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Streszczenie

Poniższa rozprawa skoncentrowana jest wokół problemów związanych z łańcuchami Markowa
na skończonych przestrzeniach stanów, które możemy rozwiązać wykorzystując pewne dual-
ności między łańcuchami. W ogólności mówimy, że łańcuch X∗ z macierzą przejścia PX∗ jest
łańcuchem dualnym doX z macierzą przejścia PX jeśli zachodzi (pomijamy warunki na rozkłady
początkowe)

ΛPX = PX∗Λ,

gdzie Λ jest tzw. linkiem. Różne linki wyznaczają różne dualności. Dla konkretnych rodzajów
dualności potrzebne są dodatkowe założenia na macierze przejść. Założenia te są mocno związane
z porządkiem, najczęściej częściowym, przestrzeni stanów.

W pierwszym rozdziale rozprawy rozważamy monotoniczność Möbiusa, jej związek z innymi
monotonicznościami (w tym m.in. ze stochastyczną monotonicznością) i z symulacją doskonałą
(ang. perfect simulation) – metodą, która zwraca nieobciążoną próbkę z rozkładu stacjonarnego
zadanego ergodycznego łańcucha Markowa. W tym rozdziale prezentujemy nowy algorytm do
wspomnianej symulacji doskonałej bazujący na tzw. mocnej dualności stacjonarnej (ang. strong
stationary duality), jego użycie wymaga wspomnianej monotoniczności Möbiusa.

Kolejny rozdział poświęcony jest wielowymiarowym modelom ruiny gracza. Okazuje się, że
iloczyny Kroneckera dobrze współpracują z macierzowymi wzorami dla dualności, co pozwala
uogólnić klasyczne wyniki. W szczególności, pokazujemy dużą rodzinę wielowymiarowych łańcu-
chów (które odpowiadają jakimś wielowymiarowym wersjom modelu ruiny gracza), które mają
takie samo prawdopodobieństwo wygrania (na co podajemy wzór) i/lub taki sam rozkład czasu
do wygranej/przegranej (podajemy jego strukturę).

Ostatni rozdział związany jest z rozkładem czasu trwania gry w modelu ruiny gracza (jed-
nowymiarowym) pod warunkiem zwycięstwa bądź porażki – rozważamy model z dowolnymi
prawdopodobieństwami wygrania/przegrania w jednym kroku. Pokazujemy m. in. interesujące
symetrie wyników dla modelu oryginalnego i modelu z odwróconymi prawdopodobieństwami
wygrania/przegrania. Stosując uzyskane wyniki (oraz mocną dualność stacjonarną), polepszamy
wyniki dotyczące prędkości zbieżności do stacjonarności dla symetrycznego błądzenia po okręgu.
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Abstract

The dissertation focuses on problems related to Markov chains on finite state spaces, which can
be solved using certain dualities between the chains. In general, we say that the chain X∗ with
the transition matrix PX∗ is dual to the chain X with the transition matrix PX if (we omit the
conditions for initial distributions)

ΛPX = PX∗Λ,

where Λ matrix is a so-called link. Different links define different dualities. For specific types
of duality, additional assumptions on transition matrices are needed. These assumptions are
closely related to the ordering, most often partial, of the state space.

In the first chapter of the dissertation, we consider the Möbius monotonicity, its relations
to other monotonicities (including, among others, stochastic monotonicity) and with perfect
simulation – a method that returns an unbiased sample from the stationary distribution of
a given ergodic Markov chain. In this chapter, we present a new algorithm for this perfect
simulation based on the so-called strong stationary duality, its use requires the aforementioned
Möbius monotonicity.

The next chapter is devoted to multidimensional gambler’s ruin models. It turns out that
the Kronecker products work well with matrix formulas for duality, which allows to generalize
the classical results. In particular, we show a large family of multidimensional chains (which
correspond to some multidimensional versions of the gambler’s ruin model) that have the same
probability of winning (we provide the exact formula) and/or have the same distribution of time
till win/lose (we provide its structure).

The last chapter is related to the distribution of the game duration in the gambler’s ruin
model (one-dimensional) conditioned on the event of winning or losing – we consider model
with arbitrary winning/losing probabilities in one step. We show, among others, interesting
symmetries of the results for the original model and the model with swapped winning/losing
probabilities. Using the obtained results (and strong stationary duality), we improve the results
on the speed of convergence to stationarity for the symmetric random walk on a circle.
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Preface

The dissertation consists of three articles, one article per chapter. The articles included here
differ from the original ones, mainly in pagination, typographical details and numbering of
equations, theorems, lemmas etc. The articles and corresponding chapters are following:

• Chapter 1. Lorek, P., Markowski, P., Monotonicity requirements for efficient exact sam-
pling with Markov chains. Markov Processes And Related Fields, 23(3), 485–514, 2017.

• Chapter 2. Lorek, P., Markowski, P., Absorption time and absorption probabilities for a
family of multidimensional gambler models. ALEA-Latin American Journal of Probability
and Mathematical Statistics, 19, 125–150, 2022.

• Chapter 3. Lorek, P., Markowski, P., Conditional gambler’s ruin problem with arbitrary
winning and losing probabilities with applications. Submitted.

The thesis deals mainly with the theory of Markov chains. The first chapter is an in-
depth study of several notions of monotonicities in Markov chains. The theoretical findings on
relations between the monotonicities allowed to construct a new perfect simulation algorithm.
The understanding of monotonicities and dualities was later extended to multidimensional chains
– in the second chapter we studied generalizations of a gambler’s ruin model. Among others, we
consider games with several players involved, at one step we may win/lose with several players,
the probabilities can depend e.g., on the current fortune. We provide the winning probabilities
and the structure of a game duration of such models. In the last chapter we provide new
results on birth and death chains – we provide the formulas (in terms of the parameters of the
system) for a conditional (conditioned on winning or losing) game duration. The approach here
is matrix-analytics. As a consequence we show interesting symmetries in such models (which
were earlier known only for constant birth and death rates). As an application, using dualities,
we show the exact rate of convergence (measured in the separation distance) – thus we improve
known results – for the symmetric random walk on circle.

In the end I would like to appreciate my supervisor Dr. Paweł Lorek for all help with putting
thoughts into words, and being so patient. I am also thankful to all the professors and teachers
at the University and from the earlier levels of education for all the wisdom that they tried to
pass over to me. Last but not least I want to thank my dear wife and family who were very
supportive and thoughtful through the process.

Piotr Markowski,
Wrocław, 2022.
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Introduction

In this thesis we deal with some problems related to Markov chains on a finite state space. We
start with describing the state of the art of the problems under study, later in Sections 1, 2 and
3 we shortly describe the problems solved in the thesis, which are later on presented in details
in corresponding Chapters 1, 2 and 3.

State of the art of the problems under study

We need to introduce some notation. The aforementioned finite state space is denoted by
E = {e1, . . . , eM}, whereas by X = {Xk}∞k=1 ∼ (ν,PX) we denote a discrete-time Markov chain
with a transition matrix PX and an initial distribution ν. By νPkX we denote the distribution
of the chain at step k, i.e., the distribution of Xk. We assume that E is partially ordered by
�. Moreover, throughout the thesis we assume that e1 is the minimal, and eM is the maximal
state, i.e., ∀e ∈ E we have e1 � e � eM . For A ⊆ E we define PX(e, A) :=

∑
e′∈APX(e, e′),

{e}↑ := {e′ : e � e′}, {e}↓ := {e′ : e′ � e} and δ(e, e′) = 1(e = e′). Whenever the ordering of
the state space is linear, we denote the elements of E as consecutive numbers starting from 0 or
1, i.e., E = {1, . . . ,M}, and the ordering by ≤.

The crucial components of all chapters constituting the thesis is the Siegmund duality
and the strong stationary duality (SSD). We will start with the Siegmund duality since the
latter duality can be define in terms of the first one.
Siegmund duality and winning probabilities in gambler models. AssumeX is an ergodic
chain with the stationary distribution π. A Siegmund dual Z (of X) with the transition matrix
PZ is a chain fulfilling the following:

∀(e1, e2 ∈ E) PX(e1, {e2}↓) = PZ(e2, {e1}↑). (1)

In [LS16] it is shown that the matrix PZ is non-negative iff X is Möbius monotone (more details
below). However, it will be a substochastic matrix – then we add one extra absorbing state, say
{−∞} and then we make – still calling it PZ – a stochastic matrix on E′ = E ∪ {−∞}. It is
relatively easy to show that Z must have two absorbing states, the introduced {−∞} and the
maximal one eM .

Relation (1) implies that we actually have PnX(ei, {ej}↓) = PnZ(ej , {ei}↑) for any n ≥ 1 and
any 1 ≤ i, j ≤M . Then, calculating limn→∞ we have

π({ej}↓) = P (τeM < τ−∞|Z0 = ej) =: ρ(ej), (2)
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where τe := inf{n : Zn = e} (first hitting time). This is the fundamental relationship between
the stationary distribution of an egodic chain and the absorption (winning) probabilities of its
Siegmund dual. We can also start with a chain Z having already two absorbing states, then we

i) remove the row and column corresponding to the losing state {−∞} from PZ ;

ii) solve (1) for PX ;

iii) compute the stationary distribution of X ∼ PX ;

iv) use (2) to compute the winning probabilities.

Thus, the main application of Siegmund duality is to provide the formula for winning proba-
bilites in gambler’s ruin-like problems (chains with two absorbing states).

Strong stationary duality and rate of convergence to stationarity for ergodic Markov
chains. Consider an ergodic Markov chain X ∼ (ν,PX) on E with a stationary distribution π.
By the rate of convergence of the chain to its stationary distribution we understand a knowledge
on number of steps guaranteeing that the distance between the distribution at this step and π
is small. Often total variation distance is used

dTV (νPkX , π) := sup
A⊂E
|νPkX(A)− π(A)|.

By “mixing time” we usually understand

τ(ε) = min{k : dTV (νPkX , π) ≤ ε}.

We say that X∗ ∼ (ν∗,PX∗) on E is the strong stationary dual (SSD) chain if:

a) PX∗ has one absorbing state, say eM , and

b) there exists a stochastic matrix Λ such that:

Λ(eM , ·) = π(·), ν = ν∗Λ, ΛPX = PX∗Λ. (3)

Then in [DF90b] it is shown that the absorption time T ∗ for X∗ gives the following bound:

sep(νPkX , π) ≤ P (T ∗ > k), where sep(νPkX , π) := max
e∈E

(1− νPkX(e)/π(e))

(sep is called the separation distance). On the other hand, it is known that dTV (νPkX , π) ≤
sep(νPkX , π). In other words, once we have an SSD, the problem of studying the rate of con-
vergence translates to studying the absorption time (usually easier to handle). In [LS12b] it is
shown that for a given ergodic X there exists its SSD X∗ iff time reversed chain

←−
X is Möbius

monotnone (w.r.t. the partial ordering �). The time reversed chain
←−
X is the one with transi-

tion matrix
←−
PX(ei, ej) =

π(ej)
π(ei)

P(ej , ei) (many examples are reversible chains, then PX =
←−
PX).

The transitions of the SSD are following

PX∗(ei, ej) =
H(ei)

H(ej)

∑
e:e�ej

µ(ej , e)
←−
PX(e, {ei}↓), (4)

where H(e) =
∑

e′:e′�e π(e′) and µ is the Möbius function of the ordering �. The nonnegativity
of PX∗ corresponds (iff condition) to Möbius monotonicity of

←−
X (see below). Later, in [LS16]
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it was shown that this construction yields optimal SSD: the absorption time T ∗ is a FSST for
X, i.e., we have

sep(νPkX , π) = P (T ∗ > k). (5)

Möbius monotonicity. The existence of a Siegmund dual chain and strong stationary dual
chain for linearly ordered state spaces was known for quite a long time. Namely, the usual
stochastic monotonicity was required. However, it was not known how to extend the results to
partial orderings. As already mentioned, it was done in [LS12b], [Lor18]. It turns out that the
Möbius monotonicity (which is equivalent to stochastic monotonicity for linearly ordered state
space, but it is quite different notion of monotonicity for partial non-linear ordering) is required
(of the chain – in case of Siegmund dual, or of the time-reversed chain – in case of an SSD), we
will thus provide some details.

Recall, we consider partial ordering � on E = {e1, . . . , eM}. Let C(ei, ej) = 1(ei � ej). We
can always rearrange the states so that ei � ej implies i ≤ j. Then the matrix C is 0–1 valued,
upper triangular, and thus invertible. The inverse C−1 is often denoted by µ and is called the
Möbius function. Let f, F̄ : E→ R. The famous Möbius inversion formula states:

Let F̄ (e) =
∑
e′�e

f(e′), then f(e) =
∑
e′�e

µ(e, e′)F̄ (e′).

We say that the function F̄ : E → R is Möbius monotone if
∑

e′�e µ(e, e′)F̄ (e′) ≥ 0 for all
e ∈ E. Let us define F̄e2

(e′) = PX(e′, {e2}↓), for any states e2, e
′ ∈ E. We say that the chain

X is Möbius monotone if F̄e are Möbius monotone for all e ∈ E, i.e.,

∀(ei, ej ∈ E)
∑

e:e�ei

µ(ei, e)PX(e, {ej}↓) ≥ 0. (6)

1 Möbius monotonicity, its relations to other monotonici-
ties and perfect simulation

Markov chain Monte Carlo (MCMC) methods are a class of tools for approximate sampling from
a prescribed distribution π. The main application is for distributions on large state spaces which
are hard/impossible to sample with other methods. Rougly speaking, we construct a chain with
π being its stationary distribution. Then, running the chain long enough we approximately
sample from π. Perfect simulation is the art of converting a Markov chain into an algorithm
which returns an unbiased sample from its stationary distribution. There are two popular (the
first one being the most popular) perfect sampling algorithms:

• Coupling from the past (CFTP). It was introduced in a ground breaking paper [PW96].
The ingenious idea of the algorithm is to realize the chain as a stochastic flow and evolve
it from the past (rather than into the future). In order to be able to use it efficiently, the
chain must be realizable monotone.

• Fill’s rejection algorithm. It was introduced in [Fil98]. A general version of this
algorithm can be applied assuming stochastic monotonicity of the time reversed chain.
Although in theory it has wider applications (realizable monotonicity implies stochastic
monotonicity), in practice it is harder to apply (compared to CFTP). Some more details
and extensions are provided also in [FMMR00].
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In Chapter 1 we also present a new perfect sampling algorithm:

• Strong stationary dual-based perfect sampling algorithm. It turns out that once we
compute SSD for a given ergodic chain, then we may be able to perform perfect sampling.
Thus, in principle, we are able to construct an SSD if the time reversed chain (of the
ergodic chain) is Möbius monotone.

In Chapter 1 we study in-depth relations between several notions of monotonicities in Markov
chains: usual stochastic monotonicity; weak monotonicity (two versions); Möbius monotonicity
(also two versions) and realizable monotonicity. We mentioned that stochastic monotonicity and
Möbius monotonicity are equivalent for linear orderings (actually they are equivalent, also with
realizable monotonicity, for “tree-like” orderings) and in general they are different for partial
orderings. Surprisingly, we show that we can have e.g.,

• a chain which is stochastically, but not Möbius monotone,

• a chain which is Möbius, but not stochastically monotone (thus also not realizable mono-
tone).

Note that the latter example means that for some chains only Strong stationary dual-based
perfect algorithm out of three mentioned ones may be applied.

My contribution

• My main contribution is Theorem 5.1 (page 19), i.e., the relation between several notions
of monotonicities of Markov chains defined w.r.t. some fixed partial ordering of the state
space: realizable monotonicity R; stochastic monotonicity S; two versions of weak mono-
tonicities (W↑ andW↓) and two version of Möbius monotonicitiesM↑ andW↓). To obtain
this result I had to combine and transform definitions appropriately, mainly to be able to
work in terms of Möbius function. The real challenge I was trying to get a full picture of
relations between those monotonicities. The relations between the aforementioned mono-
tonicities are presented in the Figure 1 (page 21). I showed almost full characterization. I
provided examples (in Appendix 6 in 26) for each case except one (which is – until today –
an open problem): I was unable to show if there is a chain which is inM↑,M↓ and S↑ but
not in M↑. I came up with those examples on the train from Rawicz to Wrocław. I am
grateful to my coauthor for making me write the proper checker in the Julia language
(some of those examples were wrong in the prepublished version).

• Also Theorem 5.2 (page 22) is my contribution. It is a special case of Theorem 5.1 for
a specific (tree-like) partial ordering. It turns out that in such a case the monotonicites
actually reduce to only three: S,R and M↓ (each of any other is equivalent to one of
these).

• The whole idea for studying the relation between monotonicities and relating them to
perfect simulation algorithms came from my coauthor. Other then that, we have discussed
and developed all of the other parts together, it is hard to single out any of the results
as my own. For example for our more general version of Fill’s rejection algorithm – my
coauthor have adapted the algorithm and checked that it is still mathematically correct.
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2 Multidimensional gambler models – winning probabilities
and absorption time

In [Lor17] the following multidimensional gambler’s ruin model was studied: we play with d ≥ 1
other players. Assume our current fortune with each of the players is (i1, . . . , id) (i.e., ij is
the amount of money on j-th “table”), where ij ≤ Nj (fixed integers). At each step we may:
win one dollar with player j with probability pj(ij), lose one dollar with probability qj(ij), we
assume that pj(ij) > 0, qj(ij) > 0 and

∑d
k=1(pk(ik) + qk(ik)) ≤ 1. We also assume that we win

the whole game if we win with all the players (i.e., the state (N1, . . . , Nd) is the winning state)
and we lose the whole game if we lose with at least one player (additionally introduced losing
state −∞). Denote the chain by Z. The following winning probability (provided we start at
(i1, . . . , ij)) was derived in [Lor17]:

ρ((i1, . . . , id)) =

d∏
j=1

 ij∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

)
d∏
j=1

 Nj∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

) .

The Möbius monotonicity w.r.t. coordinate-wise ordering was used. An ergodic chain X was
found such that it was Möbius monotone w.r.t. coordinate-wise ordering and such that Z is its
Siegmund dual. Then the result was derived exploiting (1).

In Chapter 2 we construct multidimensional gambler models in such a way that its winning
probability is a product of underlying one-dimensional chains. As a special case (when these
underlying chains are birth and death chains) we show the whole family of multidimensional
gambler models such that their winning probability is still given by formula (1.3) – for example
we may have the following scenarios:

• We may play with r ≤ d players at one step.

• If our current total fortune (with all the players) is less than 100$ we play with say at
most 2 players at one step. But once we have ≥ 100$ we may play with all the players at
one step.

Moreover, in this Chapter 2 we also study the (structure of) absorption time of such mul-
tidimensional models. We show that, in a sense, the structure of absorption time of some
chains (under suitable assumptions) is similar to the absorption time of birth and death chains.
Roughly speaking, we show that it may be expressed in terms of the absorption time of another
pure-birth chain. By pure-birth multidimensional chain we mean that at any step no coordinate
may decrease its value. To achieve the results we heavily exploit the notion of Kronecker sums
and products. For winning probability results we use Siegmund duality, whereas for results
related to absorption time we use some intertwining between chains.

My contribution

• Theorem 2.1 (page 40) is my main contribution. In the article of my coauthor [Lor17]
(which was a starting point for generalised gambler models) the winning probability for
some specific multidimensional game was provided. The aforementioned Theorem 2.1 is
a (significant) extension: it provides a way to construct a variety of multidimensional
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gambler models out of one-dimensional games in such a way, that if we know winning
probabilities of these one dimensional games, we know the winning probability of the
resulting multidimensional game. The proof of the theorem is based on careful operations
on matrices, eigenvectors and Kronecker sums and products. For clarity, it was split into
Lemma 4.1 (page 48) and and Corollary 4.2 (page 49), whose proofs are mine.

• Theorem 2.3 (page 42) deals with the structure of absorption time T for multidimensional
models. My coauthor spotted that for some subclass of models resulting from Theorem 2.1
the probability generating function pgf of T can be expressed as a mixture of absorption
times of some simpler (in a sense) models. I have proposed the formulation of assumptions
and proven those with Kronecker product operations (Section 4.3 page 50), while my
coauthor suggested the other way – using intertwining between absorbing chain and ergodic
chain (Section 5 page 51) .

• The most interesting point in Theorems 2.1 and 2.3 are the assumptions that are very
general (it takes over half a page to state them for each of the theorems). Basically, in
Theorem 2.1 we propose whole family of processes for which the winning probability have
product form (2.3) page 40:

ρ(i1, . . . , id) =

d∏
j=1

ρj(ij).

