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Abstract. We propose a modification of the data driven score rank tests
studied recently in Inglot et al. (2012) by an appropriate choice of the or-
thonormal system. The simulation study confirms much better performance
of the new tests for alternatives with dominating asymmetry in the tails and
comparable sensitivity for other types of alternatives. In effect we obtain
omnibus tests for symmetry which are equal to the best existing procedures
for typical alternatives and overtake them significantly for atypical ones.
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1. INTRODUCTION

Let X1, . . . , Xn be i.i.d. real random variables with a continuous distribution
function F (x) and with the median 0 (or with a known median by whichXi’s have
already been centered). We are going to test

H0 : F (x) = 1− F (−x), x ∈ R,

i.e. to test the symmetry of F about a known center 0. So, we consider a little dif-
ferent problem than testing symmetry about 0, namely we restrict our attention to
the class of distributions with the median 0. Therefore, our solution is not expected
to be powerful for alternatives with nonzero median.

Nowadays many tests of symmetry about 0 or about a known median are
available and the problem takes a constant interest of many statisticians. For some
overview of the literature we refer to [2]. Among a wide variety of constructions
the Modarres and Gastwirth test (see [4]) has proved to be particularly powerful. It
is a test of symmetry about 0 and can detect a nonzero median and asymmetry in
the tails and does not have an omnibus character. The data driven score rank tests
proposed in [2] are able to detect any type of asymmetry. However, they have a
lower sensitivity for detecting asymmetry in the tails.
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The aim of the present note is to refine the data driven tests proposed in [2].
We do it by an appropriate choice of an orthonormal system on the unit interval.
Some attempt in this direction was made by Józefczyk [3]. We propose another
orthonormal system than that used by Józefczyk, which seems to be better fitted
to detecting different types of asymmetry. The paper is strongly related to [2] and
applies some results of that paper. So, when possible, we avoid repeating similar
considerations but simultaneously keep the paper self-contained.

In Sections 2 and 3 we construct test statistics and establish their asymptotic
distribution. The main results are given in Section 4 where we present empirical
performance of the new tests. Proofs are provided in Section 6.

2. TEST STATISTICS

Denote by Fs(x) =
1
2

(
F (x) + 1 − F (−x)

)
the distribution function of the

symmetric part of F and put Fa = F − Fs. Transform the data into the unit in-
terval using Fs to obtain U1, . . . , Un with Ui = Fs(Xi), i = 1, . . . , n. Since F is
absolutely continuous with respect to Fs, the transformed data Ui have an abso-
lutely continuous distribution function F ◦ F−1s (t) = t + A(t), t ∈ [0, 1], and a
density of the form

(2.1) p(t) = 1 + a(t), t ∈ [0, 1],

where a(t) is an antisymmetric – with respect to t = 1/2 – derivative of A(t).
So, testing H0 is equivalent to testing that a = 0. Observe that |a(t)| ¬ 1 a.s. and
contains all information about an asymmetry of F .

Let d(n) > 1 be a (possibly unbounded) nondecreasing sequence of natural
numbers. For every n > 1 consider a triangular array

(2.2) gk = (gk1, gk2, . . . , gkk) = (g
(n)
k1 , g

(n)
k2 , . . . , g

(n)
kk ), k = 1, 2, . . . , d(n),

of bounded rowwise orthonormal functions in L2[0, 1], antisymmetric with respect
to 1/2 such that for each gkj there exists a finite partition of the unit interval into
lkj intervals on which gkj is absolutely continuous. In [2], gk consisted of the first
k odd Legendre polynominals while in [3] systems of indicator functions were
taken into account. Our setting includes them as special cases and allows for more
flexible solutions. For example, one can select various subsets of gd(n) to form
consecutive rows of a triangular array or replace some functions from gd(n) by
other ones when forming successive rows (cf. [3]).

For 1 6 k 6 d(n) consider the sequence of exponential families of densities
on the interval [0, 1],

(2.3) ck(ϑ) exp
{ k∑

j=1

ϑjgkj(t)
}
, k = 1, 2, . . . , d(n),
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where ϑ = (ϑ1, . . . , ϑk)
T ∈ Rk, vT stands for the transposition of a vector v and

ck(ϑ) is the normalizing constant.
Suppose that p(t) = 1+ a(t) can be treated approximately as a member of the

family (2.3). Then H0 reduces to H ′0 : ϑ = 0. By the orthonormality of the system
gk, the score statistic for such a parametric problem takes the form

(2.4)
k∑

j=1

{
1√
n

n∑
i=1

gkj
(
Fs(Xi)

)}2

.

