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Abstract. Assuming that there are N types of coupons, where the prob-
ability that the ith coupon appears is pi ­ 0 for i = 1, . . . , N , with∑N

i=1 pi = 1, we consider the variable Tk which represents the number
of acquisitions needed to obtain k ¬ N different coupons, and the vari-
able Yn which represents the number of different coupons obtained in n

acquisitions. In the coupon collector problem it is of interest to obtain the
expected value of these random variables, as well as their rth moments. We
provide new expressions for the rth moments of Tk and Yn, and we give
expressions for their moment generating functions. Unlike known formulas,
our formula for the rth moment of Tk is given in terms of recursive expres-
sions and that of Yn is given in terms of finite sums, so that they can be
easily implemented computationally. Furthermore, our formulas allow ob-
taining simplified expressions of the first few moments of the variables.
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1. INTRODUCTION

The coupon collector problem (CCP) is a classical problem in combinatorial prob-
ability. This problem consists in the following: There are N different types of
coupons, such as, for example, baseball cards, and we want to obtain the full col-
lection.

The CCP is an ancient problem dating back to De Moivre’s treatise De Men-
sura Sortis of 1712 and Laplace’s work Théorie Analytique des Probabilités of
1812 (see [6]). Von Schelling (1954) [15] obtained the expected time to complete
a collection in the case of non-equiprobable coupons, and Newman and Chepp
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(1960) [13] calculated the expected time to complete two collections of coupons in
the case of equiprobable coupons (see [8]).

Some more recent advances, considering non-equiprobable coupons, include:
the study of the moments and the distribution of the time required to collect a
specific number of types of coupons, as well as the distribution that stochastically
minimizes this time (see for example [2, 3]); the asymptotics of the first two mo-
ments and the limit distribution of the number of coupons required to complete m
collections of N coupons when N → ∞ (see [6]); the expected time to complete
a collection of coupons when coupons arrive in groups of constant size and inde-
pendently (see [7]); several formulas for the expected number of coupons required
to complete one or more collections of N coupons (see [8]); the distribution func-
tion, expectation and variance of the number of different coupons that are obtained
in n acquisitions, as well as the expected number of coupons required to obtain k
different coupons from a subset of the entire collection of coupons (see [16]).

It is important to mention that the coupon collector problem has applications in
several areas of science, such as engineering, computing and ecology [4, 11, 16],
ranked data analysis [1], and quality control problems [12].

Let us consider N different types of coupons, denoted by 1, . . . , N . The
coupons arrive one by one in sequence and independently. The probability of ran-
domly acquiring, at any stage, a coupon of type i is pi ­ 0, i = 1, . . . , N , with∑N

i pi = 1. In this context, two variables of interest that arise in the coupon col-
lector problem are the random variable that represents the number of acquisitions
needed to obtain k ¬ N different coupons, which we denote by Tk; and the random
variable that represents the number of different coupons obtained in n acquisitions,
which we denote by Yn.

Letting C = {1, . . . , N}, for any nonempty set A ⊂ C we define

pA :=
∑
i∈A

pi,

where p∅ := 0. Also, we denote by |A| the number of elements in the set A.
In [2, Theorem 1] it was shown that for any integer n ­ 0,

(1.1)

P (Tk > n) =
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1|

)
pnA, k = 1, . . . , N,

and that for r ­ 1, the rth moment of Tk is given by

(1.2) E(T r
k ) =

r−1∑
l=0

(
r

l

) ∞∑
n=0

nlP (Tk > n).

Letting r = 1 in (1.2) it follows that the first moment of Tk is given by

(1.3) E(Tk) =
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
1

1− pA
.
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However, in [2], expression (1.2) was not evaluated for r > 1. See also [9, 16] for
expression (1.3).

In the present paper we provide a new expression for the rth moment of Tk (see
(2.8)), which is easily computed since it is in terms of recursive expressions, and
taking r = 1, we recover (1.3). Also, taking r = 2 and r = 3, we obtain simpli-
fied expressions of the second and third moments of Tk. Moreover, we provide an
expression of the moment generating function of Tk (see (2.11)).

