (detD)−1 det(C − λD).

On the other hand, P (λ) =
∏n
j=1(aj − λ). It follows that

det(θC +D) = detD × θdP (−1/θ) = detD
d∏
j=1

(θaj + 1).

The last formula allows us to compute easily d2

dθ2

(
ln det(θC +D)

)
. First we see

that
d

dθ

(
ln det(θC +D)

)
=

d
dθ det(θC +D)

det(θC +D)
=

d∑
j=1

aj
θaj + 1

.

One more derivation and formula (3.9) lead to (3.10). �

We finish by computing the Fisher information of two Gaussian models in
Rd, parametrized by an explicitly given segment of covariances. First, let A be a
circulant matrix with the first row e2 + ed = (0, 1, 0, . . . , 0, 1). Then for a segment
I ⊂ R containing 0 and θ ∈ I we have

(3.11) θA+ Id =



1 θ 0 . . . 0 θ
θ 1 θ 0 . . . 0
0 θ 1 θ 0 . . .

. . . . . . . . .
0 . . . 0 θ 1 θ
θ 0 . . . 0 θ 1


∈ S+d .

COROLLARY 3.5. The Fisher information of the model
(
N(0, θA + Id)

)
θ∈I

is given by

(3.12) J(θ) =
1

2

d−1∑
j=0

(
2 cos

(
(2πj)/d

)
1 + 2θ cos

(
(2πj)/d

))2

.
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P r o o f. LetA be a circulant matrix with the first row (r0, r1, . . . , rd−1). It is
well known (see, e.g., [5]) and easy to check that if ϵ is a d-th root of unity, ϵd = 1,
then a =

∑d−1
l=0 rlϵ

l is an eigenvalue of A with an eigenvector (1, ϵ, ϵ2, . . . , ϵd−1).
Therefore, if ϵj = e(2πji)/d, j = 0, . . . , d − 1, are the d distinct d-th roots of

unity, then the matrix A has d distinct eigenvalues aj =
∑d−1

l=0 rlϵ
l
j . In our partic-

ular case, we have

aj = e(2πji)/d + e[2(d−1)πji]/d = 2 cos

(
2πj

d

)
.

Formula (3.12) follows from Theorem 3.1. �

Now, let us consider a tridiagonal matrix C such that

(3.13) θC + Id =



1 θ 0 0 0 . . .
θ 1 θ 0 0 . . .
0 θ 1 θ 0 . . .

. . . . . . . . . . . .
0 . . . 0 θ 1 θ
0 . . . 0 0 θ 1


.

As in the preceding case, there exists a segment I ⊂ R such that θC + Id ∈ S+d
for θ ∈ I .

COROLLARY 3.6. The Fisher information of the model
(
N(0, θC + Id)

)
θ∈I

is given by

(3.14) J(θ) =
1

2

d∑
j=1

(
2 cos

(
[j/(d+ 1)]π

)
1 + 2θ cos

(
[j/(d+ 1)]π

))2

.

P r o o f. We will apply Theorem 3.1 with C and D equal to Id. Expanding
ψd(λ) = det (C − λId) along the first row, we get ψd(λ) = −λψd−1(λ)−M1,2.
Expanding the minor M1,2 along its first column gives M1,2 = ψd−2(λ) and

ψd(λ) = −λψd−1(λ)− ψd−2(λ), d ­ 3.

We set φd(λ) = (−1)dψd(2λ) and obtain

φd(λ) = 2λφd−1(λ)− φd−2(λ), d ­ 3,

with initial conditions φ1(λ) = 2λ, φ2(λ) = 4λ2 − 1. Therefore, φd is a Tcheby-
shev polynomial of the second kind [14] and it satisfies

φd(cosx) =
sin(d+ 1)x

sinx
, d ­ 1.
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We have, for all λ ∈ [−2, 2],[
ψd(λ) = 0⇔ φd

(
λ

2

)
= 0

]
=⇒ sin(d+ 1)x

sinx
= 0, x = arccos

λ

2
.