Let Fns(x) be the empirical distribution function of the pooled sample
Z = (X1, . . . , Xn,−X1, . . . ,−Xn). Then Fns(x) = Ri/(2n), where Ri is the
rank of Xi in Z. Estimating an unknown distribution function Fs by Fns and tak-
ing into account the usual continuity correction, we obtain the statistic (2.4) in the
form

Tk =
k∑

j=1

ĝ2kj ,

where

(2.5) ĝkj =
1√
n

n∑
i=1

gkj

(
Fns(Xi)−

1

4n

)
=

1√
n

n∑
i=1

gkj

(
2Ri − 1

4n

)
are linear rank statistics, thus invariant in the class of symmetric distributions,
which implies that Tk is a distribution-free statistic for testing symmetry.

Up to now, the dimension k was arbitrarily chosen, but we want to fit it to the
data at hand. To this end we apply a Schwarz-type selection rule (cf. [2]) defined
by the formula

S = min{k : 1 6 k 6 d(n), Tk − k log n = max
1¬j¬d(n)

(Tj − j log n)}

and denote the corresponding data driven statistic by TS .
An alternative to S is a less conservative selection rule L, we take here, which

was introduced in Inglot and Janic [1] and applied to testing symmetry in [2]. Let
1 6 Dn < d(n) be a natural number and δn > 0 a small number. Define thresholds
cjn, j = 1, . . . , Dn, by the equations

(
2− 2Φ(cjn)

)j
= δnD

−1
n

(
d(n)
j

)−1
,

where Φ denotes the standard normal distribution function. Next, order
ĝ2d(n)1, . . . , ĝ

2
d(n)d(n) from the smallest to the largest, obtaining G2(1), . . . ,G

2
(d(n)),

and consider the event En = {G2(d(n)) > c21n} ∪ . . . ∪ {G2(d(n)−Dn+1) > c2Dnn
}.

Then define the data dependent penalty π(j, n) = j log n · 1Ec
n
+ 2j · 1En , where
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1E denotes the indicator of a set E and Ec denotes the complement of E, the
corresponding selection rule L,

L = min
{
1 ¬ k ¬ d(n) : Tk − π(k, n) = max

16j6d(n)

(
Tj − π(j, n)

)}
,

and the data driven statistic TL = TL(Dn, δn). By the above considerations, TS
and TL can be applied as test statistics of upper-tailed distribution-free data driven
tests for testing H0.

Now, we propose for future use a particular triangular array gk, 1 6 k 6 d(n).
For 0 < ∆ < 1/4 transform the odd Legendre polynomials on [0, 1] linearly onto
the set I0 =

[
∆, 12 −∆

]
∪
[
1
2 +∆, 1−∆

]
, put value 0 outside this set, normalize

and denote the resulting functions by b1, b3, . . . Next, define the function hc(t) =
sign(2t− 1)(2∆)−1/21[0,2∆](|2t− 1|). For an interval I = [u, v] ⊂ [1/2, 1] define
the antisymmetric trapezoid function

(2.6) hI(t) = C[|4t− 2|+ 2 + v − 5u]1[2u,2v](1 + |2t− 1|), t ∈ [0, 1],

with C = sign(2t− 1)
√

3/
(
62(v − u)3

)
.

For n = 100 we take d(n) = 6 and ∆ = 1/16. Putting I1 = [1 −∆, 1] and
hI1 = h1, consider the orthonormal system b3, h1, b1, hc, b5, b7. Now, we take gk,
k = 1, . . . , 6, as the first k functions of this system and use such a triangular array
and the corresponding data driven tests in our simulation study.

To give the reader some hints how to modify the above triangular array for
other sample sizes we propose d(n) to be slowly increasing with n and ∆ = ∆d(n)

be depending only on d(n) and equal approximately to 3/
(
8d(n)

)
. We propose to

take b3, h1, b1, hc for d(n) = 4 while b3, h1, b1, hc, b5 for d(n) = 5. For d(n) > 6
set d1(n) equal approximately to 2

3d(n) and put d2(n) = d(n)− d1(n). Divide the
interval [1−∆d(n), 1] onto d2(n)− 1 subintervals I1, . . . , Id2(n)−1 of equal length
and consider the corresponding functions hIj = hd2(n)−j , j = 1, . . . , d2(n) − 1.
Then we propose to take

(2.7) gd(n) = (b3, h1, b1, h2, b5, h3, b7, . . . , b2d1(n)−1),

where the functions bj and hj are taken alternately until all the functions hj have
been exhausted. Additionally, we place the function hc (based on the actual ∆d(n))
approximately on the position d1(n). Obviously, we obtain the orthonormal sys-
tem. Having defined gd(n) we take gk as the first k functions of this system. Note
that the functions hj are designed to detect asymmetry on the tails while bj mea-
sure asymmetry in the middle part of a distribution. The function hc measures
asymmetry in the very center and is useful especially for distributions which are
bimodal or have a density close to 0 in the center. We propose the above triangular
array after some trials which convinced us that we obtain a good testing procedure
for different sample sizes. However, we have no justification that such choice is
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optimal and one may seek for some further improvements. The same concerns an
ordering suggested in (2.7). When d2(n) > 2 the functions hj , 1 < j < d2(n),
may be replaced by the indicator functions of the corresponding intervals equipped
with an appropriate sign.