In Theorem 2.3 we show the following: we start with d one dimensional birth and death
chains (gambler models) and construct a family of d dimensional multivariate gambler
models (using weighted sums of Kronecker products). Denote its absorption time in N =
(N1, . . . , Nd), provided it started with distribution ν∗, by T ∗ν∗,N . Then, for each of such
models, we show another d dimensional model which has only upward transitions. Denote
its absorption time in N, provided it started in ê = (ê1, . . . , êd), by T̂ê. Then both of those
chains are complicated but the formula connecting they’re pgf’s is quite simple:

pgfT∗
ν∗,N

(s) =
∑
ê∈E

ν̂(ê)pgfT̂ê,N
(s)

 d∏
j=1

ρj(1)

 .

To show how we can work with such complicated assumptions we had to show some
examples. First two of them (provided in subsections 6.1 and 6.2) were proposed by my
coauthor and calculated by me, while I have came up (and calculated) myself with the
other two (provided in subsections 6.3 and 6.4). I am satisfied with those, because it
is hard to get results for multidimensional Markov chains with useful non-mathematical
description.

• Discussion in the end of Section 2 on consequences of Theorem 2.3, as well as discussion
on dualities in Section 3 are results of our joint work, but they were properly written down
mostly by my coauthor.

• I would like to acknowledge Bartłomiej Błaszczyszyn for suggesting Kronecker products
as a tool which turned out to work nicely with multidimensional Markov chains.

3 Conditional gambler’s ruin problem

Let us go back to one dimensional gambler’s ruin problem, i.e., the birth and death chain on
{0, 1, . . . , N} with the probability of winning one dollar in one step p(j) and losing it with
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probability q(j), j = 1, . . . , N − 1. As usual, we identify state 0 with losing and state N
with winning. Denote the chain by Z. This time we are interested in absorption time Ti and
conditional absorption time Wi (conditioned on winning), both in case when we start at i. To
be more specific, for a gambler’s model Z we define

Ti = inf{n ≥ 0 : Zn = 0 or Zn = N, Z0 = i},

Wi = Ti conditioned on ZTi = N.

In Chapter 3 our main results are the formulae for ETi and EWi, both stated only in terms
of the parameters of the model, i.e., in terms of p(j) and q(j). As far as we are aware, these
formulas were not known previously.
Let Wp↔q

i be the conditional absorption time for a chain with swapped rates, i.e., p′(j) = q(j)
and q′(j) = p(j). An interesting symmetry was earlier noted for the classical gambler’s ruin
problem, i.e., with constant rates p(j) = p, q(j) = q. To be more exact first in [Ste75] it was
shown that EWN/2 = EWp↔q

N/2 for even N and in a model with no ties, i.e., p + q = 1. Later
in [BW77] it was shown that actually in such a case a symmetry in a distribution holds, i.e.,
Wi

d
= Wp↔q

i (and any i). Authors said that it was a surprising and paradoxical result.
We extend the result: the formula for EWi we provide in Chapter 3 implies that EWi =

EWp↔q
i as long as r = q(j)

p(j) is constant (and we conjecture that actually in this case the the

distribution of conditional absorption time is symmetric, i.e., Wi
d
= Wp↔q

i ).
Moreover, in Chapter 3, as a side effect we provide detailed analysis of the rate of convergence

to stationarity of a random walk X on a circle (i.e.,, on integers 0, 1, . . . , d, we cyclically move
to the left or to the right with probability p). Roughly speaking, we introduce some non-trival
ordering on the circle and compute its SSD X∗ using formula (4). It turns out that X∗ is a
birth and death chain with non-constant birth and death rates, for which we are able to compute
expectation of its absorption time. Using the fact that such a construction yields an optimal
SSD, we have (5). As a consequence, for example for p = 1/3 and d being some power of 2, we
have

ET =
1

8
d2 +

1

4
.

Thus we improve upon a result of Fill and Diaconis [DF90b], where they show a construction
of not optimal T0 such that ET0 = 1

8d
2 + 1. It is worth noting that ET and ET0 differ by 3

4
independently of d.

My contribution

• Theorem 2.1 (page 62) with equation (2.1) are my contribution. In Chapter 3 one-
dimensional gambler ruin problem is considered. The main result of the theorem – equation
(2.1) – is the expectation of absorption time (aka game duration). Although the idea for
the proof is straightforward – apply “first step analysis”, the computations are far from
obvious. The formula for expectation was known e.g., in terms of the eigenvalues of the
transition matrix, whereas in Chapter 3 a formula in terms of the parameters of the system
is provided:

ETj:i:k =

∑k−1
n=j+1[dn

∑n
s=j+1

1
p(s)ds

]∑k−1
n=j dn

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds


where ds =

∏s
i=j+1

q(i)
p(i) =

∏s
i=j+1 r(i) (with convention dj = 1). It is a case j ≤ i ≤ k

where j is the losing state and k is the winning state.
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• Theorem 2.2 (page 62) was also prooven by me – it is a consequence of Theorem 2.1 for
only one absorbing state.

• Theorem 2.3 (page 63), which is the main result of Chapter 3, was done be me. It is about
expected conditional game duration (conditioned on winning, or symmetrically on losing).
The proof in principle also uses first step analysis, but is much more involved. E.g., it
uses some matrix-analytics approach for indices inferred from the aforementioned first
step analysis (see Lemma 5.1). The formula itself requires introducing lengthy notations,
it itself is

EW0:1:i =

i−1∑
n=1

ρ0:n:i

p(n)

b(i−1−n)/2c∑
s=0

ξn+1,i−1
s .

Here 1 ≤ i, this is the formula for game duration conditioned on winning (which is reaching
state i, state 0 is the losing state). Because of the complexity of the formula, it was
important to provide all-telling examples. The ideas for those (in Sections 2.1, 2.2, 2.3
and 2.4) were not mine, but most of the calculations were mine.

• Similarly with applications for random walk on a polygon and symmetric random walk on
a circle, the ideas came from the coauthor, but calculations (namely: proofs of Theorem
3.1 on page 72 and Lemma 4.1 on page 75) were mine. To be precise, coauthor came
up with the whole concept of computing an optimal strong stationary dual chain for the
problem, which turned out to be absorbing birth and death chain. Then using Theorem
2.2 (page 62) we computed the expectation of the so-called fastest strong stationary time
for this random walk, improving this way the results of Diaconis and Fill [DF90b].
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Chapter 1. Monotonicity requirements for
efficient exact sampling with Markov
chains

1 Introduction

Monte Carlo Markov Chain (MCMC) methods are a class of tools for approximate sampling from
a given distribution (usually intractable by other methods). The method is based on constructing
an ergodic Markov chain that has the desired distribution as its stationary distribution. Then
the algorithm outputs a state after simulating the chain for some number of steps. The ergodicity
implies that the more steps are performed, the closer it is to the stationary distribution. However,
to say something about the error, one needs to have some theoretical bounds on the rate of
convergence, e.g., the mixing time. In many practical problems this is an obstacle that is hard
to overcome.

Exact (or perfect) simulation refers to the art of converting a Markov chain (usually obtained
from MCMC methods) into an algorithm which returns an unbiased sample from its stationary
distribution. In this chapter we briefly present three such algorithms. Our main focus is on the
monotonicity requirements for efficient application of these algorithms. Each of the algorithms
requires then a different notion of monotonicity. The monotonicities will be defined with respect
to a partial ordering (in the applications, a state space usually has some natural underlying
partial ordering). The idea of all the algorithms is based on a coupling.

Coupling from the past (CFTP) is probably the most famous exact sampling algorithm,
introduced in a ground breaking paper [PW96]. The ingenious idea of the algorithm is to realize
the chain as a stochastic flow and evolve it from the past (rather than into the future). Doing so
requires considering coupled realizations of chains started at all possible starting points. This is
infeasible in most cases. However, if the chain is so-called realizable monotone, we need only
to simulate two chains, thus making the algorithm very effective. Although many variations
of the algorithm have been invented, often with slightly different requirement for monotonicity,
see, e.g., [HN98, Hub03, Ken98, KM00], we focus on this (widely used) monotonicity.

The second exact sampling algorithm is Strong Stationary Dual-based. The notion was
introduced in [DF90b] and exploited mainly for studying the rate of convergence. However,
having such a dual chain (including a so-called link), we can couple two chains in such a way that
when the dual chain hits a specific state, then the original chain has the stationary distribution.
The point is that there is no general way to come up with such a dual chain. In [DF90b],
the authors give a recipe only for chains whose time reversals are stochastically monotone.
This duality for total ordering has been exploited in many contexts, see, e.g., [DSC06], [Fil09a,
Fil09b, FL14] (most of them deal only with birth and death chains). However, many interesting
distributions are given on a state space possessing a natural non-linear ordering. The existence
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Monotonicities in Markov chains – efficient exact sampling

(and recipe) of such a dual for a partial ordering was given in [LS12a]. We briefly present an exact
sampling algorithm based on the coupling from [DF90b] and the dual given in [LS12a]. This dual
exists (and thus we can use the algorithm) if and only if the time reversal isMöbius monotone.
For examples of Möbius monotone chains, see [LS16], for connections with Siegmund duality on
partially ordered state spaces, see [Lor18] and [Lor17].

The last algorithm we will present is the so-called Fill’s rejection algorithm [Fil98]. The
author presents the algorithm already assuming some monotonicity. We present here a more
general version of the algorithm, together with a short proof of correctness. Similarly to the
previous algorithms, it is hard to apply it to a general chain. However, the algorithm can be
applied assuming stochastic monotonicity (w.r.t. the partial ordering) of the time reversed
chain. For more details and/or extensions of the algorithm, consult, e.g., [CLR01, Dim01,
FMMR00].

The three exact sampling algorithms presented, require, as already mentioned, three differ-
ent monotonicities for efficient application: realizable monotonicity, Möbius monotonicity, and
stochastic monotonicity. The relation between the first and the last one is already known: for a
general partial ordering, realizable monotonicity implies stochastic monotonicity, whereas they
are equivalent for total or tree-orderings, see [FM01], [Mac01]. However, Möbius monotonicity
has not been studied as extensively as the other two. Theorem 5.1 and Fig. 1 show all the rela-
tionships between the orderings (including also weak monotonicities and distinguishing between
Möbius-↑ and Möbius-↓ monotonicities). In particular, one interesting (from both points of view:
theoretical and practical) implication is that the chain (and/or its time reversal) does not have
to be stochastically monotone (and thus realizable monotone) but can be Möbius monotone.
Thus we can still use one of the exact sampling algorithms. We also present several examples of
orderings and chains showing all possible cases of being/not being monotone in a specific sense.
However we are forced to leave one open problem (see open problem 1): we cannot prove
or disprove that there exists a chain and ordering such that the chain is Möbius-↑, Möbius-↓,
stochastically monotone, but is not realizable monotone.

The organization of this chapter is as follows: In Section 2 we present the aforementioned
exact sampling algorithms in their full generality. In Section 3 we formally introduce the mono-
tonicities. Section 4 contains applications of the monotonicities the three algorithms mentioned
above (i.e., to their efficient applications). In Section 5 we present the relationship between the
monotonicities, whereas the examples are postponed to the Appendix.

2 Three general methods for exact sampling

We consider an ergodic Markov chain X = {Xk}k≥0 with the initial distribution ν, finite state
space E = {e1, . . . , eM}, transition matrix P = [P(e, e′)]e,e′∈E, and stationary distribution π.
The distribution of the chain at step k, started with the initial distribution ν, is denoted by
νPk(·). For a measure f on E we write

f(A) =
∑
e∈A

f(e) for A ⊆ E.

It is said that
←−
X is the time reversed chain of the chain X if

←−
X is defined on the same space as

X and has t.m.
←−
P(e, e′) =

π(e′)

π(e)
P(e′, e).

One can simulate the Markov chain using an update rule:
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Definition 2.1. A function φ : E × [0, 1] → E is an update rule for the chain X with the
transition matrix P if:

1. for fixed e ∈ E the function φ(e, u) is piecewise constant, and

2. for all e, e′ ∈ E we have
∫ 1

0
1(φ(e, u) = e′)du = P(e, e′).

Note that for the uniformly distributed random variable U ∼ Unif [0, 1] we have P(e, e′) =
Pr(φ(e, U) = e′). Having such an update rule, one can recursively simulate the chain:

X0 ∼ ν, Xk+1 = φ(Xk, Uk+1),

where U1, U2, . . . is an iid sequence of random variables uniformly distributed on [0, 1].

The usual Monte Carlo Markov Chain (MCMC) provides methods for approximate sampling
from the desired distribution π, usually intractable by other methods (such as, e.g., inverting
the distribution function). Roughly speaking, the methods include constructing an ergodic
chain with π being its stationary distribution. Thus, simulating X0, X1, . . . long enough, the
distribution of Xk will be close to the stationary distribution (since ergodicity implies that
limk→∞ νPk(·) = π(·)). Note that: i) usually it will never be exactly the stationary distribution;
ii) to know how close it is to the stationarity the distribution of Xk, one needs to know the rate
of convergence.
We briefly recall three methods for exact sampling (often called perfect sampling), i.e., ob-
taining an unbiased sample from π. All of them rely on the concept of coupling. A coupling of a
pair of Markov chains with a common transition matrix P is a bivariate process {(Xk, Yk)}k≥0

such that marginally {Xk}k≥0 and {Yk}k≥0 are Markov chains with the transition matrix P
(in particular, the processes may be, and usually are, dependent, and have different initial
distributions).

2.1 Method 1: Coupling from the past
One of the most known algorithms for exact sampling is called coupling from the past (CFTP) (or
the Propp–Wilson algorithm, cf. [PW96]). Given an increasing sequence N1, N2, . . . of positive
integers (usually Nr = 2r−1), the algorithm is as follows:

Algorithm 1 Coupling from the past (CFTP).

Require: State space E, ergodic chain X with update rule φ.
1: Set n = 1.
2: For each e ∈ E simulate the Markov chain starting at time −Nn in state e and run it till

time 0 using the same update rule φ and iid random variables U−Nn+1, U−Nn+2, . . . , U−1, U0

uniformly distributed on [0, 1] (the same for each chain).
3: If all chains in the previous step end up in the same state e0 at time 0, then output e0 and

stop.
4: Set n = n+ 1 and go to Step 2 (keep the previously used {Ui}0≤i≤−Nn+1 for new n).

The very rough idea of the CFTP algorithm is the following: assume at some time “in the
past,” say at −Nn, for each e ∈ E we started a chain. Later on, using the same update rule and
the same uniform random variables driving the chains, all the chains have coalesced before time
0. If we had started the chains earlier, even at “minus infinity,” but from −Nn on using the same
uniform random variables, we would still end up in the same state at time 0. And from “minus
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infinity” till 0 it surely has already “reached” stationarity, thus the output of the algorithm is a
random variable with the distribution being the stationary distribution of the chain. For more
technical details (e.g., that it always terminates), see [PW96].

2.2 Method 2: Fill’s rejection algorithm
Let p(·), q(·) be two probability distributions on E = {e1, . . . , eM}. Assume that for some c ∈ R
we have p(e) ≤ cq(e) for all e ∈ E (then c ≥ 1, but c > 1 if the distributions are different).
The classical acceptance-rejection algorithm lets us simulate from p(·) if we are able to simulate
from q(·):

Algorithm 2 Acceptence-rejection algorithm.

Require: Distributions p(·), q(·) on E, constant c : p(e) ≤ cq(e).
1: Generate Y ∼ q(·).
2: Flip a coin with Head probability p(Y )

cq(Y ) . If Head, then return X := Y .
3: Else go to Step 1.

Based on this algorithm, Fill [Fil98] came up with a tricky idea for simulating from a sta-
tionary distribution π of an ergodic Markov chain. We will present here its slightly generalized
version (without specific assumptions on the transition matrix). We include also a short proof of
its correctness (although it is similar to that of Fill). Fix an integer k ≥ 1 (time instance) and a
state e1 ∈ E. In the above settings, we want to simulate from p(·) = π(·), given that we are able
to simulate from q(·) = P (Xk = ·|X0 = e1) = Pk(e1, ·) (which can be done straightforwardly).
Let
←−
φ be an update function of the time reversed chain

←−
X with t.m.

←−
P(e, e′) = π(e′)

π(e) P(e′, e).
Similarly as in the CFTP algorithm, we can use a sequence Nr = 2r−1.

Algorithm 3 Fill’s rejection algorithm.

Require: State space for all the following chains E = {e1, . . . , eM}, ergodic chain X with a
transition matrix P.

1: Set n = 1.
2: Simulate the Markov chain X starting at time 0 in state e1 and run it till time k = Nn

using the transition matrix P. Denote Xk = ez.
3: Treat (Xk = ez, Xk−1, . . . , X0 = e1) as a path of the time reversed chain (

←−
X 0, . . . ,

←−
Xk). For

s = 0, . . . , n do: Assume
←−
X s = e and

←−
X s+1 = e′. Then generate Us ∼ Unif{u :

←−
φ (e, u) =

e′}.
4: Start M chains

←−
Yj , j = 1, . . . ,M so that

←−
Y j

0 = j and couple them simulating
←−
Y j
s+1 =

φ(
←−
Y j
s, Us+1) (using the common update function φ and the randomness obtained in the

previous step).
5: If all chains

←−
Yj , j = 1, . . . ,M have coupled before time k (and thus at time k they are all

in state e1), output ez and stop.
6: Erase all information, set n = n+ 1 and go to Step 2.

In Step 3 we simulate random variables U1, . . . , Uk in such a way that if we started the time
reversed chain at ez then we would obtain exactly the trajectory (Xk = ez, Xk−1, . . . , X0 = e1).
And this is what will happen for sure with one of

←−
Yj (the one starting in ez). That is why if all

←−
Yj , j = 1, . . . ,M coalesce, then we must have

←−
Y j
k = e1 for all j = 1, . . . ,M . Let Ck(e) denote
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the event that all the chains
←−
Yj have coalesced before time k and that at this time they are all

in e. Of course we have for any e that
←−
Pk(e, ez) ≤ Pr[Ck(ez)]. Now we are ready to choose

the constant c from Alg. 2.

π(e)

Pk(e1, e)
=

π(e1)
←−
Pk(e, e1)

≤ π(e1)

Pr[Ck(e1)]
=: c.

Thus we simulate from distribution Pk(e1, ·), say ez was obtained. We should accept ez with
probability

π(ez)

cPk(e1, ez)
=
Pr[Ck(e1)]

π(e1)

π(ez)

Pk(e1, ez)
=
Pr[Ck(e1)]
←−
Pk(ez, e1)

.

The whole point is that this is exactly the acceptance probability in Alg. 3:

Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
X 0 = ez,

←−
Xk = e1,

←−
Y j

0 = ej , j = 1, . . . ,M)

=
Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
X 0 = ez,

←−
Y j

0 = ej , j = 1, . . . ,M)

Pr(
←−
Xk = e1 |

←−
X 0 = ez,

←−
Y j

0 = ej , j = 1, . . . ,M)
.

In this setting, X0 and Yj are independent, thus

=
Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
Y j

0 = ej , j = 1, . . . ,M)

Pr(
←−
X t = e1 |

←−
X 0 = ez)

=
Pr[Ck(ez)]
←−
Pk(ez, e1)

.

2.3 Method 3: Strong stationary duality
A random variable T is a Strong Stationary Time (SST) for X if it is a stopping time
independent from XT such that XT has the distribution π. It was introduced in [AD86] mainly
for studying the rate of convergence of the chain, but it is also applicable for exact sampling,
simply by simulating the chain until time T we obtain unbiased sample from π. Although there
are many examples where such SST was find (probably the best example is Top-To-Random
card shuffling), the problem is that the examples were usually found “ad hoc”, in general it is
not easy to come up with SST.

Diaconis and Fill [DF90b] came up with a systematic way of finding an SST, which we will
describe here directly with application to exact sampling.

Let E∗ = {e∗1, . . . , e∗N} be the state space of an absorbing Markov chain X∗ with initial
distribution ν∗ and transition matrix P∗, whose unique absorbing state is denoted by e∗N . An
N ×M matrix Λ is said to be a link if it is a stochastic matrix such that Λ(e∗N , e) = π(e) for
all e ∈ E. We say that X∗ is a strong stationary dual (SSD) of X with link Λ if

ν = ν∗Λ and ΛP = P∗Λ. (2.1)

In this chapter we assume that the SSD has the same state space, i.e., E∗ = E. For the general
case, see [DF90b]. The sample path of the chain X∗ can be constructed from a sample path of
X as follows. Start with X0 = e0 and (using additional randomness) set

X∗0 = e∗0 with probability
ν∗(e∗0)Λ(e∗0, e0)

ν(e0)
.