Therefore, λj = 2 cos
(
[j/(d+ 1)]π

)
, 1 ¬ j ¬ d, are d distinct eigenvalues of the

matrix C. �

3.2. Exponential families of Wishart distributions. Wishart distributions on
the cone S+d are defined as elements of natural exponential families generated by
Riesz measures (see [4]). Recall that the Riesz measures µp on the cone S+d are
unbounded positive measures such that their Laplace transform equals, for t ∈ S+d ,

Lµp(t) =
∫
S+d

e−⟨t,x⟩dµp(x) = (det t)−p.

By the celebrated Gindikin theorem, such measures exist if and only if p belongs
to the Gindikin set Λd = {1/2, . . . , (d − 1)/2} ∪

(
(d − 1)/2,∞

)
. Their support

is equal to the cone S+d if and only if p > (d− 1)/2 and they are absolutely con-
tinuous in that case with a density Γd(p)

−1(detx)p−(d+1)/2, x ∈ S+d , where

Γd(p) = Γ(p)Γ

(
p− 1

2

)
. . .Γ

(
p− d− 1

2

)
.

Otherwise, when p ∈ {1/2, . . . , (d− 1)/2}, the measures µp are singular and con-
centrated on semi-positive symmetric matrices of rank 2p.

The family of Wishart distributions W (p; s) on the cone S+d is defined as
the natural exponential family generated by the Riesz measure µp. It means that
p ∈ Λd, s ∈ S = −S+d and

W (p; s)(dx) =
e⟨s , x⟩

Lµp(−s)
µp(dx)

= e⟨s, x⟩
(
det(−s)

)p
µp(dx) = e⟨s , x⟩−Kp(s)µp(dx)

with Kp(s) = −p ln det(−s). It follows that

LW (p; s)(t) = det
(
Id + (−s)−1t

)−p and µp(dx) = eTrxW (p;−Id).

Wishart distributions are multivariate analogs of the gamma distributions
λpΓ(p)−1e−λxxp−1dx on R+ (p > 0, λ > 0), considered with a canonical pa-
rameter s = −λ < 0. As in dimension one, the Wishart distributions are often
parametrized by a scale parameter σ = (−s)−1 ∈ S+d and then the notation γ(p;σ)
=W

(
p; (−σ)−1

)
is used, cf. [11]. The study of Wishart distributions is motivated
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by their importance as estimators of the covariance matrix of a Gaussian model
in Rd.

Let us apply our results on the Fisher information to a natural exponential
family of Wishart distributions {W (p; s) : s ∈ −S+d }. The mean equals m(s) =
K ′p(s) = p(−s)−1 ∈M = S+d and the inverse mean map ψ : S+d →−S

+
d is of the

form ψ(m) = −pm−1.
Thus the Wishart family Q(m,µp) parametrized by the domain of means is,

up to a trivial reparametrization m→ p−1m, the family parametrized by its scale
parameter:

(3.15) Q(m,µp) =W (p;−pm−1) = γ(p; p−1m), m ∈ S+d .

As v(s) = K ′′p (s) = p(s−1 ⊗ s−1), it follows that the variance function is

(3.16) V (m) =
1

p
(m⊗m).

The Fisher information of the model {W (p; s) : s ∈ −S+d } is

I(s) = ps−1 ⊗ s−1.

By Theorem 2.1 the Fisher information of the model {Q(m,µp), m ∈M} is equal
to J(m) = pm−1 ⊗m−1.

Consequently, using the reparametrizationm→ p−1m = σ and the chain rule,
we see that the Fisher information matrix of the Wishart model {γ(p;σ) : σ∈S+d }
parametrized by the scale parameter σ equals J(σ) = pσ−1 ⊗ σ−1.

THEOREM 3.2. Let I = (a, b) ⊂ R and C,D ∈ Sd be such that the relation
IC +D ⊂ S+d is satisfied. Then the Fisher information J(θ) of the Wishart model
{γ(p; θC +D) : θ ∈ I} satisfies the formulas

J(θ) = pTr
(
C(θC +D)−1

)2
,(3.17)

J(θ) = −p d
2

dθ2
(
ln det(θC +D)

)
,

J(θ) = p
d∑
j=1

(
aj

1 + ajθ

)2

,(3.18)

where a1, . . . , ad are the eigenvalues of the matrix D−1/2CD−1/2.