3. ASYMPTOTIC BEHAVIOUR OF THE TEST STATISTICS

In this section we present asymptotic results for the test statistics TS and TL
constructed in Section 2.

First, we make assumptions on a triangular array gk, k = 1, . . . , d(n), intro-
duced in (2.2). Assume that there exist constants η ­ 0, ζ ­ 0 and κ > 0 such that
for some positive constant c the following conditions hold true:

max
16k6d(n)

max
16j6k

sup
t∈[0,1]

|gkj(t)| 6 c[d(n)]η,(3.1)

max
16k6d(n)

max
16j6k

lkj(t) 6 c[d(n)]ζ ,(3.2)

max
16k6d(n)

k∑
j=1

( 1∫
0

|g′kj(t)|dt
)2 6 c[d(n)]κ.(3.3)

To obtain asymptotic results for our test statistics we adopt the idea of [3] and
approximate each gkj by an absolutely continuous function on [0, 1], normalize it,
and use the results from the Appendix in [2]. Details are given in Section 6.

Set

(3.4) ρ = max (κ, 2η + 2ζ + 1).

Note that the system defined by (2.7) satisfies (3.1)–(3.3) with η = 1/2,
lkj 6 5, ζ = 0 and any κ > 3/2. Hence for this system we have ρ = 2.

The following theorem, proved in Section 6, establishes an asymptotic be-
haviour of TS and TL under the null hypothesis.

THEOREM 3.1. Suppose that H0 is true and (3.1)–(3.3) are satisfied and
d(n) = O(nτ ) for some τ < 1/(1 + 2ρ) with ρ given in (3.4).

(1) Then S P−→ 1 and TS
D−→ χ2

1 as n→∞, where χ2
k denotes a random vari-

able with the central chi-square distribution with k degrees of freedom.
(2) If 1 ¬ Dn 6 D < d(n), where D is a fixed number and δn > 0 is such

that log(1/δn) = o(n1/(1+2ρ)) and log (1/δn)/d(n)→∞, then

P(L = S)→ 1 and TL
D−→ χ2

1 as n→∞.

The second theorem concerns the asymptotic behaviour of TS and TL under
alternatives.
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THEOREM 3.2. Suppose (3.1)–(3.3) are satisfied, d(n) = O(nτ ) for some
τ < 1/(1 + 2ρ) with ρ given by (3.4) and F is a fixed asymmetric distribution
function such that

(3.5) ω4
n =

n

[d(n)]ρ log2 n

∣∣ 1∫
0

gd(n)(t) a(t)dt
∣∣2
d(n)
→∞ as n→∞,

where a is defined in (2.1) and |v|k = (v21 + v22 + . . . + v2k)
1/2 denotes the

Euclidean norm of a vector v = (v1, . . . , vk)
T . Then TS → ∞ and TL → ∞ in

probability. Consequently, for Dn and δn as in Theorem 3.1 (2) the tests based on
TS and TL are consistent in the family of alternatives satisfying (3.5).

Observe that (3.5) is a weak condition. For example, if d(n)→∞ and rows gk

consist of k first functions of a complete orthonormal system, then, by Parseval’s
inequality, (3.5) holds trivially for any a ̸= 0. Since the set I0 = I0n increases to
[0, 1] when d(n)→∞, the system defined in (2.7) also satisfies (3.5) for any a ̸= 0
provided d(n)→∞.

4. SIMULATION STUDY

In this section we present results of an extensive simulation study in which we
compare performance of our tests based on statistics TS and TL with some tests
which proved to be powerful for various asymmetric distributions. For notational
convenience we shall denote here the new tests by TS and TL. We restrict our
attention only to the case n = 100 and the typical significance level 0.05. As was
said at the end of Section 2 we take d(n) = 6 and g6 = (b3, h1, b1, hc, b5, b7) as
the orthonormal system. For the selection rule L we take Dn = 3, δn = 0.05.
All computations were performed by using R. Every Monte Carlo experiment was
repeated at least 10,000 times.

Critical values. Due to slow convergence of the test statistics TS and TL
to their asymptotic distribution we use simulated critical values (see, e.g., [2]
for more explanations). In Table 1 we provide empirical critical values for some
choices of n. For n = 50 we took d(50) = 5, Dn = 2, while for n = 400 we took
d(400) = 8, Dn = 3 and g8 = (b3, h1, b1, h2, b5, hc, b7, b9).