Then we proceed as follows. Assume X0 = e0, . . . , Xk−1 = e(k−1) and X∗0 = e∗0, . . . , X∗k−1 =

e∗(k−1). If Xk = ek have been chosen, then set

X∗k = e∗k with probability
P∗(e∗(k−1), e∗(k))Λ(e∗k, ek)

4(e∗(k−1), ek)
,
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where 4 = P∗Λ. This construction yields a bivariate chain (X∗k , Xk) such that Pr(Xk =
·|X∗0 = e∗0, . . . , X∗k = e∗k) = Λ(e∗k, ·) (consult [DF90a], [DF90b]). This implies that T , the first
time the chain X∗ hits the state e∗N (the absorbing one) and the value of XT are independent.
Moreover, the distribution of XT is Λ(e∗N , ·) = π(e).

In summary, we are able to couple two chains in such a way that when one hits a specific
state (e∗N ) then the other has a stationary distribution. This way we can obtain an unbiased
sample from π, i.e., we can perform an exact sampling. Note that having the SST T lets one
also study the rate of convergence (the main application of this duality in [DF90b]): the time
to absorption T for X∗ is an SST for X. In many examples, SST have been found ad hoc. The
above duality approach provided the first systematic way of finding them. Below we present the
above mentioned description of SSD-based exact sampling in algorithmic form.

Algorithm 4 Exact sampling based on SSD.
Require: Ergodic chain X and absorbing chain X∗ on the same state space E, link Λ.
1: Start with X0 = e0 and set X∗0 = e∗0 with probability ν∗(e∗0)Λ(e∗0,e0)

ν(e0) .

2: If X∗0 = e∗N then output X0 and stop.
3: Set n = 1.
4: Having Xn−1 = en−1 set Xn = en with probability P (en−1, en).
5: Having Xn−1 = en−1, Xn = en, X∗n−1 = e∗n−1 set X∗n = e∗n with probability

P∗(e∗(n−1),e∗(n))Λ(e∗n,en)
4(e∗(n−1),en)

, where 4 = P∗Λ.
6: If X∗n = e∗N then output Xn and stop.
7: Set n = n+ 1 and go to Step 4 (keep previously simulated Xn = en, X∗n = e∗n for new n).

3 Monotonicites in Markov chains

In the previous section we briefly described some methods for exact sampling. Note however
that CFTP and Fill’s rejection algorithm, as they stand, are very inefficient (the number of
chains one has to simulate is equal to the cardinality of E) and no concrete way for finding the
SSD was given (how to choose/find Λ and P∗). This is where monotonicities come into play.
Each of the methods can be efficiently applied if the chain is monotone in some way.

So far we did not need any structure on E. However in many examples there is a natural
ordering of the state space, e.g., a total ordering, a coordinatewise ordering, etc. From now on
we assume that E is equipped with a partial ordering �, making (E,�) a poset. We also assume
that e1 is the minimum and eM is the maximum. We will use the following notation. We say
that U ∈ E is an upset if (e1 � e2, e1 ∈ U) ⇒ e2 ∈ U . Similarly, we say that D ∈ E is a
downset if (e1 � e2, e2 ∈ D) ⇒ e1 ∈ D. For given e ∈ E we define {e}↑ := {e′ : e � e′} and
{e}↓ := {e′ : e′ � e}. Note that each {e}↑ ({e}↓) is an upset (downset), but, in general, not
vice versa.

All the monotonicities we are about to define are defined for chains on a common state space
E with respect to a fixed partial ordering �. By X ∈ P we mean that X has monotonicity
property P keeping in mind that it is defined w.r.t. the fixed partial ordering �.

Usual and weak stochastic monotonicity.

Definition 3.1. A Markov chain X with transition matrix P is stochastically monotone
(we write X ∈ S) if and only if for all upsets U and all e � e′ ∈ E we have P(e, U) ≤ P(e′, U).

14
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Remark 3.1. Since the complement of any upset is a downset, the condition for stochastic
monotonicity can be equivalently given by: for all downsets D and all e � e′ ∈ E we have
P(e, D) ≥ P(e′, D).

Stochastic monotonicity can be equivalently defined in the following way. For two random
variables Y1, Y2 (with distribution functions ν1, ν2) on E, we say that Y1 �st Y2 (or ν1 �st ν2)
⇐⇒ E[f(Y1)] ≤ E[f(Y2)] for all nondecreasing (w.r.t. �) functions f : E → R. Then the
Markov chain X with the transition matrix P is stochastically monotone if and only if ν1 �st ν2

implies ν1P �st ν2P.
Recall that K is an upward kernel if it is a Markov kernel such that K(ei, ·) is supported on
{ej ∈ E : ei � ej}. The following lemma goes back to Strassen [Str65] (and is part of Theorem
1 in [KKO77]).

Lemma 3.1. A Markov chain X with transition matrix P is stochastically monotone if and only
if for all e � e′ there exists an upward kernel Ke,e′ such that P(e′, ej) =

∑
ei:ej�ei P(e, ei)Ke,e′(ei, ej).

Replacing any upset (downset) in Definition 3.1 with a specific one we obtain the notion of
weak monotonicity.

Definition 3.2. A Markov chain X with transition matrix P is weakly-↑ monotone (we write
X ∈ W↑) if and only if for all e � e′, ej ∈ E we have P(e, {ej}↑) ≤ P(e′, {ej}↑).

The chain is weakly-↓ monotone (we write X ∈ W↓) if and only if for all e � e′, ej ∈ E
we have P(e, {ej}↓) ≥ P(e′, {ej}↓).

We define W :=W↑ ∩W↓.

Realizable monotonicity. This notion of monotonicity is defined in terms of the update rule of
the chain given in Definition 2.1.

Definition 3.3. A Markov chain X with transition matrix P is realizable monotone if there
exists a monotone update rule (preserving the ordering), i.e.,

∀(u ∈ [0, 1]) ∀(e � e′) φ(e, u) � φ(e′, u).

This definition implies that for any states e � e′ and upset U we have

φ(e, u) ∈ U ⇒ φ(e′, u) ∈ U. (3.1)

Finding a monotone update rule is often a challenging task, and proving that none exist can be
even harder.

Möbius monotonicity.
We can identify the ordering � with the matrix C(ei, ej) = 1(ei � ej). We can always rearrange
the states in such a way that C is upper triangular (keeping in mind that the enumerations of
the states in C and P must preserve the same order), thus invertible. The inverse of C is usually
denoted by µ ≡ C−1 and called the Möbius function.

Definition 3.4. The function f : E→ RM is Möbius-↓ (Möbius-↑) monotone if f(CT )−1 ≥ 0
(fC−1 ≥ 0), i.e., each entry is nonnegative.

15
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Definition 3.5. A Markov chain X with transition matrix P is Möbius-↓ monotone (we
write X ∈M↓) if

C−1PC ≥ 0 (each entry nonnegative).

Equivalently, in terms of the transition probabilities,

∀(ei, ej ∈ E)
∑
e�ei

µ(ei, e)P(e, {ej}↓) ≥ 0.

The chain is Möbius-↑ monotone (we write X ∈M↑) if

(CT )−1PCT ≥ 0 (each entry nonnegative).

In terms of the transition probabilities this is

∀(ei, ej ∈ E)
∑
e�ei

µ(e, ei)P(e, {ej}↑) ≥ 0.

We defineM :=M↑ ∩M↓.
In the applications, checking Möbius monotonicity is usually not harder than checking

stochastic monotonicity. First, note that the inverse of C (i.e., the Möbius function of the
ordering) is known for many natural partial orderings (however, its derivation is often not triv-
ial). To mention a few:

E1 For E = {1, . . . ,M} and a linear ordering �:=≤ the Möbius function is given by µ(i, i) = 1,
µ(i, i+ 1) = −1 and µ(i, j) = 0 for j /∈ {i, i+ 1}.

E2 For E = {0, 1}d with the coordinate-wise partial ordering e � e′, if e(i) ≤ e′(i), i =
1, . . . , d, the Möbius function is given by µ(e, e′) = (−1)|e|−|e

′| if e � e′ and 0 otherwise
(where |e| =

∑d
i=1 e(i)).

E3 For E = {0, 1, . . . , N}d with coordinate-wise partial ordering e � e′, if e(i) ≤ e′(i), i =
1, . . . , d, the Möbius function is given by µ(e, e′) = (−1)|e

′|−|e| if e′(k) = e(k) or e′(k) =
e(k) + 1 for each k = 1, . . . , d.

E4 For a finite set I let P (I) be the set of all partitions of I. Let α, β ∈ P (I). The typically
considered partial order is the following: α � β if ∀(A ∈ α)∃(B ∈ β)(A ⊆ B). As derived
in [Com70], the Möbius function is given by µ(α, β) = 1α�β(−1)|α|+|β|

∏
B∈β(lαB − 1)!,

where lαB is the number of atoms from α in B ∈ β.

Checking the Möbius monotonicity of a chain having a Möbius function turns out to be feasible
in many cases. For the total ordering (E1), exemplary calculations are given in [Lor18]. The
computations checking Möbius-↓ monotonicity for some nonsymmetric random walk on the cube
(E3) are given in [LS12a]. For the chain corresponding to a nonstandard queue network, the
computations are given in [Lor18]. The partial ordering on partitions (E4) was considered in
the context of duality in [HM16].

4 Applications of monotonicites

4.1 Realizable monotonicity and an efficient coupling from the past
algorithm

The CFTP algorithm given in Alg. 1 is very inefficient. The number of chains we have to run
is equal to the size of the state space. In most cases where CFTP is to be applied, the size of
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the state space is huge (e.g., exponential in some parameter). The main idea of the algorithm
was to run the chains “from the past” and check if all of them have coupled before time 0. Note
that if we have a monotone update rule and say X−m = e � X ′−m = e′, then

X−m+1 = φ(X−m, U−m+1) � φ(X
′

−m, U−m+1) = X
′

−m+1.

Thus it is enough to start only two chains: X1
0 = e1 and X2

0 = eM . Summarizing, if the chain is
realizable monotone and has the minimum and the maximum, then we have an efficient CFTP
algorithm:

Algorithm 5 Efficient coupling from the past.
Require: State space E, ergodic chain X, monotone update rule φ
1: Set n = 1
2: Start two chains at time −Nn, one at the minimum e1, the other at the maximum

eM . Run the chains till time 0 using the same update rule φ and iid random variables
U−Nn+1, U−Nn+2, . . . , U−1, U0 uniformly distributed on [0, 1] (the same for each chain).

3: If both chains in previous step end up in the same state e0 at time 0, then output e0 and
stop.

4: Set n = n+ 1 and go to Step 2 (keep previously used {Ui}0≤i≤−Nn+1 for new n).

4.2 Stochastic monotonicity and an efficient Fill’s rejection algorithm
Similarly to the general CFTP algorithm given in Alg. 1, Fill’s rejection Alg. 3 is very inefficient.
This is due to the fact that we have to start (and simulate) as many chains as there are elements
of the state space. It turns out that the algorithm can be made efficient by assuming stochastic
monotonicity of the time reversed chain

←−
X . (This condition is weaker, as forthcoming sections

will show, than being realizable monotone).
Assume for the moment that

←−
X is realizable monotone (this will soon be relaxed to stochastic

monotonicity). Assume that ei � ej and that
←−
Y i
s = ei �

←−
Y j
s = ej for some s ≤ k. Realizable

monotonicity implies that
←−
Y i
s+1 = φ(

←−
Y i
s, Us) � φ(

←−
Y j
s, Us) =

←−
Y j
s+1. This means that then in

Step 5 of the algorithm, checking the coalescence of all M chains is equivalent to checking only
that the chain

←−
YM (the one started in eM ) has already reached the minimum e1 at time k. In

other words, it is enough to simulate just one chain
←−
YM .

Now we relax the realizable monotonicity requirement, assuming only that
←−
X is stochastically

monotone. Similarly, we want to have an efficient version of the algorithm simulating only one
chain

←−
YM (denoted simply by Y). This time we do not generate Us as in Step 3 of Alg. 3. We

make use of Lemma 3.1 instead. Assume that at some step s we have
←−
X s = e1,

←−
X s+1 = e2

and
←−
Y s = ei. Then, since e1 � e2, we may choose a state ej for

←−
Y s+1 with probability

Ke1,ei(e2, ej). This constructions ensures that
←−
X s �

←−
Y s, s = 0, . . . , k. Thus, similarly, only the

condition
←−
Y k = e1 must be checked. In summary, we have:

17
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Algorithm 6 Efficient Fill’s rejection algorithm.

Require: State space E = {e1, . . . , eM}, ergodic chainX whose time reversal
←−
X is stochastically

monotone and set of kernels Ke,e′ for all e � e′.
1: Set n = 1
2: Simulate the Markov chain X starting at time 0 in state e1 and run it till time k = Nn

using the transition matrix P. Denote Xt = ez
3: Simulate the chain

←−
Y starting at the maximum, i.e.,

←−
Y 0 = eM in the following way: Assume

at time s we have
←−
X s = e1,

←−
Y s = ei and

←−
X s+1 = e2. Set

←−
Y s+1 = ej with probability

Ke1,ei(e2, ej).
4: If

←−
Y k = e1, then output ez and stop

5: Erase all information, set n = n+ 1 and go to Step 2.

4.3 Möbius monotonicity and strong stationary duality
In Section 2.3 we presented an exact sampling algorithm based on strong stationary duality.
Note however that no recipe was given on how to find such a dual. The duality was introduced
in [DF90b], where the recipe was given only in case the time reversed chain

←−
X was stochas-

tically monotone w.r.t. a total ordering. In [LS12a] an extension to partial orderings was
given. Surprisingly, it turned out that not the usual stochastic monotonicity, but rather Möbius
monotonicity, was required. We recall here the main theorem from [LS12a].

Theorem 4.1 (Lorek and Szekli [LS12a]). Let X be an ergodic Markov chain on a finite state
space E = {e1, . . . , eM} which is partially ordered by � and has the maximum eM . For a
stationary distribution π and an initial distribution ν we assume that

(i) g(e) = ν(e)
π(e) is Möbius-↓ monotone,

(ii)
←−
X is Möbius-↓ monotone.

Then there exists a strong stationary dual chain X∗ on E∗ = E with link a truncated stationary
distribution Λ(ej , ei) = 1(ei � ej)

π(ei)
H(ej)

, where H(ej) =
∑

e:e�ej π(e). The initial distribution
and the transitions of X∗ are given, respectively, by

ν∗(ei) = H(ei)
∑

e:e�ei

µ(ei, e)g(e), (4.1)

P∗(ei, ej) =
H(ej)

H(ei)

∑
e:e�ej

µ(ej , e)
←−
P(e, {ei}↓). (4.2)

(The Möbius monotonicity of the function g(e) means that the resulting ν∗(e) is nonnegative).

Remark 4.1. Note that the existence of the minimum is not required in Theorem 4.1. However,
if it exists and if the chain X starts at the minimum (i.e., Pr(X0 = e1) = 1), then so does
the dual chain (i.e., Pr(X∗0 = e1)). Similarly one can construct an SSD chain when there is a
minimum e1 and the time reversed chain

←−
X is Möbius-↑ monotone, see Corollary 3.1 in [LS12a].

More examples of SSDs constructed on partially ordered state spaces can be found in [LS16].
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5 Relations between monotonicities in Markov chains

Fix a state space E = {e1, . . . , eM} and partial ordering �. Recall that by X ∈ P we mean that
the chain has the monotonicity property P, which is defined with respect to this given state
space and ordering. For example, the implication “if X ∈ P1 then X ∈ P2” means that if X is
P1-monotone then it is P2-monotone with respect to the same state space and ordering. For a
general ordering �, we present the relations between the different concepts of monotonicity in
Theorem 5.1.

Theorem 5.1. For a discrete time Markov chain X on a finite state space E = {e1, . . . , eM}
which is partially ordered by �, we have the following implications:

1. If X ∈ R then X ∈ S

2. If X ∈ S then X ∈ W↑

3. If X ∈ S then X ∈ W↓

4. If X ∈M↑ then X ∈ W↑

5. If X ∈M↓ then X ∈ W↓

We derive and recall some useful properties of the Möbius function of a partial ordering.
First we will show that

∑
ei∈E µ(ei, e) = 0 for any poset with the minimum state (we denote it

by e1) and that
∑

ei∈E µ(e, ei) = 0 for any poset with the maximum state (denoted by eM ).

It is known (see [Rot64]) that the matrix C−1 = µ can be calculated recursively:

µ(ei, ej) =


1 if ei = ej
−
∑

ei≺ek�ej µ(ek, ej) if ei ≺ ej ,

0 otherwise,

(5.1)

or by inverting the matrix C using Gauss–Jordan elimination by columns instead of rows:

=


1 if ei = ej
−
∑

ei�ek≺ej µ(ei, ek) if ei ≺ ej ,

0 otherwise.

(5.2)

Therefore, using (5.1): for any poset with the minimum state and any state e which is not the
minimum, we have∑

ei∈E
µ(ei, e) =

∑
ei∈E:ei 6�e

µ(ei, e) +
∑

e1≺ei�e

µ(ei, e) + µ(e1, e)

= 0− µ(e1, e) + µ(e1, e) = 0.

Similarly, using (5.2): for any poset with the maximum state and for any state e which is not
the maximum, we have∑

ei∈E
µ(e, ei) =

∑
ei∈E:e6�ei

µ(e, ei) +
∑

e�ei≺eM

µ(e, ei) + µ(e, eM )

= 0− µ(e, eM ) + µ(e, eM ) = 0.
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We will write e+ for an arbitrary successor of e. For a poset (E,�) with the maximum
eM we can consider the subspaces {e}↑, {e+}↑ with the minimum states e and e+ respectively.
From the above consideration, we have∑

ei:e�ei,e+ 6�ei

µ(ei, e
′) =

∑
ei:e�ei�eM

µ(ei, e
′)−

∑
ei:e+�ei�eM

µ(ei, e
′) = (5.3)

 1− 0 if e′ = e,
0− 1 if e′ = e+

0− 0 otherwise
=

 1 if e′ = e,
−1 if e′ = e+,
0 otherwise.

(5.4)

Similarly, for a poset (E,�) with the minimum state e1 we can consider the subspaces {e}↓, {e+}↓
with the maximum states e and e+ respectively. We have:∑

ei:ei�e+,ei 6�e

µ(e′, ei) =
∑

ei:e1�ei�e+

µ(e′, ei)−
∑

ei:e1�ei�e

µ(e′, ei) = (5.5)

 0− 1 if e′ = e,
1− 0 if e′ = e+,
0− 0 otherwise

=

 −1 if e′ = e,
1 if e′ = e+,
0 otherwise.

(5.6)

Proof of Theorem 5.1. Implications 1–3 are known (see, e.g., [FM01]), we include short proofs
in our notation for completeness.

1. We want to show that for any states ei � ej and any upset U , the inequality P(ei, U) ≤
P(ej , U) is fulfilled. From the definition of update function and the property of realizable
monotonicity (3.1), we have

P(ei, U) =

∫ 1

0

1(φ(ei, u) ∈ U)du ≤
∫ 1

0

1(φ(ej , u) ∈ U)du = P(ej , U)

as the indicator of set is equal to 1 when the indicator of its subset is equal to 1.

2. & 3. For any state e, {e}↑ is an upset and {e}↓ is a downset. Thus stochastic monotonicity
implies that the monotonicity is preserved for any {e}↑ and {e}↓, which is the definition
of ↑-weak and ↓-weak monotonicity.

4. & 5. Möbius-↓ monotonicity means

∀e�ek
∑

ei:e�ei

µ(e, ei)P(ei, {ek}↓) ≥ 0,

thus for arbitrary ej ∈ E we have∑
e:ej�e,e+

j 6�e

∑
ei:e�ei

µ(e, ei)P(ei, {ek}↓) ≥ 0.

Changing the order of summation we have∑
ei:ej�ei

∑
e:e�ei,ej�e,e+

j 6�e

µ(e, ei)P(ei, {ek}↓) ≥ 0,

∑
ei:ei�ej

P(ei, {ek}↓)
∑

e:e�ei,ej�e,e+
j 6�e

µ(e, ei) ≥ 0.