P r o o f. The proofs are similar to the proofs of the analogous results for ex-
ponential Gaussian families in the previous subsection. The condition (3.3) holds
true: ⟨m, ψ(m)⟩ = −pd, the model {γ(p; θC +D) : θ ∈ I} is equal to the model
{Q(θpC + pD, µp) : θ ∈ I} parametrized by the means and we have

Kp

(
ψ(θpC + pD)

)
= p log det(θC +D). �
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COROLLARY 3.7. Let σ1, σ2 ∈ S+d and let I be the open interval containing
θ such that σθ = θσ1 + (1 − θ)σ2 ∈ S+d . The Fisher information of the model
{γ(p;σθ) : θ ∈ I} is equal to J(θ) = pTr

((
(σ1 − σ2)σ−1θ

)2)
.

P r o o f. We write θσ1 + (1− θ)σ2 = θ(σ1 − σ2) + σ2 and then we apply the
formula (3.17). �

Using (3.18) we obtain the following corollary, analogous to Corollaries 3.5
and 3.6.

COROLLARY 3.8. 1. Let us consider the model {γ(p; θA+ Id) : θ ∈ I} with
θA+ Id as in (3.11). Then its Fisher information equals

J(θ) = p
d−1∑
j=0

(
2 cos

(
(2πj)/d

)
1 + 2θ cos

(
(2πj)/d

))2

.

2. Let us consider the model {γ(p; θC + Id) : θ ∈ I} with θC + Id as in
(3.13). Then its Fisher information equals

J(θ) = p
d∑
j=1

(
2 cos

(
[j/(d+ 1)]π

)
1 + 2θ cos

(
[j/(d+ 1)]π

))2

.

REMARK 3.1. Let Ps(µ) be the natural exponential family corresponding to
the Gaussian general exponential family (3.6). If W has the law N(u, s−1) given
by (3.6), then T (W ) has the law Ps(µ). On the other hand, it is well known that
−T (W ) = 1

2(W − u)(W − u)
T has the Wishart law γ

(
1
2 ; 2s

−1). This explains
why the formulas for the Fisher information are the same for the Gaussian family
and for the Wishart family with p = 1

2 .

3.2.1. Exponential families of non-central Wishart distributions. Let us complete
the section on the Wishart models by considering the non-central case. The main
reference is [11]. Let p ∈ Λd, a ∈ S+d and σ ∈ S+d . The non-central Wishart distri-
bution γ(p, a;σ) is defined by its Laplace transform

L γ(p, a;σ)(t) =
∫
S+d

e−Tr(tx)γ(p, a;σ)(dx)

= det(Id + σt)−pe−Tr(t(Id+σ t)
−1σaσ)

for all t ∈ S+d . If p ­ (d − 1)/2, then non-central Wishart laws exist for all a ∈
S+d ; if p ∈ {1/2, . . . , (d− 2)/2}, then a must be of rank at most 2p (see [12]). If
p = n/2, n ∈ N, then the non-central Wishart distributions are constructed in the
following way from n independent d-dimensional Gaussian vectors Y1, . . . , Yn.

Let Yj ∼ N(mj , Σ) and let M be the d × n matrix [m1, . . . ,mn]. Then the
d × d matrix W = Y1Y

T
1 + . . . + YnY

T
n has the non-central Wishart distribution
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γ(p, a;σ) with p = n/2, σ = 2Σ and σaσ = MMT . Such Wishart distributions
are studied in [15].

The non-central Wishart distributions may be constructed as a natural expo-
nential family {W (p, a; s) : s ∈ −S+d } generated by the positive measure µ =

µa,p(dx) = eTr(a+x)γ(p, a; Id)(dx). Its moment generating function is given for
s ∈ −S+d by ∫

S+d

eTr(sx)µa,p(dx) = det(−s)−peTr(a(−s)−1).