As for the random variable Yn, in [16] its distribution function was given:

(1.4) P (Yn ¬ k) =
∑

A⊂C, |A|¬k
(−1)k−|A|

(
N − |A| − 1

k − |A|

)
pnA, k = 1, . . . , N,

and also its first and second moments:

E(Yn) = N −
N∑
i=1

(1− pi)
n,(1.5)

E(Y 2
n ) = 2

∑
1¬i<j¬N

(1− pi − pj)
n − (2N − 1)

N∑
i=1

(1− pi)
n +N2.(1.6)

In the present work we give an expression for the rth moment of Yn in terms of
finite sums (see (3.3) and also (3.6) if 1 ¬ r ¬ N − 1), from which we recover
(1.5) and (1.6) for r = 1 and r = 2, respectively. Additionally, taking r = 3, we
obtain a simplified expression of the third moment of Yn. Furthermore, we provide
an expression for the moment generating function of Yn (see (3.7)).

The expressions of the moments of these random variables can be easily imple-
mented computationally, so the moments of any order can be calculated.

Next we describe how this work is divided. In Section 2 we find the probability
mass function of Tk, and through it we obtain an expression for its rth moment and
its moment generating function. In Section 3, through the distribution of Tk, we
obtain the probability mass function of Yn, which we use to obtain an expression
for its rth moment and its moment generating function.

2. NUMBER OF ACQUISITIONS NEEDED TO OBTAIN k DIFFERENT COUPONS

Recall that the random variable Tk represents the number of acquisitions needed to
obtain k ¬ N different coupons.

Using (1.1), we find that the probability mass function of Tk is

P (Tk = n) = P (Tk > n− 1)− P (Tk > n)(2.1)

=
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
pn−1A (1− pA)

for n = 1, 2, . . . .
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In order to have finite moments and the existence of the moment generating
function of Tk we need to assume that pi > 0 for i = 1, . . . , N with

∑N
i=1 pi = 1.

To obtain a general formula for the moments of Tk, we will use the equality

(2.2)
∞∑
n=1

nr+1qn =
r∑

j=0

(
r

j

)( ∞∑
k=0

kjqk
)( ∞∑

n=1

nr−jqn
)

=
( ∞∑
k=0

qk
)( ∞∑

n=1

nrqn
)
+

r∑
j=1

(
r

j

)( ∞∑
k=1

kjqk
)( ∞∑

n=1

nr−jqn
)
,

valid for any real q with |q| < 1 and any nonnegative integer r (see [14, p. 199]).
Now, for any real q with |q| < 1 and any nonnegative integer r, let

(2.3) D(r, q) :=
∞∑
n=1

nrqn.

It is known that D(0, q) = q/(1−q) and D(1, q) = q/(1−q)2. Furthermore, from
(2.2) we find that

(2.4) D(r + 1, q) =
D(r, q)

1− q
+

r∑
j=1

(
r

j

)
D(j, q)D(r − j, q)

for any positive integer r. Observe that formula (2.4) is also valid for r = 0 if∑0
j=1 is understood to be zero.
Now, define

(2.5) G(r, q) =

{
1−q
q D(r, q) if 0 < |q| < 1,

1 if q = 0,

for all r = 0, 1, 2, . . . . It follows that if 0 < |q| < 1, then

(2.6) G(0, q) = 1, G(1, q) =
1

1− q
,

and from (2.4), for r ­ 1,

G(r + 1, q) =
1− q

q
D(r + 1, q)(2.7)

=
1

1− q
G(r, q) +

q

1− q

r∑
j=1

(
r

j

)
G(j, q)G(r − j, q).

Using the above expressions, we obtain the following result for the moments of
the random variable Tk.
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THEOREM 2.1. For any positive integer r, the rth moment of the random vari-
able Tk is given by

(2.8) E(T r
k ) =

∑
A⊂C, |A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
G(r, pA).

Proof. From (2.1) we get

E(T r
k ) =

∞∑
n=1

nrP (Tk = n)

=
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
(1− pA)

∞∑
n=1

nrpn−1A

= (−1)k−1
(
N − 1

k − 1

)
+

∑
A⊂C, 1¬|A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
(1− pA)

∞∑
n=1

nrpn−1A .

Thus, (2.8) follows using (2.3) and (2.5). ■

Using (2.6), formula (1.3) for the first moment of Tk follows from (2.8) by
taking r = 1. Now, letting r = 2 and r = 3 in (2.8) we obtain, using (2.6)
and (2.7), the next simplified expressions for the second and third moments of Tk

(which we have not found in the literature):

E(T 2
k ) =

∑
A⊂C, |A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
1 + pA

(1− pA)2
,(2.9)

E(T 3
k ) =

∑
A⊂C, |A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
1 + 4pA + p2A
(1− pA)3

.(2.10)

Alternatively, the moments of Tk can be obtained by differentiating its moment
generating function, whose expression we provide in the following theorem.