20



Monotonicities in Markov chains – efficient exact sampling

Using (5.4) for each ei for the (sub-)poset ({ei}↓,�) (where ei is the maximum) with its
subspaces {e}↑, {e+}↑, we have

P(ej , {ek}↓)−P(e+
j , {ek}

↓) ≥ 0

for any ej , ek.
The proof that Möbius-↑ monotonicity implies weak-↑ is similar.

In Fig. 1, Theorem 5.1 is summarized.

W↑ \ (W↓ ∪M↑)

W↓ \ (W↑ ∪M↓)

W \M

M↑ \W↓

M↓ \W↑

M

(M↑ ∩W↓) \M↓

(M↓ ∩W↑) \M↑

S \ R

R

1

2

3

4

5

6 7

8

9

11

12

13

14

15

16

1010

Figure 1: Relation between monotonicities. General partial ordering.

We know of no other implications involving the monotonicities we have considered. More pre-
cisely, the only one we do not know is whether Möbius-↑, Möbius-↓ and stochastic monotonicities
imply realizable monotonicity (which is stated below as an open problem). The nonexistence
of other implications is proven by presenting examples in Appendix A (the numbers in Fig. 1
correspond to the enumeration of these examples).
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Open problem 1. Does there exist a chain X, state space E, and partial ordering � such that
X ∈M↓ ∩M↑ ∩ S \ R ?

Remark 5.1 (OnMöbius monotonicity). For a total ordering (denote the states by E = {1, . . . ,M}),
the stochastic monotonicity of X can be written as

∀(j, i1 ≤ i2) PX(i1, {j}↑) ≤ PX(i2, {j}↑) ≡ PX(i1, {j}↓) ≥ PX(i2, {j}↓).

In this ordering we can think of this monotonicity in two different (though equivalent) ways:

• “Understanding 1” . For any upset U and ∀(i1 ≤ i2) we have PX(i1, U) ≤ PX(i2, U) (or
equivalently: for any downset D and ∀(i1 ≤ i2) we have PX(i1, D) ≥ PX(i2, D)).

• “Understanding 2”. For any upset U define FU (i) := PX(i, U). Then X is stochastically
monotone if the function FU (i), treated as a function of i, must be “like” a distribution
function, i.e., ∀(i1 ≤ i2)FU (i1) ≤ FU (i2).

Equivalently: for any downset D define F̄D(i) = PX(i,D). Then X is stochastically
monotone if the function F̄D(i), treated as a function of i, must be “like” the tail of a
distribution function, i.e., ∀(i1 ≤ i2)F̄D(i1) ≥ F̄D(i2).

Extending “Understanding 1” to a partial ordering � (we simply have different downsets and
upsets, and each i1 ≤ i2 is replaced by e � e′) leads to stochastic monotonicity as defined
in Definition 3.1. Extending “Understanding 2” with FU (·) being like a distribution function
(F̄D(·) being like the tail of a distribution function) leads to Möbius-↓ (Möbius-↑) monotonicity,
as defined in Definition 3.5.

5.1 Tree-ordering and total ordering
For a general partial ordering, we have, in Theorem 5.1, determined all the monotonicity rela-
tions. In this section we restrict our attention to some special cases: tree ordering and linear
ordering.

Tree ordering. Let us start with a definition of this ordering.

Definition 5.1. A partial ordering � on E is called a tree ordering if there exists a maximum
(which has no predecessor) and every other (non-maximal) state e has exactly one predecessor.

This definition affords a straightforward algorithm for inverting the matrix C = 1(ei � ej).
For a column corresponding to the state e, it is enough to subtract the columns corresponding
to the successors of e. We obtain the matrix

µ(ei, ej) =


1 if ei = ej ,
−1 if e+

i = ej ,
0 otherwise.

(5.7)

Theorem 5.2. Let X be a Markov chain on E with a tree ordering �. Then the following
statements are equivalent.

(i) X ∈ S

(ii) X ∈ R

(iii) X ∈M↓
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(iv) X ∈ W↓

Proof.

• (i) ⇐⇒ (ii)

Implication (ii)⇒ (i) follows from implication 1 of Theorem 5.1, whereas (i)⇒ (ii) follows
from Theorem 4.3 in [FM01].

• (iii) ⇐⇒ (iv)

Implication (iii) ⇒ (iv) follows from implication 5 of Theorem 5.1. To show (iv) ⇒ (iii)
we assume Möbius-↓ monotonicity, i.e., we have (the Möbius function given in Eq. (5.7))

∀(ei, ej ∈ E) 0 ≤ P(ei, {ej}↓)−P(e+
i , {ej}

↓) =
∑
e�ei

µ(ei, e)P(e, {ej}↓),

which is exactly weak-↓ monotonicity.

• (i) ⇐⇒ (iv)

Implication (i) ⇒ (iv) follows from implication 3 of Theorem 5.1. To show (iv) ⇒ (i),
note that any downset D can be written as a disjoint union of sets of the form {ek}↓,
i.e., D =

⋃
· k∈K{ek}↓ for some K ⊆ E. For any ek, weak-↓ monotonicity implies that

P(ei, {ek}↓)−P(e+
i , {ek}↓) ≥ 0, thus

P(ei, D)−P(e+
i , D) =

∑
k∈K

(
P(ei, {ek}↓)−P(e+

i , {ek}
↓)
)
≥ 0,

which implies stochastic monotonicity.

The monotonicity relations for tree-ordering are summarized in Fig. 2. The examples num-
bered 17, 18, 19 and 20 are given in Appendix A.
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W↑ \M↑

M↑

R = S =M↓ =W↓

17181920

Figure 2: Relation between monotonicities. Tree-like ordering.

Total ordering. For this ordering let us denote the elements of state space E by {1, . . . ,M}.
The Möbius function is following:

µ(i, j) =

 1 if j = i,
−1 if j = i+ 1,
0 otherwise,

(5.8)

with ones on the diagonal and minus ones directly above it. For this ordering, we have the
following lemma.

Lemma 5.1. Let X be a Markov chain on E with total ordering �:=≤. Then all the mono-
tonicites S,R,M↑,M↓,W↑,W↓ are equivalent.

Proof. By Theorem 5.2 it is enough to show that W↑ is equivalent to W↓ and that W↑ ⇒M↑.
For a total ordering, all upsets are of the form {k}↑ = {k, . . . ,M} and all downsets are of the
form {k}↓ = {1, . . . , k}. Hence (since the complement of a downset is an upset and vice versa),
they are equivalent to each other and actually denote stochastic monotonicity.

Note that ∑
k∈E

µ(k, i)P(k, {j}↑) = P(i+ 1, {j}↑)−P(i, {j}↑),

which means that W↑ andM↑ are equivalent.
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6 Monotonicities and Siegmund duality

As mentioned, strong stationary duality was introduced in [DF90b]. However, a somewhat
general recipe for such an SSD was only given in the case when the time reversal was stochas-
tically monotone with respect to a total ordering. In Section 4.3 we recalled the theorem
from [LS12a], that for a given ergodic chain X there exists a strong stationary dual chain X∗

(with the link being a truncated stationary distribution) if and only if the time reversal of X
is Möbius monotone. It turns out that there is a close connection between SSD and another
duality. We say that the chain Z is a Siegmund dual of X if for any n ≥ 0, ei, ej ∈ E we
have Pr(Xn � ej |X0 = ei) = Pr(Zn � ei|Z0 = ej). Siegmund [Sie76] showed that for a total
ordering, such a dual exists if and only if X is stochastically monotone. Lorek [Lor18] gives an
extension to partial orderings (the existence of the minimum and the maximum is required).
The main result is that the Siegmund dual exists if and only if the chain is Möbius-↓ monotone.
Moreover, in the latter article it is shown that the SSD from [LS12a] can be constructed in the
following three steps: i) Calculate the time reversal of X; ii) Calculate its Siegmund dual; iii)
Calculate the appropriate Doob h-transform.

The results of this chapter are relevant for SSD and Siegmund duality. The general construc-
tions of the SSD and the Siegmund dual were unknown for partial orderings. For Siegmund
duality, for partially ordered state spaces, it was known that stochastic monotonicity is “not
enough.” Liggett, in [Lig04] a book on particle systems) writes (p. 87) “having a (reasonable)
dual is a much more special property than being monotone, when the state space is not totally
ordered.” However, we can obtian an SSD or a Siegmund dual for a chain which is not stochas-
tically monotone, such as is shown with the chain with the transition matrix P6 in Appendix A
(the chain is not stochastically monotone, but is both Möbius-↓ and Möbius-↑ monotone).
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A. Examples

The relations between monotonicities were given in Theorem 5.1 for a general partial ordering
and in Theorem 5.2 for a tree ordering. They were summarized in Figures 1 and 2 respectively.
In this section we prove (except for Open problem 1) that all the intersections in these figures
are non-empty.

Given P and C, checking all monotonicities except realizable monotonicity is straightforward
(it only requires some matrix operations):

• Checking Möbius-↓ and Möbius-↑ monotonicity is straightforward from Definition 3.5.

• For weak monotonicities we need to precompute the offspring matrix R. Let O(ei) =
{e : ei ≺ e and !∃ej (ei ≺ ej ≺ e)} be the set of offspring of the state ei. The offspring
matrix is defined as R = (RT

e1
, . . . ,RT

eM )T , where Rei
is the |O(ei)| × |E| matrix such

that Rei
(ej , ei) = 1 and Rei

(ej , ej) = −1 for ej ∈ O(ei), all other entries being equal to
zero. Note that O(ei) for all ei ∈ E and thus the matrix R is computed from C. Weak-↑
monotonicity means that all entries of RPCT are nonpositive, whereas weak-↓ means that
all entries of RPC nonnegative.

• For stochastic monotonicity, we additionally need the matrix of all upsets (denoted by S)
instead of “just” the ordering matrix C (S is computed from C). Stochastic monotonicity
means that all entries of RPS are nonnegative.

The functions checking all the above monotonicities are available in The Julia Language
[LM17]. The functions require the transition matrix P and the ordering matrix C. Also, the
script checking the above monotonicities of all the examples that follow is available. The proofs
concerning realizable monotonicites are given after introducing the examples. Recall that for a
tree ordering, realizable monotonicity is equivalent to (among others) stochastic monotonicity,
thus checking the latter is enough.

The pairing of the ordering matrices and the transition matrices:

• C1 for processes P3,P6,P7,P11,P12,P13,P14,P15,P16,

• C2 for P1,P2,

• C3 for P4,P5,P8,P9 and

• C4 for P17,P18,P19,P20.

Order matrices and Hasse diagrams:
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C1 =


1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1



e6

e5e4

e3e2

e1

C2 =



1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



e8

e7e6e5

e4e3e2

e1

C3 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


e5

e4e3e2

e1

C4 =



1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1



e7

e6e5

e2e1 e3 e4

The transition matrices

1. W↑ \ (W↓ ∪M↑)

P1 =



3/8 1/8 1/8 1/8 0 1/8 1/8 0
1/4 1/4 0 1/8 1/8 0 1/8 1/8
1/4 0 3/8 0 0 1/4 0 1/8
1/4 0 1/8 0 1/8 1/4 1/8 1/8
0 1/8 1/8 0 0 1/4 1/4 1/4
0 0 1/4 1/4 0 1/8 0 3/8
0 0 1/8 1/8 1/4 1/4 1/8 1/8
0 0 1/8 0 1/8 1/8 0 5/8


2. W↓ \ (W↑ ∪M↓)
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P2 =



5/8 0 1/8 1/8 0 1/8 0 0
1/8 1/8 1/4 1/4 1/8 1/8 0 0
3/8 0 1/8 0 1/4 1/4 0 0
1/4 1/4 1/4 0 0 1/8 1/8 0
1/8 1/8 1/4 1/8 0 1/8 0 1/4
1/8 0 1/4 0 0 3/8 0 1/4
1/8 1/8 0 1/8 1/8 0 1/4 1/4
0 1/8 1/8 0 1/8 1/8 1/8 3/8


3. W \ (M∪S)

P3 =


1/2 1/6 0 1/3 0 0
1/3 1/6 1/6 1/3 0 0
1/3 1/6 0 1/3 1/6 0
1/6 1/6 1/6 0 1/6 1/3
1/6 0 1/6 1/6 1/3 1/6
0 1/6 1/3 0 1/6 1/3


4. M↑ \W↓

P4 =


2/5 1/5 1/5 1/5 0
2/5 1/5 1/5 1/5 0
0 2/5 2/5 1/5 0
0 2/5 1/5 2/5 0
0 1/5 2/5 0 2/5


5. M↓ \W↑

P5 =


2/5 0 2/5 1/5 0
0 2/5 1/5 2/5 0
0 1/5 2/5 2/5 0
0 1/5 1/5 1/5 2/5
0 1/5 1/5 1/5 2/5


6. M\ S

P6 =


17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24


7. S \ (M↑ ∪M↓ ∪R)

P7 =


1/3 1/3 1/3 0 0 0
1/3 1/3 0 1/3 0 0
1/3 0 1/3 1/3 0 0
0 1/3 1/3 1/3 0 0
0 1/6 1/6 1/6 1/6 1/3
0 1/6 1/6 1/6 1/6 1/3
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8. S ∩M↑ \ (M↓ ∪R)

P8 =


2/5 1/5 1/5 1/5 0
2/5 1/5 1/5 1/5 0
2/5 0 1/5 1/5 1/5
1/5 1/5 2/5 1/5 0
0 2/5 1/5 0 2/5


9. S ∩M↓ \ (M↑ ∪R)

P9 =


2/5 0 1/5 2/5 0
0 1/5 2/5 1/5 1/5

1/5 1/5 1/5 0 2/5
0 1/5 1/5 1/5 2/5
0 1/5 1/5 1/5 2/5


10. Aforementioned open problem.

11. R \ (M↑ ∪M↓)

P11 =


1/3 1/6 1/6 1/6 1/6 0
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
0 1/6 1/6 1/6 1/6 1/3


12. R∩M↑ \M↓

P12 =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
0 1/3 1/6 1/6 1/6 1/6


13. R∩M↓ \M↑

P13 =


1/6 1/6 1/6 1/6 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6


14. R∩M
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P14 =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6


15. W↓ ∩M↑ \ (M↓ ∪ S)

P15 =


17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/16 1/16 1/16 1/16 17/24


16. W↑ ∩M↓ \ (M↑ ∪ S)

P16 =


17/24 1/16 1/16 1/16 1/16 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24


Examples 17–20 deal with tree-ordering.

17. W↑ \ S

P17 =



1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0

1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0


.

18. S \M↑

P18 =



1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7


.
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19. W↑ ∩ S ∩M↑

P19 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


20. M↑ \ S

P20 =



1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0

1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0
0 0 0 0 0 0 1


.

As already stated, checking all monotonicities except realizable monotonicity can be done
automatically on a computer. Note that if the chain is not stochastically monotone, then it
cannot be realizable monotone. That is why we only need to prove that

• The chains with the transition matrices P11,P12,P13,P14 are realizable monotone.

• The chains with the transition matrices P7,P8,P9 are not realizable monotone.

To prove realizable monotonicity it is enough to provide a monotone update rule, whereas
showing that a given chain is not realizable monotone (i.e., that no monotone update function
exists) is more challenging.

Monotone update rules for the chains with the transition matrices P11,P12,P13 and
P14. For

⋃
· 6
i=1Ai = [0, 1] and P (U ∈ Ai) = 1/6 for i = 1, . . . , 6 and U ∼ Unif [0, 1] the

following functions are monotone w.r.t. the partial ordering defined by C1.

• P11

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 2, . . . , 5,

φ(e1, u) =

{
e1 if u ∈ A6,

ei if u ∈ Ai, i = 1, . . . , 5,

φ(e6, u) =

{
e6 if u ∈ A1,

ei if u ∈ Ai, i = 2, . . . , 6.

• P12

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 1, . . . , 5,

φ(e6, u) =

{
e6 if u ∈ A1,

ei if u ∈ Ai, i = 2, . . . , 6.
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• P13

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 2, . . . , 6,

φ(e1, u) =

{
e1 if u ∈ A6,

ei if u ∈ Ai, i = 1, . . . , 5.

• P14

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 1, . . . , 6.

Proofs that P7,P8,P9 are not realizable monotone w.r.t. the partial ordering defined
by C1.

• The transition matrix P7.
The idea of the proof is the following: we try to construct a monotone update function φ
and deduce a contradiction. Start with defining an arbitrary update function at state e1:

φ(e1, u) = ei if u ∈ Ai, i = 1, 2, 3,

for
⋃
· 3
i=1Ai = [0, 1], P (U ∈ Ai) = 1/3, i = 1, 2, 3 and U ∼ Unif [0, 1]. Since e1 � e2 we

have the following requirements for φ(e2, ·): namely φ(e2, u) � ei for u ∈ Ai, i = 1, 2, 3.
Thus the function is uniquely determined:

φ(e2, u) =

 e1 if u ∈ A1,
e2 if u ∈ A2,
e4 if u ∈ A3.

Similarly, since e1 � e3, we conclude that

φ(e3, u) =

 e1 if u ∈ A1,
e3 if u ∈ A3,
e4 if u ∈ A2.

Also, since e2 � e4, we conclude that

φ(e4, u) =

 e2 if u ∈ A2,
e3 if u ∈ A1,
e4 if u ∈ A3.

But this function is not monotone, since for u ∈ A2 we have φ(e3, u) = e4 � e2 = φ(e4, u).

• The transition matrices P8 and P9.
The idea of the proof is similar to the previous case. It will be done only for P8 (the proof
for P9 is almost identical, since P9(ei, ej) = P8(e6−i, e6−j), i, j = 1, . . . , 5).
We can start with defining an arbitrary update function at state e1:

φ(e1, u) =

{
e1 if u ∈ A0,
ei if u ∈ Ai, i = 1, 2, 3, 4

for
⋃
· 4
i=0Ai = [0, 1], P (U ∈ Ai) = 1/5, i = 0, . . . , 4 and U ∼ Unif [0, 1]. Since e1 � e3,

we have the following requirements for φ(e3, ·): namely φ(e3, u) � φ(e1, u) for u ∈ Ai, i =
0, . . . , 4. Thus the function is uniquely determined:

φ(e3, u) =


e1 if u ∈ A0 ∪A1,
e5 if u ∈ A2,
e3 if u ∈ A3,
e4 if u ∈ A4.
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Also, since e3 � e5, we conclude that

φ(e5, u) =

 e2 if u ∈ A0 ∪A1,
e5 if u ∈ A2 ∪A4,
e3 if u ∈ A3,

Since e1 � e4, we conclude that there are two choices for φ(e4, u). We can have

φ(e4, u) =


e1 if u ∈ A0,
e3 if u ∈ A1 ∪A3,
e2 if u ∈ A2,
e4 if u ∈ A4,

but then for u ∈ A1 we have φ(e4, u) = e3 � e2 = φ(e5, u). We can also have

φ(e4, u) =


e1 if u ∈ A1,
e3 if u ∈ A0 ∪A3,
e2 if u ∈ A2,
e4 if u ∈ A4,

but then for u ∈ A0 we have φ(e4, u) = e3 � e2 = φ(e5, u). Thus, the function is not
monotone.
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Chapter 2. Absorption time and
absorption probabilities for a family of
multidimensional gambler models

1 Introduction

In the one-dimensional gambler’s ruin problem two players start a game with the total amount
of, say, N dollars and with initial values k and N − k. At each step they flip the coin (not
necessarily unbiased) to decide who wins a dollar. The game is over when one of them goes
bankrupt. There are some fundamental questions related to this process.

Q1 Starting with i dollars, what is the probability of winning?

Q2 Starting with i dollars, what is the distribution (or the structure) of the game duration
(i.e., the absorption time)? Or, what is the distribution (or the structure) of the game
duration conditioned on winning/losing?

In this chapter we will answer above questions for a wide class of multidimensional generaliza-
tions of gambler’s ruin problem. The proofs will be probabilistic in most cases, utilizing either
Siegmund duality or intertwining between chains.