Table 1. Simulated critical values of TS and TL. α = 0.05,
n = 50, 100, 400, d(50) = 5, d(100) = 6, d(400) = 8; 30,000 MC runs

Test n = 50 n = 100 n = 400

TS 5.590 5.290 4.524
TL 6.177 6.362 5.986

In power simulations we used critical values from Table 1.

Tests for comparisons. As competitors of TS and TL we consider here the
tests which showed the best performance in simulations presented in [2]. They are
as follows:
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• The Modarres and Gastwirth hybrid test, denoted byMG, with p = 0.8 and
α1 = 0.01, α2 = 0.0404 as was suggested by the authors. For detailed description
see [4].

• The test based on the function h1(t) (which, in our case, is h[15/16,1](t), cf.
(2.6)) denoted here byH . Because the test statistic nĥ21 tends fast to the asymptotic
chi-square distribution with one degree of freedom, we use the asymptotic critical
value 3.841.

• The Inglot et al. [2] data driven tests NS and NL3 based on the system of
the odd Legendre polynominals, denoted here by NS and NL.

Alternatives. We have considered a broad spectrum of alternatives including
the popular Tukey family (denoted by Tuk(λ3, λ4)) and the generalized lambda
family (denoted by Lamb(λ3, λ4)). Most of them have been described in [2] or [3],
but some are new. For the reader’s convenience we provide a full list of alternatives
divided into three groups according to a structure of their asymmetry. We took 16
alternatives from the first group, 8 from the second and 4 from the third.

Let χ2
k(x) denote the density of the chi-square distribution with k de-

grees of freedom, βξ,η(x), ξ, η > 0, the density of the beta distribution, c(x) =
1/[π(1 + x2)] the density of the Cauchy distribution, ϕ(x) the standard normal
density function, U a random variable uniformly distributed on [0, 1] and Z a ran-
dom variable with the standard normal distribution. Additionally, define the density
function en(x) by the formula

en(x) = c[ϕ(x+ 1)1(−∞,−1)(x) + ϕ(0)1[−1,1](x) + ϕ(x− 1)1(1,∞)(x)]

with c =
(
1 + 2ϕ(0)

)−1
. Each distribution, described below, is used as an alterna-

tive after centering by its median.
• Alternatives with dominating asymmetry in the tails:

Notation Description of a random variable or a density
Tuk(λ3,λ4) X = (Uλ3 − 1)/λ3 −

(
(1− U)λ4 − 1

)
/λ4, λ3, λ4 > 0;

Lamb(λ3,λ4) X = sgn(λ3)
(
Uλ3 − (1− U)λ4

)
, λ3 · λ4 > 0;

IG(θ, λ) f(x) =
√
λ/(2πx3) exp{−λ(x− θ)2/(2θ2x)}, x > 0,

θ, λ > 0;
B(θ) β2,θ(x), θ > 0;
Chi(θ) χ2

θ(x), θ = 1, 2, . . .;
F(θ) f(x) = 0.5 + 2xθ−2(θ − |x|)1(−θ,θ)(x), x ∈ [−1, 1],

θ ∈ [0, 1];
Lehm(θ) f(x) = θ · 0.5θ(x+ 1)θ−1, x ∈ [−1, 1], θ > 1;
NFech(θ) f(x) = ϕ

(
x/(1 + θ)

)
1(−∞,0](x) + ϕ

(
x/(1− θ)

)
1(0,∞)(x),

x ∈ R, θ ∈ (−1, 1);
EV(θ) f(x) = exp{(x− θ)− exp(x− θ)}, x ∈ R, θ ∈ R;
Ra(θ) f(x) = θ−2x exp{−x2/(2θ2)}, x > 0, θ > 0;
ShAsh(∞, θ) X = 0.5 exp {arcsinh(Z)/θ} − 0.5, θ > 0.
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• Alternatives with asymmetry in the tails and in the center:

Notation Density
CFech(θ) f(x) = c

(
x/(1 + θ)

)
1(−∞,0](x) + c

(
x/(1− θ)

)
1(0,∞)(x), x ∈ R,

θ ∈ (−1, 1);
NB(θ) f(x) = 0.8ϕ(x) + 0.2β3,3(x+ θ), θ ∈ R;
B2(θ) f(x) = 0.5

(
β2,θ(x+ 1) + β2,2(x)

)
, θ > 0;

Chi2(θ) f(x) = 0.5
(
χ2
θ(−x) + χ2

6(x)
)
, θ = 1, 2, . . .;

Sin(θ, j) f(x) = 0.5 + θ sin(πjx), x ∈ [−1, 1], θ ∈ [−0.5, 0.5], j > 1;
B4(θ) f(x) = 0.2β3,3(x) + 0.4β3,3(x+ 1) + 0.1β2,5(x+ 1) + 0.3β2,θ(x),

θ ∈ R;
NC(θ) f(x) = 0.5ϕ(x) + 0.5c(x− θ), θ ∈ R;
LC(θ) f(x) = 0.7ϕ(x− θ/0.7) + 0.3ϕ(x+ θ/0.3), θ ∈ R.