We have W (p, a; s) = γ
(
p, a; (−s)−1

)
. Like for central Wishart families, we have

S = −S+d . The cumulant function is

K(s) = −p log det(−s) + Tr
(
a(−s)−1

)
.

As before, we put σ = (−s)−1. We see that the mean equals

(3.19) m(s) = K ′(s) = p(−s)−1 + (−s)−1a(−s)−1 = pσ + σaσ

and the covariance is of the form

v(s) = K ′′(s) = pσ ⊗ σ + (σaσ)⊗ σ + σ ⊗ (σaσ)(3.20)
= −pσ ⊗ σ +m⊗ σ + σ ⊗m.

When the matrix a is non-singular, the inverse mean map ψ(m) = s is such that

(3.21) (−s)−1 = σ = −p
2
a−1 + a−1/2

(
a1/2ma1/2 +

p2

4
Id

)1/2

a−1/2.

For other cases see [11], Proposition 4.5. In order to write the variance func-
tion V (m) = v

(
ψ(m)

)
we compose the last expression from (3.20) and the for-

mula (3.21).
For a model

{
W

(
p, a;ψ(θA + B)

)
: θ ∈ I

}
parametrized by a segment of

means, the Fisher information J(θ) is obtained from the expression of V (m) and
Theorem 2.1.

EXAMPLE 3.1. Suppose that a = Id, A = αId and B = βId, α, β > 0. The
Fisher information on θ is

J(θ) = α2d

(
(p2 + 2θα+ 2β)

(
θα+ β +

p2

4

)1/2

− 2p(θα+ β)− p3

2

)−1
.

3.3. Applications to estimation of the mean in exponential families parametri-
zed by a segment of means. Consider a sampleX1, . . . , Xn of a random variableX
from a natural exponential family Q(m,µ) parametrized by the domain of means
M , where the parameter m = EX is unknown and M is open. The following
qualities of the sample mean X̄n as an estimator of m are known; for the sake of
completeness we provide a short proof of properties which are less evident.
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PROPOSITION 3.1. The sample mean X̄n is an unbiased, consistent and effi-
cient estimator of the parameter m. It is a maximum likelihood estimator of m.

P r o o f. By Theorem 2.1 we have CovX=V (m)=J(m)−1, so the Cramér–
Rao bound is attained by X . Consequently, the sample mean X̄n is an efficient
estimator of m. It follows from (2.7) that the sample mean X̄n is a maximum
likelihood estimator of m. One can also first show by (2.2) that the maximum
likelihood estimator of s is ŝ = (K ′)−1(X) = ψ(X) and next use the functional
invariance of the maximum likelihood estimator (see [3], Theorem 7.2.10). �

REMARK 3.2. For general exponential families Q(m,T, ν) parametrized by
an open domain of means M, all these properties remain valid for m̂ = T (X)n as
an estimator of m = ET (X).

Consider an exponential family Q(θA+ B,µ) parametrized by a segment of
means IA+B ⊂M with A ̸= 0, B ∈ E and θ ∈ I , a segment in R. We will now
discuss estimators of the real parameter θ when we know that the mean is of the
form EX = m ∈ IA+B.

The segment IA + B ⊂ M is of dimension one and has an empty interior
in M . That is why the efficiency and maximum likelihood properties of the es-
timator m̂ = X̄n are not automatically inherited by natural estimators of the real
parameter θ. Determining a maximum likelihood estimator for θ seems impossi-
ble explicitly. This is the “price to pay” for the parsimony of the segment model
parametrized by m ∈ IA+B. On the other hand, the efficiency of estimators of θ
may be studied thanks to Theorem 2.1 and its corollaries.

Knowing that

(3.22) m = θA+B

for a value θ ∈ I , we have many possibilities of writing down a solution θ of
equation (3.22). IfA ̸= 0 then the solution θ is unique (Aθ+B = Aθ′+B implies
θ = θ′ when A ̸= 0). For any C such that ⟨A, C⟩ ̸= 0 we have

θ =
⟨m−B, C⟩
⟨A, C⟩

.