Generalized multidimensional gambler models In [Lor17] the following generalization
was considered. There is one player (referred to “we”) playing with d ≥ 1 other players. Our
initial assets are (i1, . . . , id) and assets of consecutive players are (N1− i1, . . . , Nd− id) (Nj ≥ 1
is the total amount of assets with player j). Then, with probability pj(ij) we win one dollar with
player j and with probability qj(ij) we lose it. With the remaining probability 1−

∑d
k=1(pk(ij)+

qj(ik)) we do nothing (i.e., ties are also possible). Once we win completely with player j (i.e.,
ij = Nj) we do not play with him/her anymore. We lose the whole game if we lose with at
least one player, i.e., when ij = 0 for some j = 1, . . . , d. The game can be described more
formally as a Markov chain Z with two absorbing states. The state space is E = {(i1, . . . , id) :
1 ≤ ij ≤ Nj , 1 ≤ j ≤ d} ∪ {−∞} (where −∞ means we lose). For a convenience denote
pj(Nj) = qj(Nj) = 0, j = 1, . . . , d. Assume that for all ij ∈ {1, . . . , Nj}, j ∈ {1, . . . , d} we have
pj(ij) > 0, qj(ij) > 0 and

∑d
k=1(pk(ik) + qk(ik)) ≤ 1. With some abuse of notation, we will

sometimes write (i′1, . . . , i
′
d) = −∞. The transitions of the described chain are the following:
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PZ((i1, . . . , id), (i
′
1, . . . , i

′
d)) =

pj(ij) if i′j = ij + 1, i′k = ik, k 6= j,

qj(ij) if i′j = ij − 1, i′k = ik, k 6= j,∑
j:ij=1 qj(1) if (i′1, . . . , i

′
d) = −∞,

1−
∑d
k=1(pk(ik) + qk(ik)) if i′j = ij , 1 ≤ j ≤ d,

1 if (i1, . . . , id) = (i′1, . . . , i
′
d) = −∞.

(1.1)

The chain has two absorbing states: (N1, . . . , Nd) (we win) and −∞ (we lose). Let

ρ((i1, . . . , id)) = P (τ(N1,...,Nd) < τ−∞|Z0 = (i1, . . . , id)), (1.2)

where τ(i′1,...,i′d) := inf{n ≥ 0 : Zn = (i′1, . . . , i
′
d)}. Roughly speaking, ρ((i1, . . . , id)) is the

probability of winning starting at (i1, . . . , id). In [Lor17] the formula for this probability was
derived, namely

ρ((i1, . . . , id)) =

d∏
j=1

 ij∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

)
d∏
j=1

 Nj∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

) . (1.3)

In this chapter we consider a much wider class of d-dimensional games - the chain given in (1.1)
is just a special case. For example, within the class we can win/lose in one step with many
players. The multidimensional chain is constructed from a variety of one-dimensional chains
using Kronecker products. For this class:

• We give expressions for the winning probabilities and prove that it is a product of the
winning probabilities corresponding to one-dimensional games. In particular, for a subclass
of multidimensional chains, constructed from one-dimensional birth and death chains, the
winning probabilities are given in (1.3). The main tool for showing winning probabilities
is the Siegmund duality defined for partially ordered state spaces, exploiting the results
from [Lor18].

• We give formulas for the distributions of the absorption time. In some cases a probability
generating function is given, in other cases we show that the absorption time is equal,
in distribution, to the absorption time of another chain, which is, in a sense, a multidi-
mensional pure-birth chain. In many cases, the probabilistic proof is given. To show the
absorption distribution, we exploit the spectral polynomials given in [Fil09b], and their
variations considered in [GMZ12], [MZ17].

To have a feeling on what kind of results related to absorption time we obtain, let us have a
look at Figure 1 (note that the caption can be fully understood once further sections are read).
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Figure 1: Sample transitions for the example from Section 6.3 with d = 2 and r = 1: X∗ (left)
and X̂ (right). State N = (N1, N2) is the only absorbing one in both chains. Probabilities of
staying are not depicted. If X∗ starts at (1, 1), so does the X̂ and T ∗(1,1),N = T̂(1,1),N provided
qj(1) = 0, j = 1, . . . , d. If, say, ν∗((i1, i2)) = 1 then the pgf of T ∗(i1,i2),N is a mixture of pgfs of
T̂(j1,j2),N for j1 ≤ i1, j2 ≤ i2 (shaded area).

On the left hand side of Fig. 1 a chain X∗ constructed from two one-dimensional birth and
death chains is presented (i-th chain has only one absorbing state Ni, i = 1, 2). The chain is
constructed in a specific way which results in the bivariate chain with independent moves (either
up, down, left or right). Its transitions are consistent with transitions of a chain given in (1.1)
– except there is just one absorbing state N = (N1, N2) (i.e., there is no −∞ state). We will
show that the time to absorption of the chain X∗ started at (i1, i2) is a mixture of times to
absorption of a pure-birth chain X̂ starting at states (i′1, i

′
2), where i′1 ≤ i1, i′2 ≤ i2 (shaded area

on the right hand side of Fig. 1). In particular, if X∗ starts in (1,1), so does the chain X̂. The
chain X̂ has also the only absorbing state N, it is pure-birth in the sense, that only up and
right transitions are allowed. The probabilities of its transitions are related to the eigenvalues
of one-dimensional birth and death chains from which X∗ was constructed.

Remark 1.1. In [Lor17] the chain given in (1.1) was considered. The chain is constructed from
d one-dimensional birth and death chains in a very specific way. The method from this chapter
is much more general, we can construct a variety of multidimensional chains from given d one-
dimensional birth and death chains. It is worth mentioning, that even for the case (1.1), the
proof is quite different (from the one in [Lor17]).

Several variations (including multidimensional ones) of gambler’s ruin problem have been
considered. Researchers usually study absorption probabilities, absorption time, or both. In
[KP02] authors consider a two-dimensional model (they consider two currencies) and study the
expected game duration. In [Ros09] some multidimensional game is considered: at each step two
players are randomly chosen, these players play a regular game, all till one of the players have
all the coins. Author derives the probability that a specific player wins, the expected number of
turns in total and between two given players. In [RS04] the following multidimensional game is
considered: there are n players, at each step there is one winner who collects n − 1 coins from
other players, whereas all others lose 1 coin. An asymptotic probability for an individual ruin
and dependence of ruin time are studied. In [Tzi19] the multidimensional case is considered,
in which with equal probability a unit displacement in any direction is possible. Moments of
leaving some ball are considered. In [CSV18] authors present a new probabilistic analysis of
distributed algorithm re-considering a variation of a banker algorithm. Mathematically, it is
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random walk on a rectangle with specified absorbing states. The results are generalized to the
case with many players and resources.

The absorption probability of a given chain may be related to the stationary distribution of
some ergodic chain. This relation is given using the Siegmund duality, the notion introduced
in [Sie76]. This is also the tool we use for showing winning probabilities. Already in [Lin52]
similar duality between some random walks on integers was shown. It was also studied in
financial mathematics, where the probability that a dual risk process starting at some level
is ruined, is equal to the probability that the stationary queue length exceeds this level (see
[AA10], [AS09]). In all these cases the Siegmund duality was defined for the linear ordering of
the state space. The existence of a Siegmund dual for a linearly ordered state space requires
stochastic monotonicity of the chain. In [Lor18] if and only if conditions for the existence of
the Siegmund dual for partially ordered state spaces was derived (roughly speaking, the Möbius
monotonicity is required). In this chapter, we exploit this duality defined for a coordinate-wise
partial ordering.

It is worth mentioning that for one-dimensional gambler models there are several approaches
to (each having its advantages and disadvantages) study the winning probability and/or game
duration, including conditioning, difference equations (the most common approach to provide
the formula for the winning probability in the classical – i.e., the one with constant birth and
death rates – gambler’s ruin problem), generating functions and martingale-based methods
(e.g., [Len09a]), path counting (e.g., [Len09b]).

Absorption time Consider a one-dimensional game corresponding to the gambler’s ruin prob-
lem. Let N be the total amount of money. Being at a state i ∈ {2, . . . , N − 1} we can either
win one dollar with probability p(i) > 0 or lose it with probability q(i) > 0, with the remaining
probability nothing happens. Assuming p(1) > 0 and p(N) = q(N) = p(0) = q(0) = 0 the
transitions are following:

PY (i, i′) =


p(i) if i′ = i+ 1,

q(i) if i′ = i− 1,

1− (p(i) + q(i)) if i′ = i.

(1.4)

States 0 and N are absorbing. Consider two cases:

Case: q(1) = 0 Roughly speaking, if started at i ≥ 1 the chain never reaches 0 and this is
actually a birth and death chain on {1, . . . , N} with N being the only absorbing state. Define
Ta,b = inf{n ≥ 0 : Yn = b |Y0 = a}. A well known theorem attributed to [Kei79] states that the
probability generating function pgf of T1,N is the following:

pgfT1,N
(u) := EuT1,N =

N−1∏
k=1

[
(1− λk)u

1− λku

]
, (1.5)

where −1 ≤ λk < 1, k = 1, . . . , N−1 are N−1 non-unit eigenvalues of PY . The proof was purely
analytical. Note that (1.5) corresponds to the sum of N geometric random variables, provided
that all eigenvalues are positive (which, in this case, is equivalent to the stochastic monotonicity
of the chain). For this case, [Fil09b] gave a probabilistic proof of (1.5) using strong stationary
duality and intertwinings between chains. Note that in this case (1.5) can be rephrased as:

Theorem 1.1. Let X∗ be an absorbing chain on E = {1, . . . , N} starting at 1 with the transition
matrix PX∗ given in (1.4) having positive eigenvalues λk > 0, k = 1, . . . , N . Then T ∗1,N has the
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same distribution as T̂1,N , the absorption time of X̂ on Ê = E starting at 1 with the transition
matrix

PX̂(i, i′) =


1− λi if i′ = i+ 1,

λi if i′ = i,

0 otherwise.

The chain Y on {1, . . . , N} is called pure-birth if PY (i, j) = 0 for j < i. Similarly, a
multidimensional chain Y on E = {(i1, . . . , id) : 1 ≤ ij ≤ Nj , 1 ≤ j ≤ d} is said to be pure-
birth if the probability of decreasing any set of coordinates at one step is 0.

Simply noting that for any 1 < s < N we have T1,N = T1,s + Ts,N and that T1,s and Ts,N
are independent (see Cor. 2.1 [GMZ12] for a continuous time version) we have

pgfTs,N (u) := EuTs,N =

N−1∏
k=1

[
(1− λk)u

1− λku

]
s−1∏
k=1

[
(1− λbsck )u

1− λbsck u

] , (1.6)

where λbick are the eigenvalues of the substochastic (s− 1)× (s− 1) matrix

P
bsc
Y (i, i′) =


p(i) if i′ = i+ 1, 1 ≤ i ≤ s− 2,

q(i) if i′ = i− 1, 2 ≤ i ≤ s− 1,

1− (p(i) + q(i)) if i′ = i, 1 ≤ i ≤ s− 1.

Case: q(1) > 0 In this case, authors in [GMZ12] (different proof is given in [MZ17]) derived
formulas for pgf of Ts,N and Ts,0 (more precisely, they derived formulas for continuous time
versions), which, in discrete case, are given by

pgfTs,N (u) = EuTs,N = ρ(s)

N−1∏
k=1

[
(1− λk)u

1− λku

]
s−1∏
k=1

[
(1− λbsck )u

1− λbsck u

] , (1.7)

pgfTs,0(u) = EuTs,0 = (1− ρ(s))

N−1∏
k=1

[
(1− λk)u

1− λku

]
N−s−1∏
k=1

[
(1− λdsek )u

1− λdsek u

] ,

where ρ(s) is the probability of winning (i.e., (1.2) with d = 1, i1 = s) and λdsek are the eigen-
values of the substochastic matrix (of the size N − s− 1)

P
dse
Y (i, i′) =


p(i) if i′ = i+ 1, s+ 1 ≤ i ≤ N − 2,

q(i) if i′ = i− 1, s+ 2 ≤ i ≤ N − 1

1− (p(i) + q(i)) if i′ = i, s+ 1 ≤ i ≤ N − 1.
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In this chapter we aim at presenting results similar to Theorem 1.1 and to (1.7) for a wide class
of multidimensional extensions of gambler’s ruin problem.

2 Kronecker product and main results

To state our main results we need to recall a notion of the Kronecker product. Let A be a
matrix of size n×m. Then, for any matrix B the Kronecker product of the matrices is defined
as follows:

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

. . . . . . . . . . . .
an1B an2B . . . anmB

 .
For square matrices A and B it is also convenient to define the Kronecker sum as:

A⊕B = A⊗ IB + IA ⊗B,

where IA (IB) is the identity matrix of the same size as A (B).
Both, product and sum, are extended as:

n⊗
i=1

Ai = (. . . ((A1 ⊗A2)⊗A3) . . .)⊗An = A1 ⊗A2 ⊗ . . .⊗An

and
n⊕
i=1

Ai = (. . . ((A1 ⊕A2)⊕A3) . . .)⊕An = A1 ⊕A2 ⊕ . . .⊕An.

Notation For a convenience, for the given substochastic matrix P′Y on E′ = {e1, . . . , eM} by
PY = Fe0

(P′Y ) we denote a stochastic matrix on E = {e0} ∪ E′ constructed from P′Y in the
following way:

PY (ei, ej) =


P′Y (ei, ej) if ei, ej ∈ E,
1−

∑
ek∈E′ P

′
Y (ei, ek) if ei ∈ E′, ej = e0,

1 if ei = ej = e0.

0 if ei = e0, ej ∈ E.

Similarly, for a stochastic matrix PY on E = {e0} ∪ E′ let P′Y = F−1
e0

(PY ) be a substochastic
matrix on E′ resulting from PY by removing the row and the column corresponding to the state
e0.

For a Markov chain Y on E = {e1, . . . , eM} we say that A ⊆ E is a communication class if
for all e, e′ ∈ A we have PnY (e, e′) > 0 for some n ≥ 0.

For a given chain Y we define Tν,e′ := inf{n ≥ 0 : Yn = e′|Y0 ∼ ν}. Slightly abusing the
notation, by Te,e′ we mean Tν,e′ with ν = δe. For E = {e1, . . . , eM} and for f : E→ R, we define
a row vector f = (f(e1), . . . , f(eM )). For Nj > 0, j = 1, . . . , d we define N = (N1, . . . , Nd).
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2.1 Absorption probabilities
Before stating the result, let us provide some intuition behind it. Assume we play with d players
(i.e., we have d one-dimensional games), the winning probability playing only with player j
is given by ρj(ij), provided we started with ij dollars. Now, if we play with all the players
independently and we define that we win the whole game if we win with all the players, lose the
whole game if we lose with at least one player, then the probability of winning the whole game
is a product of probabilities i.e.,

∏d
j=1 ρj(ij) (the formula is given in (2.3) below).

However, one can ask the following question: Can we combine the games in some other
way, so that the resulting winning probability is still of a product form? For example: can we
combine d = 10 games so that at one step we can play with at most r = 5 other players? Can
the rules (for combining the games) depend on the current fortune? These type of questions
(to which the answers are yes) were the motivation for the next theorem, where a wide class of
possible combinations is allowed. The examples are provided later in Section 6.

Theorem 2.1. Fix integers d ≥ 1,m ≥ 1. For k = 1, . . . ,m let Ak ⊆ {1, . . . , d}. Assume

• ∀(1 ≤ k ≤ m) P
Z

(k)
j

= F0(P′
Z

(k)
j

) is a stochastic matrix corresponding to a Markov chain

Z
(k)
j on Ej = {0, 1, . . . , Nj} such that for i ∈ Ej we have

ρ
(k)
j (i) = P (τNj < τ0|Z(k)

j (0) = i) = ρj(i). (2.1)

In other words, Z(k)
j are m (k = 1, . . . ,m) chains having the same winning probability at

every state i.

• Let

R′
Z

(k)
j

=

 P′
Z

(k)
j

if j ∈ Ak,

Ij if j /∈ Ak,

where Ij is the identity matrix of size Nj ×Nj.

• Let Bi, i = 1, . . . ,m be either

– any real numbers (i.e., Bk ∈ R) such that
∑m
k=1 Bk = 1, or

– square matrices of size
∏d
j=1Nj ×

∏d
j=1Nj such that

∑m
k=1 Bk = I (identity matrix

of the appropriate size)

• The matrix PZ = F−∞(PZ′) with

P′Z =

m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 (2.2)

is stochastic on E = {−∞} ∪
⊗

j≤d E′j , set E \ {{N} ∪ {−∞}} is a communication class.

Then, the winning probability (i.e., the absorption at N) of the Markov chain Z on E = {−∞}∪
{1, . . . , N1} × . . .× {1, . . . , Nd} with the transition matrix PZ = F−∞(P′Z) is given by

ρ(i1, . . . , id) =

d∏
j=1

ρj(ij). (2.3)
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The proof is postponed to Section 4.2.

Note that P
Z

(k)
j

in Theorem 2.1 are general. If we only know the winning probabilities of
P
Z

(k)
j

(they cannot depend on k), then we know the winning probabilities of Z. Taking P
Z

(k)
j

corresponding to gambler’s ruin game given in (1.4) we have:

Corollary 2.2. Let P
Z

(k)
j

for j = 1, . . . , d be the birth and death chain given in (1.4). Then,

the winning probability of PZ = F−∞(P′Z) is given by (1.3).

Proof. For P
Z

(k)
j

the winning probability is known (shown in (3.5)), it is

ρj(ij) =

ij∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

)
Nj∑
nj=1

nj−1∏
r=1

(
qj(r)

pj(r)

) . (2.4)

Assertion of Theorem 2.1 completes the proof.

The chain Z can be interpreted as a d-dimensional game, with state (N1, . . . , Nd) corre-
sponding to winning and state −∞ corresponding to losing.

Remark 2.1. In [Lor17, Theorem 2] we showed that the non-negativity of the resulting P′Z
is not required (for showing a product form formula for the winning probability of the model
considered therein) – it is only required that (in our settings) for all (i′1, . . . , i

′
d) ∈ E we have

lim
n→∞

P
′n
Z ((i′1, . . . , i

′
d), (i1, . . . , id)) = π((i1, . . . , id)),

∑
(i1,...,id)∈E

π((i1, . . . , id)) = 1.

A one-dimensional example was provided in [Lor17, Section 4]. It is left for a future research to
check if the assertion of Theorem 2.1 holds also without the assumption of the non-negativity
of P′Z (in this chapter we focused on stochastic proofs, whenever possible).

2.2 Absorption time
Let us start with some motivation. As recalled in the introduction, we have some expressions
for the absorption time of a one-dimensional birth and death chain X∗ on 1, . . . , N with one
absorbing state N . If we start at state 1, this time is expressed in terms of the eigenvalues
of the transition matrix (formula (1.5)). Moreover, if the eigenvalues are non-negative (which
corresponds to stochastic monotonicity of the chain), we have a stochastic interpretation: its
absorption time is equal to the absorption time of a pure-birth chain X̂, whose transitions involve
the aforementioned eigenvalues (formula (1.1)).

In case when we start at s > 1, this absorption time of X∗ can be expressed in terms of
the eigenvalues of the transition matrix and of the truncated substochastic transition matrix
(formula (1.6)). Using the duality-based approach given in [Fil09b], it is relatively easy to
show that it can be expressed as a mixture of absorption times of a pure-birth chain starting
at s′ ≤ s. To be more precise, the probability generating function of the absorption time of
X∗ is a mixture of probability generating functions of the absorption time of X̂. Moreover,
if the mixture coefficients are non-negative, we have stochastic interpretation (a sample-path
construction) of this absorption time.
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These observations were our motivation for a multidimensional extension. Do similar results
hold then? Can we have a similar stochastic interpretation in some cases? How to construct
a multidimensional chain out of many one-dimensional birth and death chains, so that the
absorption time of the constructed chain can be somehow expressed in terms of pure-birth
chains, whose transitions involve eigenvalues of underlying birth and death chains? In the next
theorem we provide a wide class of multidimensional chains (ways of constructing such a chain
from one-dimensional birth and death chains), for which we are able to express the absorption
time in the aforementioned desired way.

Theorem 2.3. Fix integers d ≥ 1,m ≥ 1. For k = 1, . . . ,m let Ak ⊆ {1, . . . , d}. Let bi ∈ R, i =
1, . . . ,m such that

∑m
k=1 bi = 1. Let, for 1 ≤ j ≤ d, PX∗j be the stochastic matrix corresponding

to a birth and death chain X∗j on Ej = {0, . . . , Nj} with transitions given in (1.4) with birth
rates pj(i) and death rates qj(i). Let, for 1 ≤ j ≤ d, P′X∗j = F−1

0 (PX∗j ) be the substochastic
matrix on E′j = {1, . . . , Nj} and

R′
X
∗(k)
j

=

 P′X∗j
if j ∈ Ak,

Ij if j /∈ Ak,

where Ij is the identity matrix of size Nj ×Nj. I.e., R′
X
∗(k)
j

is either matrix P′X∗j
or an identity

matrix. Let λ(j)
1 ≤ . . . ≤ λ(j)

Nj−1 < λ
(j)
Nj

= 1 be the eigenvalues of P′X∗j .
Assume

A1 The chains PX∗j , j = 1, . . . , d are stochastically monotone.