• Alternatives with asymmetry only in the center:

Notation Density
B3(θ) f(x) = 0.1β1,2(x+ 1) + 0.1β2,1(x) + 0.8β1,θ(x+m),

θ > 0, m− the median of β1,θ(x);
ENB(θ) f(x) = 0.2 en(x) + 0.8mβθ,2(mx+m), θ > 0,

m− the median of βθ,2(x);
N2B2(θ) f(x) = 0.25

(
ϕ(x− 2) + ϕ(x+ 2)

)
+ βθ,4(4x+ 4) + 0.75β6,3(3x),

θ > 0;
NC2(θ) f(x) = 0.3ϕ(x) + 0.4c(x− θ) + 0.3c(x+ 2θ), θ ∈ R.

Additionally, we wanted to verify how our tests perform for the problem of
testing symmetry about 0, i.e. for alternatives with nonzero median. For this pur-
pose we used alternatives Sin(θ, j), EV(θ), F(θ) and Lehm(θ) without centering by
their medians. We denote them by the same symbol adding ∗. Moreover, we took
the following two alternatives:

• Alternatives with nonzero median:

Notation Density
Logis(θ) f(x) = exp(x− θ)/

(
1 + exp(x− θ)

)2
, x ∈ R, θ ∈ R;

B3S(θ) f(x) = 0.3
(
β2,1(x+ 1) + β1,2(x)

)
+ 0.4β1,θ(x+ 0.5), θ > 0.

Power comparisons. In Table 2 we present results for alternatives from the
first group. As one could expect the directional tests MG and H attain the high-
est power. This is not surprising since TS and TL are omnibus tests. In spite of
this, TS loses with respect to MG only ca. 3–4%. But NS and NL are distinctly
weaker (ca. 11% on average with respect to TS and TL).

In Table 3 we show results for the second group. It is easily seen that now
H becomes much weaker but the other five tests perform almost equally well.
However, the testsNL and TL give a ca. 6% gain in average power toNS and TS,
respectively, since the lighter penalty in L allows for better detection of asymmetry
in the center.
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Table 2. Empirical powers (in %) of MG, H , NS, NL, TS and TL.
α = 0.05, n = 100, d(n) = 6; 10,000 MC. Dominating asymmetry in the tails

Alternative MG H NS NL TS TL

Tuk(0.1, 0.4) 61 64 43 40 56 52
Tuk(10, 0.9) 68 77 49 47 73 68
Tuk(7, 1.6) 72 76 55 52 70 66
Tuk(4, 6) 67 70 53 50 62 59
Lamb(0.025213, 0.094029) 86 86 74 70 80 77
Lamb(−0.0075,−0.03) 96 96 89 87 93 91
Lamb(−0.1,−0.18) 49 49 39 35 41 37
IG(0.05, 1) 56 60 41 37 51 46
B(4) 78 83 60 57 77 73
Chi(9) 89 90 75 72 87 84
F(0.15) 57 64 38 37 53 50
Lehm(1.2) 66 75 47 46 67 64
NFech(0.4) 68 67 54 51 60 57
EV(0.367) 89 88 76 73 84 82
Ra(1) 74 79 55 52 72 68
ShAsh(+∞, 4.5) 65 68 49 46 62 57
Average 71.3 74.5 56.1 53.4 68.0 64.4

Table 3. Empirical powers (in %) of MG, H , NS, NL, TS and TL. α = 0.05,
n = 100, d(100) = 6; 10,000 MC runs. Asymmetry in the tails and in the center

Alternative MG H NS NL TS TL

CFech(0.3) 49 36 56 52 48 46
NB(0.1) 56 40 69 66 56 59
B2(4) 47 32 55 57 55 70
Chi2(4) 50 38 49 49 44 54
Sin(0.5, 8) 44 50 44 98 56 70
B4(3) 46 38 38 36 36 41
NC(3.4) 57 34 83 82 66 69
LC(0.5) 67 59 61 57 58 56
Average 52.0 34.6 56.9 62.1 52.4 58.1

In Table 4, results for the third group are presented. In this case the tests MG
and H perform poor. This could be expected since they are designed to detect
asymmetry in the tails. All the data driven tests preserve good sensitivity. But the
new tests TS and TL are slightly better than NS and NL and give a ca. 2–6%
gain in average power.