THEOREM 2.2. The moment generating function of the random variable Tk is
given by

(2.11) MTk
(t) =

∑
A⊂C, |A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
(1− pA)e

t

1− etpA

for all t < minA⊂C, 1¬|A|¬k−1{− log pA}.
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Proof. Using (2.1) we have

(2.12) MTk
(t) =

∞∑
n=1

etnP (Tk = n)

=
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
(1− pA)

∞∑
n=1

etnpn−1A

= (−1)k−1
(
N − 1

k − 1

)
et

+
∑

A⊂C, 1¬|A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
(1− pA)e

t
∞∑
n=1

et(n−1)pn−1A .

Now, if t < minA⊂C, 1¬|A|¬k−1{− log pA} then 0 < etpA < 1 and thus

(2.13)
∞∑
n=1

et(n−1)pn−1A =
1

1− etpA

for all A ⊂ C with 1 ¬ |A| ¬ k − 1. Therefore, (2.11) follows from (2.12) and
(2.13). ■

As mentioned before, we can recover expressions (1.3) and (2.9) also using the
moment generating function of Tk, given in Theorem 2.2. To do this, we define

h(t) =
et

1− etpA
.

Then
lim
t→0

h′(t) =
1

(1− pA)2
and lim

t→0
h′′(t) =

1 + pA
(1− pA)3

.

Hence

E(Tk) = lim
t→0

M ′Tk
(t) =

∑
A⊂C, |A|¬k−1

(−1)k−|A|−1
(
N − |A| − 1

k − |A| − 1

)
1

1− pA
,

which is the same expression as in (1.3), and

E(T 2
k ) = lim

t→0
M ′′Tk

(t) =
∑

A⊂C, |A|¬k−1
(−1)k−|A|−1

(
N − |A| − 1

k − |A| − 1

)
1 + pA

(1− pA)2
,

as in (2.9).

REMARK 2.1. Note that the expressions for the derivatives of h(t) become
more and more complex, hence it is difficult to obtain high-order moments of Tk

by differentiating the moment generating function. However, formula (2.8) makes
it easy to compute the moments of Tk of any order, since it uses recursive expres-
sions. Furthermore, (2.8) can be implemented computationally for given values of
r,N, k and (p1, . . . , pN ).
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REMARK 2.2. In [2] a slightly more general model is considered, namely, one
supposes that

∑N
i=1 pi ¬ 1 and defines p0 = 1−

∑N
i=1 pi. This means that there is

a null coupon, denoted by 0, which is drawn with probability p0, but which does not
belong to the collection. Under this assumption, Tk is the number of coupons that
need to be drawn from the set {0, 1, . . . , N}, with replacement, until we first obtain
a collection composed of k different coupons, 1 ¬ k ¬ N , among {1, . . . , N}.
In this case, for the tail of the distribution of Tk we have (1.1) with pA replaced
by p0 + pA (see [2, Theorem 1]). Therefore, by analogous arguments to those
of the proofs of our Theorems 2.1 and 2.2, we find that the rth moment and the
moment generating function of Tk are given by (2.8) and (2.11), respectively, with
pA replaced by p0 + pA.

3. NUMBER OF DIFFERENT COUPONS OBTAINED IN n ACQUISITIONS

Recall that the random variable Yn represents the number of different coupons
obtained in n acquisitions. Using

P (Yn = k) = P (Yn ¬ k)− P (Yn ¬ k − 1)(3.1)
= P (Tk+1 > n)− P (Tk > n),

where P (Tk+1 > n) = 1 for k = N , we find that the probability mass function
of Yn is

(3.2) P (Yn = k) =
∑

A⊂C, |A|¬k
(−1)k−|A|

(
N − |A|
k − |A|

)
pnA

for k = 0, 1, . . . , N (see [16, formula (3.3)]). From (3.2) it follows that the distri-
bution function of Yn is given by (1.4).

In our next theorem we provide a general formula for the moments of Yn.