A2 The matrix PX∗ = F−∞(P′X∗) with

P′X∗ =

m∑
k=1

bk

⊗
j≤d

R′
X
∗(k)
j

 (2.5)

is a stochastic matrix on E = {−∞}∪
⊗

j≤d E′j , set E\{{N}∪{−∞}} is a communication
class, N = (N1, . . . , Nd).

A3 The matrix PX̂ , given below in (2.6), is non-negative.

Let X∗ be a chain with the above transition matrix PX∗ . Assume its initial distribution is ν∗.
The state N is the absorbing state, denote its absorption time by T ∗ν∗,N.
Then the time to absorption T ∗ν∗,N has the following pgf

pgfT∗
ν∗,N

(s) =
∑
ê∈E

ν̂(ê)pgfT̂ê,N
(s)

 d∏
j=1

ρj(1)

 ,

where ρj(1) is the winning probability of X∗j starting at 1,

ν̂ = ν∗
⊗
j≤d

Λ−1
j ,

Λj are given in (3.8) calculated for P′X∗j
and T̂ê,N is the time to absorption for the chain

X̂ ∼ (δê,PX̂) with:
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PX̂((i1, . . . , id), (i
′
1, . . . , i

′
d)) =

∏
j∈B

(
1− λ(j)

ij

) ∑
k:B⊆Ak

bk ∏
j∈Ak\B

λ
(j)
ij

 if i′j = ij + 1,

j ∈ B ⊆ {1, . . . , d},B 6= ∅,

m∑
k=1

bk
∏
j∈Ak

λ
(j)
ij

if i′j = ijforj = 1, . . . , d,

0 otherwise.

(2.6)

We also have
∀(e ∈ E)ν∗(e) 6= 0 ⇒ ∃(e′ � e)ν̂(e′) > 0 (2.7)

Moreover, the eigenvalues of PX∗ and PX̂ are the diagonal entries of PX̂ .

Note that X̂ is a pure-birth chain. Moreover, at one step it can increase values of coordinates
by +1 on a set B such that B ⊆ Ak, for k = 1, . . . ,m.

Remark 2.2. In case bi ≥ 0, i = 1, . . . ,m (i.e., (b1, . . . , bm) is a distribution on {1, . . . ,m}), the
matrix PX∗ in assumption A2 is stochastic (thus A2 is only about E \ {{N} ∪ {−∞}} being a
communication class) and so is the matrix PX̂ given in (2.6) (i.e., A3 is fulfilled).

Remark 2.3. Note that the formula for the transitions of the resulting multidimensional chain
given in (2.5) is very similar to the formula (2.2), i.e., the one used in Theorem 2.1 (providing
results for the winning probabilities). The main difference is that in (2.2) we have some Bk’s
which can be either numbers summing up to 1 or some matrices summing up to the identity
matrix, whereas in (2.5) they must be numbers summing up to 1. Consequently, the class of
the resulting multidimensional chains constructed in Theorem 2.1 is larger than the class of the
chains constructed in Theorem 2.3.

Considering initial distribution having whole mass at (1, . . . , 1) and/or all qj(1) = 0, j =
1, . . . , d we have special cases, which we will formulate as a corollary.

Corollary 2.4. Consider the setup from Theorem 2.3.

a) Moreover, assume that qj(1) = 0 for all j = 1, . . . , d. I.e., each X∗j has actually only one
absorbing state (state 0 is not accessible). Then, N is the only absorbing state of X∗,∑

e∈E ν̂(e)=1, ρj(1) = 1, j = 1, . . . , d and we have

pgfT∗
ν∗,N

(s) =
∑
ê∈E

ν̂(ê)pgfT̂ê,N
(s).

b) Moreover, assume that both qj(1) = 0 for all j = 1, . . . , d and ν∗((1, . . . , 1)) = 1. Then
T ∗(1,...,1),N

d
= T̂(1,...,1),N, where d

= denotes the equality in the distribution.

c) Moreover, assume that ν∗((1, . . . , 1)) = 1. Then assertions of Theorem 2.3 hold with
ν̂((1, . . . , 1)) = 1 and we have

T ∗(1,...,1),N =

 T̂(1,...,1),N with probability
∏d
j=1 ρj(1),

−∞ with probability 1−
∏d
j=1 ρj(1).
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Sample-path construction It turns out that when ν̂ resulting from ν̂ = ν∗Λ−1 is a distri-
bution (which is always the case in, e.g., Corollary 2.4 b) and c)), we can have a sample-path
construction. I.e., for X∗ we can construct, sample path by sample path, a chain X̂, so that
T ∗ν∗,N has the distribution expressed in terms of T̂ν̂,N as stated in Theorem 2.3. The construc-
tion is analogous to the construction given in [DF90b] (paragraph 2.4) - note however that the
construction therein was between ergodic chain and its strong stationary dual chain (i.e., the
chain with one absorbing state) and the link Λ was a stochastic matrix (it can be substochastic
in our case). Having observed X∗0 = e∗0 (chosen from the distribution ν∗) we set

X̂0 = ê0 with probability
ν̂(ê0)Λ(ê0, e

∗
0)

ν∗(e∗0)
.

Then, after choosing X∗1 = e∗1, . . . , X
∗
n−1 = e∗n−1 and X̂1 = ê1, . . . , X̂n = ên we set

X̂n = ên with probability
PX̂(ên−1, ên)Λ(ên, e

∗
n)

(PX∗Λ)(ên−1, e∗n)
.

This way we have constructed the chain X̂ so that ΛPX∗ = PX̂Λ and ν∗ = ν̂Λ with the property
that X̂n = êM if and only if X∗n = e∗M .

Theorem 2.3 is actually neither an extension of (1.6) nor (1.7) to the multidimensional case,
since for one-dimensional case the formula for pgf of T ∗s,N has a different form, as examples given
in Section 6 show.

3 Tools: dualities in Markov chains

Siegmund duality and intertwinings between chains are the key ingredients of our main theorems’
proofs.

3.1 Siegmund duality
Let X be an ergodic discrete-time Markov chain with the transition matrix PX and a finite
state space E = {e1, . . . , eM} partially ordered by �. Denote its stationary distribution by π.
We assume that there exists a unique minimal state, say e1, and a unique maximal state, say
eM . For A ⊆ E, define PX(e, A) :=

∑
e′∈APX(e, e′) and similarly π(A) :=

∑
e∈A π(e). Define

also {e}↑ := {e′ ∈ E : e � e′}, {e}↓ := {e′ ∈ E : e′ � e} and δ(e, e′) = 1{e = e′}. We say that
a Markov chain Z with the transition matrix PZ is the Siegmund dual of X if

∀(ei, ej ∈ E) ∀(n ≥ 0) PnX(ei, {ej}↓) = PnZ(ej , {ei}↑). (3.1)

In all non-degenerated applications, we can find the substochastic matrix P′Z fulfilling (3.1).
Then we add one extra absorbing state, say e0, and define PZ = Fe0(P′Z). Note that then PZ
fulfills (3.1) for all states different from E. This relation also implies that eM is an absorbing
state in the Siegmund dual, thus Z has two absorbing states. Taking the limits as n → ∞ on
both sides of (3.1), we have

π({ej}↓) = limn→∞PnZ(ej , {ei}↑) = P (τeM < τe0
|Z0 = ej) = ρ(ej). (3.2)

The stationary distribution of X is related in this way to the absorption of its Siegmund dual
Z.
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It is convenient to define the Siegmund duality in a matrix form. Let C(ei, ej) = 1(ei � ej),
then the equality (3.1) can be expressed as

PnXC = C(P′ nZ )T . (3.3)

Relation (3.2) can be rewritten in a matrix form as

ρ = πC.

The inverse C−1 always exists, usually it is denoted by µ and called the Möbius function. To
find a Siegmund dual it is enough to find PZ fulfilling (3.3) with for n = 1.

Let �:=≤ be a total ordering on a finite state space E = {1, . . . ,M}. The chain Y is stochas-
tically monotone w.r.t to the total ordering if ∀i1 ≤ i2 ∀j PY (i2, {j}↓) ≤ PY (i1, {j}↓). We
have

Lemma 3.1 ( [Sie76]). Let X be an ergodic Markov chain on E = {1, . . . ,M} with the tran-
sition matrix PX . The Siegmund dual Z (w.r.t. the total ordering) exists if and only if X is
stochastically monotone. In such a case PZ = F(P′Z), where

P′Z(j, i) = PX(i, {j}↓)−PX(i+ 1, {j}↓)

for i, j ∈ E (we mean PX(i+ 1, ·) = 0).

Since the proof is one line long, we present it.

Proof of Lemma 3.1. The main thing is to show that (3.1) holds for n = 1. We have

P′Z(j, i) = P′Z(j, {i}↑)−P′Z(j, {i+ 1}↑) = PX(i, {j}↓)−PX(i+ 1, {j}↓).

The latter is non-negative if and only if X is stochastically monotone.

Let X be an ergodic birth and death chain on E = {1, . . . ,M} with the transition matrix

PX(i, i′) =


p′(i) if i′ = i+ 1,

q′(i) if i′ = i− 1,

1− (p′(i) + q′(i)) if i′ = i,

(3.4)

where q′(1) = p′(M) = 0 and p′(i) > 0, i = 1, . . . ,M − 1, q′(i) > 0, i = 2, . . . ,M . Assume that
p′(i− 1) + q′(i) ≤ 1, i = 2, . . . ,M (what is equivalent to stochastic monotonicity).

It is easily verifiable that when we rename transition probabilities: p(i) = q′(i), q(i) =
p′(i − 1), then the transitions PY defined in (1.4) are the transitions of the Siegmund dual of
PX resulting from Lemma 3.1. From the known form of the stationary distribution of an ergodic
birth and death chain, and from relation (3.2), it follows that for PY given in (1.4) we have

ρ(s) =
∑
k≤s

π(s) =

s∑
n=1

n−1∏
r=1

(
q(r)

p(r)

)
M∑
n=1

n−1∏
r=1

(
q(r)

p(r)

) . (3.5)

45



Multidimensional gambler models

3.2 Intertwinings between absorbing chains
Let Λ be any nonsingular matrix of size M ×M . We say that matrices PX∗ and PX̂ of size
M ×M are intertwined by a link Λ if

ΛPX∗ = PX̂Λ.

Similarly, we say that vectors ν̂ and ν∗ of lengths M are intertwined if

ν∗ = ν̂Λ. (3.6)

We say that a link Λ is e∗M -isolated if

Λ(ê, e∗M )

 6= 0 if ê = êM ,

= 0 otherwise .
(3.7)

Lemma 3.2. Let X∗ and X̂ be Markov chains on E∗ = e∗0 ∪ Ê and Ê with transition matrices
PX∗ andPX̂ respectively. Moreover, assumeX∗ has the initial distribution ν∗ and two absorbing
states: e∗0 and e∗M , whereas X̂ has one absorbing state êM . Assume that P′X∗ = F−1

e∗0
(PX∗) and

PX̂ are intertwined via an e∗M -isolated link Λ. Let ν̂ = ν∗Λ−1. Then we have

pgfT∗
ν∗,e∗

M

(s) = Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)pgfT̂ê,êM
(s).

Proof.
P (T ∗ν∗,e∗M

≤ t) = P (X∗(t) = e∗M ) =
∑

e∗∈E∗\{e∗0}

ν∗(e∗)PtX∗(e
∗, e∗M )

=
∑
ê∈E

∑
e∗∈E∗\{e∗0}

ν̂(ê)Λ(ê, e∗)PtX∗(e
∗, e∗M )

=
∑
ê∈E

∑
ê2∈Ê

ν̂(ê)Pt
X̂

(ê, ê2)Λ(ê2, e
∗
M )

= Λ(êM , e
∗
M )
∑
ê∈E

ν̂(ê)Pt
X̂

(ê, êM ).

Now, for pgf we have:
pgfT∗

ν∗,e∗
M

(s) =

∞∑
k=0

P (T ∗ν∗,e∗M = k)sk =

∞∑
k=0

(
P (T ∗ν∗,e∗M ≤ k)− P (T ∗ν∗,e∗M ≤ k − 1)

)
sk

= Λ(êM , e
∗
M )

∞∑
k=0

∑
ê∈Ê

ν̂(ê)Pk
X̂

(ê, êM )−
∑
ê∈Ê

ν̂(ê)Pk−1

X̂
(ê, êM )

 sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)

∞∑
k=0

(
Pk
X̂

(ê, êM )−Pk−1

X̂
(ê, êM )

)
sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)

∞∑
k=0

(
P (T̂ê,êM ≤ k)− P (T̂ê,êM ≤ k − 1)

)
sk

= Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)

∞∑
k=0

P (T̂ê,êM = k)sk = Λ(êM , e
∗
M )
∑
ê∈Ê

ν̂(ê)pgfT̂ê,êM
(s).
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Corollary 3.3. Let assumptions of Lemma 3.2 hold and, in addition, let ν̂ be a distribution.
Then, we have

T ∗ν∗,e∗M = Λ(êM , e
∗
M )T̂ν̂,êM .

From [Fil09b] we can deduce the following lemma.

Lemma 3.4. Let X∗ be a birth and death chain on E∗ = {0, . . . ,M} with the transition matrix
PX∗ given in (1.4) with two absorbing states: 0 and M . Let P′X∗ = F−1

0 (PX∗). Assume the
eigenvalues of P′X∗ are positive, denote them by 0 < λ1 < . . . < λM = 1.
Define Q1 := I and

Qk :=
(P′X∗ − λ1I) · · · (P′X∗ − λk−1I)

(1− λ1) · · · (1− λk−1)
, k = 2, . . . ,M

Let Λ be the lower triangular square matrix of size M ×M defined as

Λ(k, ·) = Qk(1, ·), k = 1, . . . ,M. (3.8)

Then, P′X∗ and PX̂ are intertwined by the link Λ, where

PX̂(i, i′) =

 1− λi if i′ = i+ 1,
λi if i′ = i,
0 otherwise.

(3.9)

is a matrix of size M ×M .

Note that Lemma 3.4 is similar to Theorem 4.2 in [Fil09b], the difference is that therein Λ
is a stochastic matrix, whereas in Lemma 3.4 it can be substochastic (it is strictly substochastic
if q(0) > 0). An almost identical Λ was considered in [GMZ12], their Proposition 3.3 yields:

Lemma 3.5.

• The matrices Qk, 1, . . . ,M are non-negative and substochastic.

• The matrix Λ is non-negative and substochastic, it is lower triangular and

Λ(1, 1) = 1, Λ(M,M) = ρ(1),

thus Λ is nonsingular.

Remark 3.1. Note that in case X∗ has no transition to 0, i.e., q(1) = 0, it is actually a chain
on {1, . . . ,M} and P′X∗ = F−1

0 (PX∗) is a stochastic matrix. Then Λ is a stochastic matrix and
Λ(M,M) = 1.

4 Proofs

4.1 Properties of the Kronecker product
In this section we recall some useful properties of the Kronecker product and formulate a lemma
relating eigenvectors and eigenvalues of some combination of Kronecker products.

We will exploit the following properties
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• bilinearity:
A⊗ (B + C) = A⊗B + A⊗C, (P1)

• mixed product:
(A⊗B)(C⊗D) = (AC)⊗ (BD), (P2)

• inverse and transposition:

(A⊗B)−1 = (A)−1 ⊗ (B)−1, (P3)

(A⊗B)T = (A)T ⊗ (B)T . (P4)

• eigenvalue and eigenvector:

having eigenvalues αj with corresponding left eigenvectors aj for each
matrix Aj , j ≤ n,we note that

∑
j≤n αj with

⊗
j≤n aj and

∏
j≤n αj

with
⊗

j≤n aj are the eigenvalue and the left eigenvector of A =
⊕

j≤nAj

and A′ =
⊗

j≤nAj respectively.

(P5)

Last property leads us to the following lemma.

Lemma 4.1. For all 1 ≤ j ≤ n and 1 ≤ i ≤ m, let aj be the left eigenvectors with the
corresponding eigenvalues αj of square matrices A(i)

j of sizes kj respectively.
Let Bi, i = 1, . . . ,m be square matrices of sizes

∏n
j=1 kj such that

∑m
i=1 Bi = I, where I is the

identity matrix of size
∏n
j=1 kj . Then

∏
j≤n αj with

⊗
j≤n aj are the eigenvalue and the left

eigenvector of A =
∑m
i=1(

⊗
j≤nA

(i)
j )Bi.

Similarly, if bi, i = 1, . . . ,m are real numbers such that
∑m
i=1 bi we have that

⊗
j≤n aj is the left

eigenvector with the corresponding eigenvalue
∏
j≤n αj of the matrix A =

∑m
i=1(

⊗
j≤nA

(i)
j )bi.

Proof. We have⊗
j≤n

aj

m∑
i=1

(
⊗
j≤n

A
(i)
j )Bi =

m∑
i=1

⊗
j≤n

aj(
⊗
j≤n

A
(i)
j )Bi =

m∑
i=1

⊗
j≤n

(ajA
(i)
j )Bi

=

m∑
i=1

⊗
j≤n

(ajαj)Bi =

m∑
i=1

∏
j≤n

αj
⊗
j≤n

ajBi

=
∏
j≤n

αj
⊗
j≤n

aj

m∑
i=1

Bi =
∏
j≤n

αj
⊗
j≤n

aj .

Similarly, ⊗
j≤n

aj

m∑
i=1

(
⊗
j≤n

A
(i)
j )bi =

m∑
i=1

⊗
j≤n

aj(
⊗
j≤n

A
(i)
j )bi =

m∑
i=1

⊗
j≤n

(ajA
(i)
j )bi

=

m∑
i=1

⊗
j≤n

(ajαj)bi =

m∑
i=1

∏
j≤n

αj
⊗
j≤n

ajbi

=
∏
j≤n

αj
⊗
j≤n

aj

m∑
i=1

bi =
∏
j≤n

αj
⊗
j≤n

aj .
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Substituting stochastic matrices P
(i)
j with stationary distributions πj (for all 1 ≤ j ≤ n, 1 ≤

i ≤ m) to matrices A
(i)
j with left eigenvectors αj (for all 1 ≤ j ≤ n, 1 ≤ i ≤ m) gives us the

following corollary (keeping in mind that 1 is the eigenvalue corresponding to the eigenvector
being the stationary distribution):

Corollary 4.2. LetP(i)
j be a stochastic matrix of size kj with πj being its stationary distribution

for all 1 ≤ j ≤ n, 1 ≤ i ≤ m. Let Bi, 1 ≤ i ≤ m be square matrices of sizes
∏n
j=1 kj such

that
∑m
i=1 Bi = I, where I is the identity of size

∏n
j=1 kj . Similarly, if bi, 1 ≤ i ≤ m are real

numbers such that
∑m
i=1 bi = 1, then the stochastic matrices of the form

∑m
i=1(

⊗
j≤nP

(i)
j )Bi

or
∑m
i=1(

⊗
j≤nP

(i)
j )bi have the stationary distribution of the form

⊗
j≤n πj .

4.2 Proof of Theorem 2.1
We will find an ergodic Markov chainX with the transition matrix PX and some partial ordering
of the state space (expressed by the ordering matrix C) and show that (3.2) is equivalent to
(2.3).