In Table 5 we show empirical powers of the compared tests for alternatives
with nonzero median. Although the assumptions of our model are not satisfied, the
new tests perform comparably to MG. Here NS and NL are much better since
nonzero median is well detected by the first Legendre polynomial.

Finally, in Table 6 we compare powers of the new tests and MG with the
most powerful test (denoted by NP ) for five selected alternatives. For each al-
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Table 4. Empirical powers (in %) of MG, H , NS, NL, TS and TL. α = 0.05,
n = 100, d(100) = 6; 10,000 MC runs. Asymmetry only in the center

Alternative MG H NS NL TS TL

B3(2.5) 7 6 55 63 62 72
ENB(6) 7 5 25 30 40 41
N2B2(12) 11 7 67 72 46 69
NC2(1.4) 12 7 38 38 45 44
Average 9.3 6.3 46.3 50.8 48.3 56.5

Table 5. Empirical powers (in %) of MG, H , NS, NL, TS and TL. α = 0.05,
n = 100, d(100) = 6; 10,000 MC runs. Alternatives with nonzero median

Alternative MG H NS NL TS TL

Sin*(0.3, 3.5) 42 33 54 72 47 64
EV*(0.6) 69 47 72 70 63 64
F*(0.2) 8 5 11 24 11 30
F*(0.4) 31 5 81 93 32 65
Lehm*(1.2) 21 22 27 23 21 20
Logis(0.4) 36 23 49 44 32 33
B3S(2) 40 5 56 55 40 48
Average 35.3 20.0 50.0 54.4 35.1 46.3

Table 6. Empirical powers (in %) of NP and MG, TS and TL.
α = 0.05, n = 100, d(100) = 6; 10,000 MC runs

Alternative NP MG TS TL

Lehm*(1.2) 52 21 21 20
Sin*(0.3, 3.5) 100 42 47 64
LC(0.5) 86 67 58 56
B3(2.5) 100 7 62 72
ENB(6) 91 7 40 41
Average 85.8 28.8 45.6 50.6

ternative we take its symmetric part as the null distribution for constructing the
most powerful test. One can see thatMG performs unstably in opposite to the data
driven tests (and particularly to TL) which, being stable, keep approximately a
constant room in power to NP . On the average this room equals ca. 35% for TL.
This observation reflects optimality properties of data driven tests discussed in Sec-
tion 4.4.3 of [2].

For further illustration of the performance of the compared tests, in Figures
1–3 we present power curves for two alternatives selected from each group when
changing the parameter θ (or λ in one case) of the underlying distribution. All
figures confirm previous observations and a good performance of the new tests.
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Figures 1–3. Empirical power curves (in %) of MG (-∗-), H (-△-), NS (-�-),
NL (-•-), TS (-�-), TL (-◦-) for alternatives from the first, second
and third groups. n = 100, α = 0.05, d(100) = 6; 10,000 MC runs
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5. CONCLUSIONS

The presented simulation study shows that our main goal to refine the data
driven testsNS andNL has been achieved. The newly introduced data driven tests
TS and TL perform much better for alternatives with dominating asymmetry in the
tails and slightly better for alternatives with asymmetry in the center. To assess the
omnibus character of all compared tests we calculated average power over all 28
alternatives and obtained (in %): MG 56.9, H 53.4, NS 54.9, NL 55.4, TS 60.7,
TL 61.5. If one expects (or wants to detect) asymmetry in the tails then the tests
MG and H are the best ones but TS is only slightly weaker. When one expects
also strong asymmetry in the center then we recommend TL as the best solution.
Moreover, results presented in Table 5 show that TL preserves a good sensitivity
for alternatives with a nonzero median. For larger samples the tests TS and TL
perform better than for n = 100 in comparison with their competitors. For n = 50,
taking d(n) = 5, Dn = 2, one gets practically the same picture as for n = 100. For
smaller samples data driven score tests cannot give a profit from their construction.
However, for n = 25, d(25) = 4 andDn = 2 the tests TS and TL lose on average
ca. 5% in power with respect to MG.

6. PROOFS

In all proofs c denotes some generic constant different in each case. To prove
theorems stated in Section 3 we shall apply results from the Appendix in [2].