We define an estimator θ̂C of the parameter θ by

θ̂C =
⟨X̄n −B, C⟩
⟨A, C⟩

.

All the estimators θ̂C are unbiased and consistent. The natural question is
whether they are efficient. The variance of θ̂C may be computed by using the vari-
ance function V (m) of the exponential family:

(3.23) Var θ̂C =
1

⟨A,C⟩2
Var⟨X̄n, C⟩ =

Vec(C)TV (θA+B)Vec(C)

n⟨A,C⟩2
.
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On the other hand, the Cramér–Rao bound is equal, by Theorem 2.1, to

(3.24)
1

nJ(θ)
=

1

nVec(A)T V (θA+B)−1 Vec(A)
.

When the state space is a square matrix space Rd×d and the matrix A is in-
vertible, we can take C = A−1 and consider the estimator

θ̂A−1 =
⟨X̄n −B,A−1⟩

d
.

The following theorem shows that for Gaussian and central Wishart exponential
families and for linearly dependent A and B the estimator θ̂A−1 is efficient as an
estimator of the mean m (with Xi replaced by T (Xi) = −1

2(Xi − u)(Xi − u)T
in the Gaussian case). In conclusion, we obtain efficient estimators for Gaussian
models parametrized by a covariance segment parameter and for Wishart models
parametrized by a scale segment parameter.

THEOREM 3.3. 1. Let I ⊂ R+ be a non-empty segment. Let c ­ 0, A ∈ S+d
and B = cA.

(1a) Consider an n-sample (X1, . . . , Xn) from a Gaussian family Q(m,T, ν)
defined by (3.7), where m = θA+B, θ ∈ I . Then

θ̂A−1 =
⟨T (X)n −B,A−1⟩

d

is an unbiased efficient estimator of the parameter θ.
(1b) Consider an n-sample (X1, . . . , Xn) from a Wishart model Q(m,µp)

defined by (3.15), where m = θA+B, θ ∈ I . Then

θ̂A−1 =
⟨X̄n −B,A−1⟩

d

is an unbiased efficient estimator of the parameter θ.
2. Let c ­ 0, C ∈ S+d and D = cC.
(2a) Let us consider an n-sample (X1, . . . , Xn) from a Gaussian model

{N(u, θC +D), θ ∈ I} parametrized by a segment of covariances. An unbiased
efficient estimator of θ is given by

θ̂ =
1

d

⟨
1

n

n∑
i=1

(Xi − u)(Xi − u)T −D,C−1
⟩
.

(2b) Let us consider an n-sample (X1, . . . , Xn) from a Wishart model
{γ(p, θC + D), θ ∈ I} parametrized by a segment of scale parameters. Un un-
biased efficient estimator of θ is given by

θ̂ =
⟨p−1X̄n −D,C−1⟩

d
.
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P r o o f. For the first part of the theorem, we give the proof in the Wishart
case. The proof in the Gaussian case is identical, with p = 1

2 , cf. Remark 3.1. By
formulas (3.23) and (3.16) we have

Var θ̂A−1 =
1

pd2n
Tr

(
(Aθ +B)A−1(Aθ +B)A−1

)
=

(θ + c)2

pdn
.

On the other hand, by (3.24) and (3.16), we obtain

1

nJ(θ)
=

1

npTr
(
A(Aθ +B)−1A(Aθ +B)−1

) =
1

np(θ + c)−2d
.

Thus Var θ̂ = 1/
(
nJ(θ)

)
and the estimator θ̂A−1 is efficient.

The second part of the theorem follows by necessary reparametrizations. For
(2a), using (3.7), we write θC +D = −2m with m = θA+B, where A = −C/2
and B = −D/2. The part (2b) follows similarly from (3.15). �

REMARK 3.3. It is an open question whether θ̂A−1 may be efficient for in-
dependent A and B. Let n = 1. The equality Var θ̂ = 1/J(θ) holds if and only if,
writingDθ=(Aθ+B)A−1(Aθ+B)A−1, the equality d−2Tr(Dθ)=1/Tr(D−1θ )
holds for all θ ∈ I .
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