Let P
(k)
Zj

(on Ej = {0, . . . , Nj}) be as in the theorem. Let X(k)
j be the ergodic chain on

E′j = {1, . . . , Nj} with the transition matrix P
(k)
Xj

, such that Z(k)
j is its Siegmund dual w.r.t. the

total ordering. I.e., let Cj(s, t) = 1(s ≤ t), and duality means that

P
(k)
Xj

Cj = Cj(P
(k)
Z′j

)T ,

where P
(k)
Z′j

= F−1
0 (P

(k)
Zj

). Assumption (2.1) and relation (3.2) imply that for fixed j, the chains

X
(k)
j , k = 1, . . . ,m have the same stationary distribution, denote it by πj . The relation (3.2)

means that ρj = πjCj . On the state space E =
⊗

j≤d Ej let us introduce the ordering expressed
by the matrix C =

⊗
j≤dCj . From (3.3) we can calculate the matrix PX :

PX = CPTZC
−1 = (

⊗
j≤d

Cj)

 m∑
k=1

Bk(
⊗
j≤d

R(k)
Z′j

)

T

(
⊗
j≤d

Cj)
−1

(P4),(P3)
= (

⊗
j≤d

Cj)

 m∑
k=1

(
⊗
j≤d

(R(k)
Z′j

)T )BT
k

 (
⊗
j≤d

C−1
j )

(P1)
=

m∑
k=1

(
⊗
j≤d

Cj)

⊗
j≤d

(R(k)
Z′j

)T

BT
k (
⊗
j≤d

C−1
j )

(P2)
=

m∑
k=1

(
⊗
j≤d

Cj(R(k)
Z′j

)TC−1
j )(

⊗
j≤d

Cj)B
T
k (
⊗
j≤d

C−1
j ).

Let us define

R(k)
Xj

= Cj(R(k)
Z′j

)TC−1
j =

{
P

(k)
Xj

if j ∈ Ak,

Ij if j /∈ Ak.

In the case j ∈ Ak, the distribution πj is the unique stationary distribution. In the case j /∈ Ak,
any distribution is an invariant measure, however, we fix it to be πj . We have

PX =

m∑
k=1

(
⊗
j≤d

R(k)
Xj

)(
⊗
j≤d

Cj)B
T
k (
⊗
j≤d

C−1
j ).

49



Multidimensional gambler models

From the property (P1) we have that
m∑
k=1

(
⊗
j≤n

Cj)B
T
k (
⊗
j≤n

C−1
j ) = (

⊗
j≤n

Cj)

m∑
k=1

BT
k (
⊗
j≤n

C−1
j ) = (

⊗
j≤n

Cj)(
⊗
j≤n

C−1
j ) = I,

thus Corollary 4.2 implies that π =
⊗

j≤d πj is the stationary distribution of PX , thus ρ = πC,
what is equivalent to (2.3).

�

4.3 Proof of Theorem 2.3
To prove the theorem we will construct an N-isolated link Λ, so that P′X∗ and PX̂ , given in
(2.5) and (2.6) respectively, are intertwined via this link.
Consider the matrix P′X∗j

. Define the stochastic matrix PX̂j of size Nj ×Nj as:

PX̂j (i, i
′) =


1− λ(j)

i if i′ = i+ 1,

λ
(j)
i if i′ = i,

0 otherwise.

Let Λj be the link intertwining matrices P′X∗j and PX̂j given in (3.8). Define

R
X̂

(k)
j

=

 PX̂j if j ∈ Ak,

Ij if j /∈ Ak.

Note that matrices R′X∗j
and R

X̂
(k)
j

are also intertwined via Λj for any j = 1, . . . , d and any
k = 1, . . . ,m. Any link intertwines two identity matrices, which is the case for j /∈ Ak. I.e., we
have ΛjR

′
X∗j

= R
X̂

(k)
j

Λj , j = 1, . . . , d. Define

Λ =
⊗
j≤d

Λj .

We have

ΛP′X∗ =
⊗
j≤d

Λj

m∑
k=1

bk

⊗
j≤d

R′
X
∗(k)
j

 =

m∑
k=1

bk

⊗
j≤d

ΛjR′X∗(k)j


=

m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

Λj

 =

m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

⊗
j≤d

Λj

Simple calculations yield that PX̂ given in (2.6) can be written as
m∑
k=1

bk

⊗
j≤d

R
X̂

(k)
j

. Thus, we

have ΛP′X∗ = PX̂Λ. Now, let us calculate ν̂ = ν∗Λ−1 (note that Λ is nonsingular because of the
property (P3) and the fact that each Λj , j = 1, . . . , d and identity matrices Ij are nonsingular).
In other words, we have ν∗ = ν̂Λ. The equation (2.7) holds, since Λ is lower triangular.
Moreover, Λ is (N1, . . . , Nd)-isolated, since we have

Λ((i1, . . . , id),N) =

d∏
j=1

Λ(ij , Nj)
(∗)
=


∏d
j=1 ρj(1) if ij = Nj for all j = 1, . . . ,d,

0 otherwise ,
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where in
(∗)
= we used Lemma 3.5. Applying Lemma 3.2 completes the proof.

�

5 The outline of an alternative proof of Theorem 2.3: strong
stationary duality approach

In Theorem 2.3 we related the absorption time T ∗ν∗,N of X∗ with the absorption time T̂ν̂,N of X̂.
This was done by finding a specific matrix Λ, such that ΛPX∗ = PX̂Λ, exploiting the existence
of such Λ for X∗ and X̂ being birth and death chains. The exploited Λ is related to spectral
polynomials of the stochastic matrix PX∗ . Such a link appeared first naturally as a link between
an ergodic chain X and an absorbing chain X∗. The proof of Theorem 2.3 in case qj(1) = 0
(i.e., Corollary 2.4 a)) can be different, using intermediate ergodic chain. In this section we will
describe its outline.

Strong stationary duality Let X be an ergodic Markov chain on E = {e1, . . . , eN} with
the initial distribution ν and the transition matrix PX . Let E∗ = {e∗1, . . . , e∗M} be the, possibly
different, state space of the absorbing Markov chain X∗, with the transition matrix PX∗ and
the initial distribution ν∗, whose unique absorbing state is denoted by e∗M . Assume that Λ∗ is
a stochastic M ×N matrix satisfying Λ(e∗M , e) = π(e). We say that X∗ is a strong stationary
dual (SSD) of X with link Λ∗ if

ν = ν∗Λ and Λ∗PX = PX∗Λ
∗. (5.1)

[DF90b] prove that then the absorption time T ∗ of X∗ is the so called strong stationary time for
X. This is a random variable T such that XT has the distribution π and T is independent of XT .
The main application is to study the rate of convergence of an ergodic chain to its stationary
distribution, since for such a random variable we always have dTV (νPkX , π) ≤ sep(νPkX , π) ≤
P (T > k), where dTV stands for the total variation distance, and sep stands for the separation
‘distance’. For details, see [DF90b]. We say that SSD is sharp if T ∗ corresponds to stochastically
the smallest SST, then we have sep(νPkX , π) = P (T ∗ > k), the corresponding SST T ∗ is often
called the fastest strong stationary time (FSST).

Strong stationary duality for birth and death chain Let X be an ergodic birth and
death chain on E = {1, . . . ,M}, whose time reversal is stochastically monotone with transitions
given in (3.4). [DF90b] show that an absorbing birth and death chain X∗ on E∗ = E with
transitions given by

PX∗(i, i− 1) = H(i−1)
H(i) p′(i),

PX∗(i, i+ 1) = H(i+1)
H(i) q′(i+ 1),

PX∗(i, i) = 1− (p′(i) + q′(i+ 1)),

is a sharp SSD for X. Here we have

H(j) =
∑
k≤j

π(k), Λ∗(i, j) = 1{i ≤ j} π(i)

H(j)
. (5.2)
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X∗

X

X̂

Λ∗ Λ̂

Λ = Λ∗Λ̂−1

Figure 2: Intertwining between absorbing chains X∗ and X̂ via ergodic chain X.

Moreover, starting from an absorbing birth and death chain X∗ on E = {1, . . . ,M}, whose
unique absorbing state is M , Theorem 3.1 in [Fil09b] states that we can find an ergodic chain
X (and some stationary distribution π), such that X∗ is its sharp SSD with the link given in
(5.2).

Spectral pure-birth chain Again, let X be an ergodic birth and death chain on E =
{1, . . . ,M}. Assume its eigenvalues are non-negative, 0 ≤ λ1 ≤ . . . ≤ λM = 1. Then, the
chain X̂ with transitions given in (3.9) is its sharp SSD with the link Λ̂ given in (3.8).

The outline of an alternative proof As in previous section, the main idea is to show
that two absorbing birth and death chains X∗j and X̂j (pure-birth) on Ej = {1, . . . , Nj} are
intertwined by an Nj-isolated link Λj . Collecting above findings, we have (skipping conditions
on initial distributions):

• LetXj be an ergodic chain on Ej , whoseX∗j is a sharp SSD, i.e., we have Λ∗jPXj = PX∗j Λ∗j .

• Let X̂j be a pure-birth sharp SSD for Xj , i.e., we have Λ̂jPX = PX̂j Λ̂j .

It means that absorption times T ∗ and T̂ are equal in distribution (since both X∗ and X̂ are
sharp SSDs of X). Mathematically, we have

ΛjPX∗j = PX̂jΛj , where Λj = Λ̂j
(
Λ∗j
)−1

,

i.e., X∗j and X̂j are intertwined by the link Λj , which is Nj-isolated. Intertwining between two
absorbing birth and death chains via an ergodic chain is depicted in Fig. 5. Taking Λ =

⊗
j≤d Λj

and ν̂ = ν∗Λ−1 we proceed with the proof of Theorem 2.3 as in previous section.

6 Examples

In first two subsections 6.1 and 6.2 we will present examples on the absorption time of some
one-dimensional birth and death chains. Although we mainly focus on multidimensional gen-
eralizations, we consider these examples worth presenting. Next two subsections 6.3 and 6.4
contain some non-trivial multidimensional gambler models, for which we either provide results
for both, the winning probability and the absorption time (Example 6.3) or only for the winning
probability (Example 6.4).
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6.1 A one-dimensional gambler’s ruin problem with N = 3: calculating
T ∗
2,3

Here we present a simple example for calculating T ∗2,3 in a one-dimensional gambler’s ruin
problem using Theorem 2.3. We also check that calculations agree with the formula (1.6).

Example 6.1. Let d = 1, N1 = 3 and p1(1) = p1(2) = p > 0, q1(1) = q1(2) = q > 0 such that
p 6= q and p+ q +

√
pq < 1. The transition matrix of PX∗1 is following

PX∗1 =


1 0 0 0

q 1− p− q p 0

0 q 1− p− q p

0 0 0 1

 .

Then, the pgf of the time to absorption starting at 2 is given by:

pgfT∗2,3(s) =
p(q + p+

√
qp)(−q − p+

√
qp)u(1− u(1− q − p))

(p2 + qp+ q2)(1− u(1− q − p−√qp)(−1 + u(1− q − p+
√
qp)

(6.1)

Proof. We have PX∗ = PX∗1 . The eigenvalues of P
′
X∗ = F−1

0 (PX∗) are λ1 = 1−p−q−√pq, λ2 =
1− p− q +

√
pq, λ3 = 1. The transitions of PX̂ are following

PX̂ =

 λ1 1− λ1 0

0 λ2 1− λ2

0 0 1

 .

Thus,

pgfT̂1,3
(s) =

(1− λ1)(1− λ2)s2

(1− λ1s)(1− λ2s)
, pgfT̂2,3

(s) =
(1− λ2)s

(1− λ2s)
.

Calculating Λ from (3.8) (for PX∗) we obtain

Λ =

 1 0 0
√
pq

q+p+
√
qp

p
q+p+

√
qp 0

0 0 ρ(1)

 .

Calculations yield (we have ν∗(2) = 1)

ν̂ = ν∗Λ−1 =

(
−
√
q

p
, 1 +

q

p
+

√
q

p

)
.

From (1.6) we have ρ(i) =
1−( qp )

i

1−( qp )
3 , i = 1, 2, 3. Finally,

pgfT∗2,3(s) = ρ(1)

(
−
√
q

p
pgfT̂1,3

(s) +

(
1 +

q

p
+

√
q

p

)
pgfT̂2,3

(s)

)
,

what can be written as (6.1). On the other hand, (1.7) states that

pgfT∗2,3(s) = ρ(2)

(1−λ1)(1−λ2)s2

(1−λ1s)(1−λ2s)

(1−λb2c1 )s

1−λb2c1 s

=
1−

(
q
p

)2

1−
(
q
p

)3 ·
(1− λ1)(1− λ2)s2(1− λb2c1 s)

(1− λ1s)(1− λ2s)(1− λb2c1 )s
,

where λb2c1 = 1− (p+ q), which, as can be checked, is equivalent to (6.1).
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6.2 A one-dimensional gambler’s ruin problem related to the Ehren-
fest model: calculating T ∗

m,N

Here we present a concrete example of a birth and death chain on E = {1, . . . , N} with N
being the only absorbing state, for which we provide pgf of the absorption time provided the
chain started at an arbitrary m ∈ E. We use Lemma 3.2 to calculate the link Λ. As far as we
are aware, this pgf cannot be given using results from [GMZ12] i.e., (1.6). This is because the
eigenvalues of the transition matrix PX∗ are known, but the eigenvalues of the truncated matrix
P
dme
X∗ are not known for an arbitrary m ∈ E.

Example 6.2. Let X∗ be a Markov chain on the state space E = {1, . . . , N} with the transition
matrix PX∗ of the form:

PX∗(i, i
′) =



N−i
2N−2

∑i−1
r=0 (N−1

r−1 )∑i
r=0 (N−1

r−1 )
if i′ = i− 1, i < N,

N−2
2N−2 if i′ = i, i < N,

1 if i′ = i = N,

i
2N−2

∑i+1
r=0 (N−1

r−1 )∑i
r=0 (N−1

r−1 )
if i′ = i+ 1,

0 otherwise.

Then the absorption time starting at m ∈ E has the following pgf:

pgfT∗m,d(s) =
∑
j≤m

ν̂(j)pgfT̂j,d(s), (6.2)

where

ν̂(j) =
2j−1(−1)m+j(m− j + 1)

(
N−1
m

)(
m
j−1

)
(N − j)

∑m−1
k=0

(
N−1
k

) and pgfT̂j,N (s) =

N−1∏
k=j

[
(1− k−1

N−1 )s

1− k−1
N−1s

]
. (6.3)

In particular, we have

E(T ∗m,N ) = (N − 1)
∑
j≤m

ν̂(j)

N−1∑
k=j

1

N − k
. (6.4)

Proof. Let

PX̂(i, i′) =


i−1
N−1 if i′ = i,

N−i
N−1 if i′ = i+ 1,

0 otherwise.

To show the result using Lemma 3.2 it is enough to find Λ such that ΛPX∗ = PX̂Λ and
ν∗Λ−1 = ν̂, where ν∗(j) = 1{j = m}.

However, since X∗ has only one absorbing state, we can – and we will – follow the outline of
an alternative proof. I.e., we will indicate intermediate ergodic chain X on E with the transition
matrix PX and find Λ∗ and Λ̂ such that Λ∗PX = PX∗Λ

∗ and Λ̂PX = PX̂ Λ̂. Then, we will
automatically have Λ = Λ̂(Λ∗)−1 and we will show that ν∗Λ−1 = ν∗Λ∗Λ̂−1 = ν̂.
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Let X be a chain on E with the following transition matrix:

PX(i, i′) =



i−1
2(N−1) if i′ = i− 1,

1
2 if i′ = i,

N−i
2(N−1) if i′ = i+ 1,

0 otherwise,

i.e., X corresponds to the Ehrenfest model of N −1 particles with an extra probability (half) of
staying (and states are enumerated 1, . . . , N , whereas in the classical Ehrenfest model these are
0, . . . , N − 1). Its stationary distribution is the binomial distribution π(j) = 1

2N−1

(
N−1
j−1

)
, thus

the classical link (cf. (5.2)) is given by

Λ∗(i, j) =

(
N−1
j−1

)∑i−1
r=0

(
N−1
r

)1{j ≤ i},
i.e., we have Λ∗PX = PX∗Λ (X∗ is a sharp SSD of X). The eigenvalues of X are known,
these are i

N−1 , i = 0, . . . , N − 1, thus X̂ is its pure-birth spectral dual. The link Λ̂ such that
Λ̂PX = PX̂ Λ̂ is known (see Eq. (4.6) in [Fil09b]), it is given by

Λ̂(i, j) =

(
i−1
j−1

)
2i−1

.

It can be checked that
Λ̂−1(i, j) = (−1)j−i2j−1

(
i− 1

j − 1

)
.

Note that the i-th row of Λ̂−1 corresponds to the coefficients1 in expansion of (2x− 1)i−1.
Thus, as outlined in Section 5 we have ΛPX∗ = PX̂Λ with Λ = Λ̂(Λ∗)−1. We need only to
check that ν∗Λ−1 = ν∗Λ∗Λ̂−1 is equal to ν̂ given in (6.3). We have

ν̂(j) = (ν∗Λ∗Λ̂−1)(j) =
∑
k

Λ∗(m, k)Λ̂−1(k, j)

=
∑

j≤k≤m

(
N−1
k−1

)∑m−1
r=0

(
N−1
r

) (−1)j−k2j−1

(
k − 1

j − 1

)

=
2j−1∑m−1

r=0

(
N−1
r

) ∑
j≤k≤m

(−1)j−k
(
N − 1

k − 1

)(
k − 1

j − 1

)

(∗)
=

2j−1
(
N−1
j−1

)∑m−1
r=0

(
N−1
r

) ∑
j≤k≤m

(−1)j−k
(
N − j
N − k

)
,

where in
(∗)
= we used the identity

(
N−1
k−1

)(
k−1
j−1

)
=
(
N−1
j−1

)(
N−j
N−k

)
. As for the last sum we have∑

j≤k≤m

(−1)j−k
(
N − j
N − k

)
=

∑
j≤k≤m

(−1)j−k
(
N − j
k − j

)

=

m−j∑
k=0

(−1)k
(
N − j
k

)
(∗∗)
= (−1)m−j

(
N − j − 1

m− j

)
,

1The on-line encyclopedia of integer sequences, sequence http://oeis.org/A303872.
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where in
(∗∗)
= we used the identity2 ∑M

k=0(−1)k
(
n
k

)
= (−1)M

(
n−1
M

)
. Finally,

ν̂(j) =
2j−1(−1)m−j

(
N−1
j−1

)(
N−j−1
m−j

)∑m−j
r=0

(
N−1
r

) ,

what is equal to (6.3).
Note that the pgf given in (6.3) corresponds to the distribution of

∑N−1
k=j Yk, where Yk is a

geometric random variable with parameter k−1
N−1 and Y1, . . . , YN−1 are independent. We have

EYk = N−1
N−k thus (6.4) follows from (6.2) and (6.3).

Note that calculating ν̂ we have actually calculated the link Λ, which is given by

Λ(i, j) =


2j−1(−1)i+j(i−j+1)(N−1

i )( i
j−1)

(N−j)
∑i−1
k=0 (N−1

k )
if j < N,

0 j = N, i < N,

1 j = N, i = N.

Next two subsections 6.3 and 6.4 contain results for some non-trivial multidimensional gambler
models.

6.3 A multidimensional case, winning probabilities and the absorption
time: changing r coordinates at one step in a d-dimensional game

We will present an example for both Theorems, 2.1 and 2.3. The chains P
Z

(k)
j

in Theorem
2.1 are quite general, but in this example we consider birth and death chains i.e., we will use
P
Z

(k)
j

= PX∗j from Theorem 2.3 (birth and death chains given in (1.4)). Similarly, we have

R′
Z

(k)
j

= R′
X
∗(k)
j

and PZ = PX∗ .

Example 6.3. The idea of the example is following. We construct a d-dimensional game from
one-dimensional games, in such a way, that at one step we play with r other players, where
r ∈ {1, . . . , d}. In other words, the multidimensional chain can change at most r coordinates in
one step.

Moreover we will take, as Bi := bi real numbers. In both theorems let us take 0 < r < d,
m =

(
d
r

)
+ 1 and bk = 1, k = 1, . . . ,m − 1, bm = 1 −

(
d
r

)
. Let us enumerate combinations of r

positive numbers no greater than d in some way (see e.g., [Mud65]). Let Ak be k-th combination
from this numbering, for k = 1, . . . ,m− 1 and Am = ∅. Then we have

P′Z =

m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 =

(dr)∑
k=1

⊗
j≤d

R′
Z

(k)
j

− ((d
r

)
− 1

)⊗
j≤d

Ij . (6.5)

We have that R′
Z

(k)
j

= P′Zj if {j} ∈ Ak and R′
Z

(k)
j

= Ij otherwise (for {j} 6∈ Ak), thus P′Z =

∑
1≤i1<i2<...<ir≤d

(
⊗
j<i1

Ij)⊗P′Zi1⊗(
⊗

i1<j<i2

Ij)⊗. . .⊗(
⊗

ir−1<j<ir

Ij)⊗P′Zir⊗(
⊗

ir<j≤d

Ij)−
((

d

r

)
− 1

)⊗
j≤d

Ij .