To this end, we modify each gkj in both ends of every interval from a partition
it determines and we obtain φ̃(n)

kj = φ̃kj in accordance with the following princi-
ples. Let [u, v] ∈ [0, 1] be one of the intervals from the partition determined by
gkj . If gkj has no zeros on

[
u, u+ 1

2n

]
, then we take φ̃kj(u) = 0, φ̃kj

(
u+ 1

2n

)
=

gkj
(
u + 1

2n

)
and φ̃kj linear on

(
u, u + 1

2n

)
. Otherwise, we choose one of zeros

in
[
u, u + 1

2n

]
, say z, and put φ̃kj(t) = 0 on [u, u + z] and φ̃kj(t) = gkj(t) on[

z, z + 1
2n

]
. The modification of gkj on the interval

[
v − 1

2n , v
]

is carried over
the same rule and φ̃kj = gkj on the rest of [u, v]. Additionally, the modification is
made in such a way that φ̃kj is antisymmetric with respect to 1/2. Obviously, each
φ̃kj is absolutely continuous on [0, 1]. However, φ̃k1, . . . , φ̃kk may no longer be
orthogonal and normalized.

In order to normalize φ̃kj observe that φ̃kj = gkj outside the set of Lebesgue
measure of at most lkj/n and ∥φ̃kj∥∞ ¬ ∥gkj∥∞, where for a bounded function v
on [0, 1] we put ∥v∥∞ = supt∈[0,1] |v(t)|. From (3.1) and (3.2) and the construction
of φ̃kj’s we also have

(6.1) 0 < 1− ∥φ̃kj∥2 =
1∫
0

(
g2kj(t)− φ̃2

kj(t)
)
dt 6 c[d(n)]2η+ζ

n
,
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where ∥v∥ stands for the L2-norm of a function v. Now, let us write

φkj =
φ̃kj

∥φ̃kj∥
, j = 1, 2, . . . , k, k = 1, 2, . . . , d(n),

and φk = (φk1, . . . , φkk)
T .

For each 1 ¬ k ¬ d(n) let λk denote the largest eigenvalue of the covari-
ance matrix Γk = [γk(i, j)] =

∫ 1

0
φk(t)

(
φk(t)

)T
dt. Then we have the following

lemma.

LEMMA 6.1. If (3.1) and (3.2) are satisfied and d(n)2η+ζ+1/n → 0 as
n→∞, then for sufficiently large n we have

max
16k6d(n)

λk 6 1 + c
[d(n)]2η+ζ+1

n
.

P r o o f. To simplify the notation we shall write d instead of d(n). Addition-
ally, set ξn = d2η+ζ . Since φkj are normalized, we have γk(i, i) = 1. For i ̸= j,
using orthogonality of gkj , (3.1), (3.2), (6.1) and the definition of φ̃kj we get

|γk(i, j)| 6
1

∥φ̃ki∥ ∥φ̃kj∥
∣∣ 1∫
0

φ̃ki(t)φ̃kj(t)dt
∣∣ 6 c

d2η+ζ

n
= c

ξn
n
.

This enables us to write
Γk = I +

ξn
n
Q,

where elements qij of the matrix Q are uniformly bounded. Put M = maxi,j |qij |.
Then the elements of Q2 are bounded by

∣∣∑
r qirqrj

∣∣ ¬M2k, the elements of Q3

by M3k2, and so on. Since

Γn
k =

(
I +

ξn
n
Q

)n

= I + ξnQ+

(
ξn
n

)2(n
2

)
Q2 + . . .+

(
ξn
n

)n(n
n

)
Qn,

the elements on the diagonal of Γn
k are bounded by

1 + ξnM + . . .+ ξnnM
nkn−1/n! < exp{Mdξn}.

Hence, λnk 6 k exp{Mdξn} 6 d exp{Mdξn} 6 exp{(M + 1)dξn}. Using the
assumption on d and the relation exp (u) ¬ 1 + 2u, being true for u ∈ [0, 1], we
get for every k and sufficiently large n

λk 6 exp

{
(M + 1)

dξn
n

}
6 1 + c

dξn
n
,

which completes the proof of the lemma. �
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In addition to ĝkj given by (2.5) define

φ̂kj =
1√
n

n∑
i=1

φkj

(
2Ri − 1

4n

)
and φ̂k = (φ̂k1, . . . , φ̂kk)

T . Additionally, put ĝk = (ĝk1, . . . , ĝkk)
T . Then we have

the following lemma.

LEMMA 6.2. If the conditions (3.1) and (3.2) are satisfied, then

(6.2) max
1¬k¬d(n)

|ĝk − φ̂k|2k ¬ c
[d(n)]2η+2ζ+1

n
a.s.

By (6.1), the proof goes the same way as that of Lemma 3.1 in [3]. So, we
omit it.

Before giving the proof of our theorems we state Theorems A.1 and A.2 from
[2] in our present setting.

THEOREM A (Inglot et al. [2]). Suppose H0 is true.
(1) Then for each fixed k, 1 ¬ k ¬ d(n),

|φ̂k|2k
D−→ χ2

k as n→∞.