THEOREM 3.1. For any positive integer r, the rth moment of the random vari-
able Yn is given by

E(Y r
n ) =

N∑
k=1

(
N−k∑
i=0

(−1)i
(
N − k

i

)
(i+ k)r

) ∑
A⊂C, |A|=k

pnA.(3.3)

Proof. Using (3.2) we have

E(Y r
n ) =

N∑
k=1

krP (Yn = k)

=
∑

A⊂C, |A|¬N

N∑
k=|A|

kr(−1)k−|A|
(
N − |A|
k − |A|

)
pnA,
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which, letting i = k − |A|, gives

E(Y r
n ) =

∑
A⊂C, |A|¬N

N−|A|∑
i=0

(i+ |A|)r(−1)i
(
N − |A|

i

)
pnA

=
N∑
k=1

∑
A⊂C, |A|=k

N−k∑
i=0

(−1)i(i+ k)r
(
N − k

i

)
pnA

=
N∑
k=1

(N−k∑
i=0

(−1)i
(
N − k

i

)
(i+ k)r

) ∑
A⊂C, |A|=k

pnA. ■

Next, we will obtain a simplified expression of (3.3) for 1 ¬ r ¬ N − 1.
Let

Rk,r :=
N−k∑
i=0

(−1)i
(
N − k

i

)
(i+ k)r.

We have the following.

LEMMA 3.1. Let k,N, r be nonnegative integers. If k ¬ N − r − 1, then
Rk,r = 0.

Proof. From the binomial theorem it follows that

Rk,r =
N−k∑
i=0

(−1)i
(
N − k

i

)
r∑

m=0

(
r

m

)
imkr−m(3.4)

=
r∑

m=0

(
r

m

)
kr−m

N−k∑
i=0

(−1)i
(
N − k

i

)
im.

By the well known identity for nonnegative integers a and b (see [5, 10])

(3.5)
a∑

i=0

(−1)i
(
a

i

)
ib =

{
0 if b ¬ a− 1,

(−1)aa! if b = a,

we have
N−k∑
i=0

(−1)i
(
N − k

i

)
im = 0 if N − k − 1 ­ m.

Note that if k ¬ N − r − 1, then

N − k − 1 ­ r ­ m, ∀m = 0, 1, . . . , r.

Hence, from (3.4),
Rk,r = 0, ∀k ¬ N − r − 1. ■

Thus Theorem 3.1 and Lemma 3.1 give us the following result.
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COROLLARY 3.1. If 1 ¬ r ¬ N − 1, then the rth moment of Yn is given by

(3.6) E(Y r
n ) =

N∑
k=N−r

(
N−k∑
i=0

(−1)i
(
N − k

i

)
(i+ k)r

) ∑
A⊂C, |A|=k

pnA.

Formulas (1.5) and (1.6) are obtained by taking r = 1 and r = 2 in (3.6); and
letting r = 3 we obtain the next simplified expression for the third moment of Yn
(which we have not found in the literature):

E(Y 3
n ) = −6

∑
1¬i<j<k¬N

(1− pi − pj − pk)
n + (6N − 6)

∑
1¬i<j¬N

(1− pi − pj)
n

− (3N2 − 3N + 1)
N∑
i=1

(1− pi)
n +N3.

Alternatively, the moments of Yn can be obtained by differentiating its moment
generating function, whose expression we provide in the following theorem; how-
ever, the derivatives become more complex when the order increases.

THEOREM 3.2. The moment generating function of the random variable Yn is
given by

(3.7) MYn(t) =
N∑
k=1

etk(1− et)N−k
∑

A⊂C, |A|=k

pnA, −∞ < t <∞.

Proof. Using (3.2) we have

MYn(t) =
N∑
k=1

etkP (Yn = k) =
∑

A⊂C, |A|¬N

(
N∑

k=|A|
etk(−1)k−|A|

(
N − |A|
k − |A|

))
pnA.

Letting i = k − |A| and applying the binomial theorem gives

MYn(t) =
∑

A⊂C, |A|¬N

(N−|A|∑
i=0

et(i+|A|)(−1)i
(
N − |A|

i

))
pnA

=
∑

A⊂C, |A|¬N
et|A|

(N−|A|∑
i=0

(−et)i
(
N − |A|

i

))
pnA

=
∑

A⊂C, |A|¬N
et|A|(1− et)N−|A|pnA

=
N∑
k=1

∑
A⊂C, |A|=k

etk(1− et)N−kpnA

=
N∑
k=1

etk(1− et)N−k
∑

A⊂C, |A|=k

pnA. ■
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