(2) For any sequence k(n) of natural numbers, 1 6 k(n) 6 d(n), any ν ∈(
0, 12

)
, and every sequence xn of positive numbers such that

xn → 0, nx2n/
(
k(n)λk(n)

)
→∞, and x2−4νn ψ4

(
k(n)

)
/λ3k(n) → 0 as n→∞

we have

(6.3) P(|φ̂k(n)|2k(n) > nx2n)

= exp

{
− nx2n
2λk(n)

+O

(
nx2+ν

n

λk(n)

)
+O

(
k(n) log

nx2n
k(n)λk(n)

)}
,

where ψ2(k) =
∑k

j=1

( ∫ 1

0
|φ′kj(t)|dt

)2.

The formula (6.3) has a slightly stronger form than (A.14) in [2]. However, its
proof goes exactly the same way. The only difference is that we use a finer form
of expansion of tails of multivariate Gaussian distributions. We need this stronger
form to prove (6.4) below.

P r o o f o f T h e o r e m 3.1. Applying Theorem A (1) for k = 1 we obtain
φ̂2
11

D−→ χ2
1. By Lemma 6.2 and the assumption on d(n) it immediately implies

T1 = ĝ211
D−→ χ2

1.
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Now, observe that by the construction of φ̃kj we have for k = 1, . . . , d(n)

1∫
0

|φ̃′kj(t)|dt 6
1∫
0

|g′kj(t)|dt+
∫

{φ̃kj ̸=gkj}
|φ̃′kj(t)|dt 6

1∫
0

|g′kj(t)|dt+ 2lkj∥gkj∥∞,

which, by (3.1)–(3.3) and (6.1), gives

ψ2(k) =
k∑

j=1

( 1∫
0

|φ′kj(t)|dt
)2 ¬ c[d(n)]κ + c[d(n)]2η+2ζ+1 6 c[d(n)]ρ.

By the assumption of Theorem 3.1 and Lemma 6.1 we obtain λk=1+o(1). Apply-
ing Theorem A (2) to nx2n = (k − 1) log n and some ν∈

(
0,
(
1− τ(1 + 2ρ)

)
/2

)
we see that the assumptions of this theorem are fulfilled. So, from (6.3) we get

(6.4)

P
(
|φ̂k|2k > (k − 1) log n

)
= exp

{
− k − 1

2
(log n)

(
1 + o(1)

)}
6 n−

1
2
(1+o(1))

as n→∞. Hence, by Lemma 6.2 and the assumption on d(n) we have P
(
|ĝk|2k >

(k − 1) log n
)
6 n−

1
2
(1+o(1)) as n→∞ and, consequently,

P (S > 2) 6
d(n)∑
k=2

P
(
|ĝk|2k > (k − 1) log n

)
6 d(n)n−

1
2
(1+o(1)),

which tends to zero again due to the assumption on d(n), and therefore completes
the proof of the first part of Theorem 3.1. The second part can be proved similarly
to that of Theorem 3.1 in [3] after observing that Lemma 6.1 holds true for the
covariance matrix of every part of the system φk. �

P r o o f o f T h e o r e m 3.2. Let P denote the distribution of the sample
X1, . . . , Xn with a fixed asymmetric distribution function F such that the func-
tion a determined by F (cf. (2.1)) satisfies (3.5). Set

sna =
1∫
0

φd(n)(t)a(t)dt.

Now, we shall use the results from the Appendix in [2]. Applying (A.21) with
nx2n = log4 n and some σ ∈

(
ρ/(1 + 2ρ), 1/2

)
, (A.22) with nx2n = ωn log

2 n,
where ωn is defined in (3.5), and (A.3), we get

φ̂d(n) −
√
nsna = OP

(
ωnd(n)

ρ/2 log n
)
.

By (3.1), (3.2), Lemma 6.2 and the construction of φd(n) we obtain ĝd(n) − φ̂d(n)

= oP (1) and
√
nsna −

√
n
∫ 1

0
gd(n)(t)a(t)dt = oP (1). This implies

ĝd(n) −
√
n

1∫
0

gd(n)(t)a(t)dt = Rn = OP

(
ωnd(n)

ρ/2 log n
)
.
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Hence, by the assumption (3.5),

P
(
|ĝd(n)|2d(n) > 2d(n) log n

)
> P

(
|ĝd(n)|2d(n) > ω2

nd(n)
ρ log2 n

)
= P

(∣∣Rn +
√
n

1∫
0

gd(n)(t)a(t)dt
∣∣2
d(n)

> ω2
nd(n)

ρ log2 n
)
→ 1

as n → ∞. Since TL > TS > |ĝd(n)|2d(n) − d(n) log n a.s. by the definition of S
and L, the assertion of the theorem holds true. �
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