2See Partial sums at https://en.wikipedia.org/wiki/Binomial_coefficient
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In other words, we combine d one-dimensional birth and death chains in such a way, that the
resulting d-dimensional chain can change at most r coordinates by ±1 at one step.
We can rewrite this formula for some cases:

• r = d, independent games
P′Z =

⊗
j≤d

P′Zj .

• r = d− 1

P′Z =

d∑
k=1

(
⊗
j<k

P′Zj )⊗ Ik ⊗ (
⊗
j>k

P′Zj )− (d− 1)
⊗
j≥d

Ij .

• r = 2

P′Z =

d∑
k=1

d∑
i=k+1

(
⊗
j<k

Ij)⊗P′Zk ⊗ (
⊗
k<j<i

Ij)⊗P′Zi ⊗ (
⊗
i<j≤d

Ij)−
((

d

2

)
− 1

)⊗
j≥d

Ij .

• r = 1

P′Z =

d∑
k=1

(
⊗
j<k

Ij)⊗P′Zk ⊗ (
⊗
j>k

Ij)− (d− 1)
⊗
j≥d

Ij .

This can be rewritten as
P′Z =

⊕
j≤d

P′Zj − (d− 1)
⊗
j≤d

Ij .

PZ = F−∞(P′Z) are exactly the transition corresponding to the generalized gambler’s ruin
problem given in (1.1).

In all above cases, the winning probability for the chain PZ is given in (1.3). This is since
the winning probabilities for PZj are given in (2.4), thus using (2.3) the relation is (1.3) proven.

In all above cases, if we replace P′Zj with PX̂j and P′Z with PX̂ , then we have a special
cases for formula for PX̂ given in (2.6). If, in addition, we assume that ν∗((1, . . . , 1)) = 1, then
from Corollary 2.4 c) we have

T ∗(1,...,1),N =

 T̂(1,...,1),N with probability
∏d
j=1 ρj(1),

+∞ with probability 1−
∏d
j=1 ρj(1).

For example, in case r = 1 (then we have m = d + 1 and take bk = 1, k = 1, . . . , d, bd+1 =
1− d,Ak = {k}, k = 1, . . . , d and Ad+1 = ∅) we have

PX̂((i1, . . . , id), (i
′
1, . . . , i

′
d)) =


1− λ(j)

ij
if i′j = ij + 1,

1−
∑

j:ij<Nj

(
1− λ(j)

ij

)
if i′j = ij , j = 1, . . . , d,

0 otherwise.

Sample transitions for case d = 2, r = 1 are depicted in Fig. 1.

In Figure 3 the transitions of X̂ are presented for d = 3:

• When r = 1 only transitions along blue dotted arrows ( ) are possible.
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• When r = 2 only transitions along blue dotted arrows ( ) and green dashed arrows
( ) are possible.

• When r = 3 all transitions, along blue arrows ( ), green dashed arrows ( ) and red
curly arrow ( ) are possible.

x

y

z

Figure 3: Sample transitions of X̂ for the example from Section 6.3 with d = 3: transitions for
r = 1 (blue ), r = 2 (blue and green ) and r = 3 (blue , green and red

).

6.4 A multidimensional case, winning probabilities: changing r (de-
pendent on the current fortune) coordinates at one step in a d-
dimensional game

Now we will make use of the possibility that Bk’s appearing in Theorem 2.1 can be matrices.
We will provide an extension of the previous Example 6.3 – this time we will only provide the
result on the winning probabilities (since the result on the absorption time provided in Theorem
2.3 requires Bk’s to be numbers).

Example 6.4. Before providing intricate details of the example, let us clarify what we aim to
achieve. In the previous Example 6.3 we showed how one may construct a multidimensional
chain, so that at most r ≤ d coordinates can be changed in one step (in other words, we can
play with at most r ≤ d players in one step). Now we extend this situation: we want r to be
state-dependent. To be more exact: if we are in a state from a set Sr then we may play with at
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most r players. For example setting:

Sd = {(i1, . . . , id) :

d∑
j=1

ij ≥ 100}, S2 = {(i1, . . . , id) :

d∑
j=1

ij < 100}

and Sr = ∅ for r /∈ {2, d} models a game in which:

• If we have at least 100 dollars we may play with all the players;

• If we have less than 100 dollars we may play with at most 2 players.

Consider a partition of the state space into disjunctive sets Sr, r = 0, . . . , d, i.e., E =
⋃d
r=0 Sr.

Each Sr is a set of states from which we can change at most r coordinates in one step. Let ISr
be a matrix with ones only on positions (i, i), where i ∈ Sr. Let mr =

(
d
r

)
+ 1 and set Br

i = ISr

for 1 ≤ i < mr and Br
mr =

(
1−

(
d
r

))
ISr . Let us enumerate combinations of r positive numbers

no greater than d in some way (again, see e.g., [Mud65]). Let Ar
i be i-th combination from this

numbering, for i = 1, . . . ,mr − 1 and Ar
mr = ∅.

Now we will renumerate everything to fit to the notation used in Theorem 2.1. For 1 ≤
k ≤ m there exists 1 ≤ b ≤ d, 1 ≤ i ≤ mb+1 such that k =

(∑b−1
r=1mr

)
+ i, we then set

Bk = B(
∑b−1
r=1mr)+i = Bb

i and Ak = A(
∑b−1
r=1mr)+i = Ab

i . In this notation – using (2.2) – the
transition matrix of the resulting chain is given by:

P′Z =

m∑
k=1

Bk

⊗
j≤d

R′
Z

(k)
j

 .

However, we can rewrite it in a more intuitive way, letting kb =
∑b
r=1mr we have:

P′Z =

d∑
b=1

mb∑
i=1

Bkb−1+i

⊗
j≤d

R′
Z

(kb−1+i)

j


=

d∑
b=1


mb∑
i=1

ISb

⊗
j≤d

R′
Z

(kb−1+i)

j

− ISb

((
d

b

)
− 1

)⊗
j≤d

Ij


=

d∑
b=1

ISb


mb∑
i=1

⊗
j≤d

R′
Z

(kb−1+i)

j

− ((d
b

)
− 1

)⊗
j≤d

Ij

 .

Thus, P′Z can be rewritten as P′Z =

d∑
b=1

ISbP
′b
Z , where matrices P

′b
Z correspond to the

previous Example 6.3, cf. (6.5). Concluding, Theorem 2.1 implies that the winning probability
of the chain Z with the transition matrix PZ = F−∞(P′Z) is of the product form provided in
(1.3).
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Chapter 3. Conditional gambler’s ruin
problem with arbitrary winning and losing
probabilities with applications

1 Introduction

The classical gambler’s ruin problem is following. Having initially i dollars, 1 ≤ i ≤ N − 1, in
one step we either win one dollar (i.e., we move to i+ 1) with probability p ∈ (0, 1), or we lose
one dollar (i.e., we move to i− 1) with probability q = 1− p. The game ends when the player
reaches N (wins the game) or 0 (goes broke). The typical questions one can ask are:

• What is the probability of winning (i.e., reaching N before 0)?

• What is the (expected) game duration?

• What is the (expected) conditional game duration (i.e., game duration given we win or
given we lose)?

• Is the (expected) conditional game duration symmetric in p and q?

Similarly, one can consider random walk on Zm+1 = {0, . . . ,m}: being at state i we either
move clockwise with a probability p ∈ (0, 1) (i.e., from i to i + 1 mod (m + 1)) or we move
counterclockwise with a probability 1− p (i.e., we move from i to i− 1 mod (m+ 1)). We will
refer to this as to the classical random walk on a polygon (cf. [Sar06]). Assuming we start at i,
the typical questions one can ask are:

• What is the probability that all vertices have been visited before the particle returns to i?

• What is the probability that the last vertex visited is j ?

• What is the expected number of moves needed to visit all the vertices?

• What is the expected additional number of moves needed to return to i after visiting all
the vertices?

All above questions were answered in the classical settings. Several generalizations were stud-
ied. The probability of winning in a gambler’s ruin problem with general winning and losing
probabilities (i.e., p(i) being probability of moving from i to i+ 1 and q(i) being the probability
of moving from i to i− 1, with p(i) + q(i) ≤ 1, i ∈ {1, . . . , N − 1}) goes back to Parzen [Par62],
revisited in [ES09]. Siegmund duality based proof is given in [Lor17] (where more general, mul-
tidimensional, game is considered). In [Len09b] the questions related to the conditional game
duration are answered for the classical gambler’s ruin problem with ties allowed, i.e., p+ q ≤ 1
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(with probability 1− (p+ q) we can stay at a given state). In [Lef08] author considers specific
generalization, namely p(i) = q(i) = 1

2(2ci+1) , c ≥ 0 (thus the probability of staying is 1− 1
2ci+1 )

and answers the question about the winning probability and the expected game duration (and
also considers the corresponding diffusion process). In this chapter we present formulas for
the expected (conditional) absorption time in terms of parameters of the system (i.e., win-
ning/losing probabilities p(i), q(i)). Similar problem was considered in [ES00], the recursion for
the expected conditional game duration is given therein (equations (3.4) and (3.5)), however
it is not solved in its general form – later on author considers only constant winning/losing
probabilities. In [GMZ12] (similar results with different proofs are presented in [MZ17]) the
generating function of absorption time (including a conditional one) is given in terms of eigen-
values of a transition matrix and eigenvalues of a truncated transition matrix. The questions for
the classical random walk on a polygon were answered in [Sar06]. Some generalizations (rather
then allowing arbitrary winning/losing probabilities, symmetric random walks on tetrahedra,
octahedra, and hexahedra, are considered) are studied in [SM17].

In 1977 in [BW77] it was shown that for a classical gambler’s ruin problem with p(n) =
p = 1 − q(n) = 1− q, the distribution of a conditional game duration is symmetric in p and q,
i.e., it is the same as in a game with p′ = q and q′ = p. In 2009 in [Len09b] it was extended
to a case p + q < 1 (i.e., the classical case with ties allowed). In this chapter we show that
that the expected conditional game duration is symmetric also for non-constant winning/losing
probabilities p(n), q(n) as long as q(n)/p(n) is constant (thus, including for example the spatially
non-homogeneous case).

In Section 2 we introduce gambler’s ruin problem with arbitrary winning and losing proba-
bilities p(i), q(i) together with main results. In Section 2.1 the main result is applied to constant
r(i) = r = q(i)/p(i), in Section 2.2 it is applied to non-homogeneous case, whereas the classical
case is recalled in Section 2.3. The main example is given in Section 2.4. The results are applied
to a random walk on polygon in Section 4. Last Section 5 contains proofs of main results.

2 Gambler’s ruin problem

Fix an integer N ≥ 2. Let

p = (p(0), p(1), . . . , p(N)), q = (q(0), q(1), . . . , q(N)),

where p(0) = q(0) = p(N) = q(N) = 0 and p(i), q(i) > 0, p(i) + q(i) ≤ 1 for i ∈ {1, 2 . . . , N − 1}.
Consider a Markov chain X = {Xk}k≥0 on E = {0, 1, . . . , N} with transition probabilities

PX(i, j) =


p(i) if j = i+ 1,

q(i) if j = i− 1,

1− (p(i) + q(i)) if j = i.

We will refer to X starting at i as to the (gambler’s ruin) game G(p,q, 0, i, N). Note that
the chain will eventually end up in either in N (the winning state) or in 0 (the losing state).
To simplify some notation, let r(i) = q(i)

p(i) for i ∈ {1, . . . , N − 1}.
Define τj = inf{k : Xk = j}. We will study the following smaller games G(p,q, j, i, k) with

k as the winning state and j as the losing state (j ≤ i ≤ k), i.e., p(j) = q(j) = p(k) = q(k) = 0.
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Let us define:

ρj:i:k = P (τk < τj |X0 = i),

Tj:i:k = inf{n ≥ 0 : Xn = j or Xn = k, X0 = i},

Wj:i:k = Tj:i:k conditioned on XTj:i:k = k,

Bj:i:k = Tj:i:k conditioned on XTj:i:k = j.

In other words: ρj:i:k is the probability that a gambler starting with i dollars wins in the
smaller game; Tj:i:k is the distribution of a game duration (time till gambler either wins or goes
broke); Wj:i:k is the distribution of Tj:i:k conditioned on XTj:i:k = k (winning) and similarly
Bj:i:k is the distribution of Tj:i:k conditioned on XTj:i:k = j (losing).

Notation. For given rates p,q by p↔ q we understand new rates p′ = q,q′ = p. For some
random variable R (one of ρ, T,W,B) for a game with rates p,q, by R(p↔ q) we understand
the random variable defined for a game with rates p′ = q,q′ = p (and similarly, e.g., ER(p↔ q)
is an expectation of R defined for such a game). We say that R (ER) is symmetric in p and q

if R distr
= R(p↔ q) (ER = ER(p↔ q)).

By f(n) = Θ(g(n)) we mean ∃(c1, c2 > 0) ∃(n0) ∀(n > n0) c1g(n) ≤ f(n) ≤ c2g(n). In this
section we use the convention: empty sum equals 0, empty product equals 1; however in Section
4 we use some nonstandard notation, see details on page 72.

In next theorem we provide formulas for expected game duration, for completeness (and
since we will need them later) we also include known results for ρj:i:k.

Theorem 2.1. Consider the gambler’s ruin problem on E = {0, 1, . . . , N} described above. We
have

ρj:i:k =

i∑
n=j+1

n−1∏
s=j+1

(
q(s)

p(s)

)
k∑

n=j+1

n−1∏
s=j+1

(
q(s)

p(s)

) =

i∑
n=j+1

n−1∏
s=j+1

r(s)

k∑
n=j+1

n−1∏
s=j+1

r(s)

,

ETj:i:k =

∑k−1
n=j+1[dn

∑n
s=j+1

1
p(s)ds

]∑k−1
n=j dn

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds

 , (2.1)

where ds =
∏s
i=j+1

q(i)
p(i) =

∏s
i=j+1 r(i) (with convention dj = 1).

The proof of Theorem 2.1 is postponed to Section 5.1.1. We will also need a formula for ETj:i:k
in case when k is the only absorbing state.

Theorem 2.2. Fix j ≤ i ≤ k and consider a birth and death chain on {j, . . . , k} with rates
p(s), q(s), s = j, . . . , k with q(j) = p(k) = q(k) = 0 and q(s) > 0 for s = j + 1, . . . , k − 1 and
p(s) > 0 for s = j, . . . , k − 1 (i.e., k is the only absorbing state). Then, the expectation of
absorption time, starting from i is given by

ETj:i:k =

k−1∑
n=i

dn n∑
s=j

1

p(s)ds

 .
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Now we go back to situation with two absrobing states, i.e., also p(j) = 0. Next theorem
(our main contribution) gives the formulas for EW0:i:k and EB0:i:k. First, let us introduce some
necessary notation. With some abuse of notation let us extend

ρj:i:k =

i∑
n=j+1

n−1∏
s=j+1

(
q(s)

p(s)

)
k∑

n=j+1

n−1∏
s=j+1

(
q(s)

p(s)

) =

i∑
n=j+1

n−1∏
s=j+1

r(s)

k∑
n=j+1

n−1∏
s=j+1

r(s)

for k < i (but still k > j). Note that in such a case we may have ρj:i:k, thus this has no
interpretation in terms of probability anymore.

For given integers n,m, k such that n ≤ m, k ∈ {0, b(m− n+ 1)/2c} define

jn,mk =
{
{j1, j2, . . . , jk} : j1 ≥ n+ 1, jk ≤ m, ji ≤ ji+1 − 2 for 1 ≤ i ≤ k − 1

}
. (2.2)

For given p,q and j ∈ jn,mk define

δn,mj = (−1)k
∏
s∈j

r(s)
∏

s∈{n,...,m}\j∪(j−1)

1 + r(s), (2.3)

where {n, . . . ,m} is an empty set for n > m and j − 1 = {j1 − 1, j2 − 1, . . . , jk − 1} for
j = {j1, j2, . . . , jk}. Finally, let

ξn,mk =
∑

j∈jn,mk

δn,mj . (2.4)

Now we are ready to state our main theorem.

Theorem 2.3. Consider the gambler’s ruin problem on E = {0, 1, . . . , N} described above. We
have

EW0:i:N = EW0:1:N − EW0:1:i, where (2.5)

EW0:1:i =

i−1∑
n=1

ρ0:n:i

p(n)

b(i−1−n)/2c∑
s=0

ξn+1,i−1
s . (2.6)

Moreover, we have

EB0:i:N = EW ′0:N−i:N , (2.7)

where W ′0:N−i:N is defined for a gambler’s ruin problem with rates p′(i) = q(N − i) and q′(i) =
p(N − i) for i ∈ E.

The proof of Theorem 2.3 is postponed to Section 5.1.2.

2.1 Constant r(n) = r = q(n)
p(n)

In this section we will apply Theorems 2.1 and 2.3 to a gambler’s ruin problem with constant
r = q(i)

p(i) . The winning probabilities ρ0:i:N are known (they are the same as in the classical
formulation of the problem), we will focus on a game duration. We have
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Corollary 1. Consider the gambler’s ruin problem on E = {0, . . . , N} with constant r = q(i)
p(i) .

We have

r = 1 : ETj:i:k =
i− j
k − j

k−1∑
n=j+1

n∑
s=j+1

1

p(s)
−

i−1∑
n=j+1

n∑
s=j+1

1

p(s)
,

ET0:i:N =
i

N

N−1∑
n=1

n∑
s=1

1

p(s)
−

i−1∑
n=1

n∑
s=1

1

p(s)
,

r 6= 1 : ETj:i:k =
rj − ri

rj − rk
k−1∑
n=j+1

rn n∑
s=j+1

r−s

p(s)

− i−1∑
n=j+1

rn n∑
s=j+1

r−s

p(s)

 ,
ET0:i:N =

1− ri

1− rN
N−1∑
n=1

[
rn

n∑
s=1

r−s

p(s)

]
−

i−1∑
n=1

[
rn

n∑
s=1

r−s

p(s)

]
.

Proof. We have dk =
∏k
j=1 r = rk. Simple recalculations of (2.1) yield the result.

For constant r we have that δn,mj (given in (2.3)) for all i ∈ {1, . . . , N − 1} depends on j only
through k, thus

ξn,mk =
∑

j∈jn,mk

δn,mj = Cn,mk (−r)k(1 + r)m+1−n−2k, (2.8)

where Cn,mk = |jn,mk |. Moreover, we have |jn,mk | = T (m+ 1−n, k), where T (n, k) =
(
n−k
k

)
is the

number of subsets of {1, 2, ..., n− 1} of size k containing no consecutive integers 1.

The proof of the next corollary requires the following lemma.

Lemma 2.4. Let n ∈ N and r ≥ 0. We have

n∑
k=0

(
n− k
k

)(
− r

(1 + r)2

)k
=


1− rn+1

(1 + r)n(1− r)
if r 6= 1,

n+ 1

2n
if r = 1.

(2.9)

The proof of Lemma 2.4 is given in Section 5.1.2.

Remark 2.1. Note that the assertion of Lemma 2.4 can be stated in the following form (simply
substituting c = r

(1+r)2 ): for n ∈ N and c ∈ (0, 1/4] we have

n∑
k=0

(
n− k
k

)
(−c)k =


1− γn+1

(1 + γ)n(1− γ)
, where γ =

1− 2c+
√

1− 4c

2c
, if c ∈ (0, 1/4),

n+ 1

2n
if c = 1/4.

1http://oeis.org/A011973
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These sums for c ∈ {−1, 1} were known (F (n) is the n-th Fibonacci number):
n∑
k=0

(
n− k
k

)
= F (n+ 1),

n∑
k=0

(
n− k
k

)
(−1)k =


1 if n mod 6 ∈ {0, 1},

0 if n mod 6 ∈ {2, 5},

−1 if n mod 6 ∈ {3, 4}.

We will give formulas for EW0:1:i for several cases (EW0:i:N can be calculated via (2.5)).

Corollary 2. Consider the gambler’s ruin problem on E = {0, . . . , N} with constant r = q(i)
p(i) .

We have:

r = 1 : EW0:1:i =

i−1∑
n=1

ρ0:n:i

p(n)

b(i−1−n)/2c∑
s=0

ξn+1,i−1
s =

i−1∑
n=1

n/i

p(n)
(i− n).

r 6= 1 : EW0:1:i =

i−1∑
n=1

ρ0:n:i

p(n)

b(i−1−n)/2c∑
s=0

ξn+1,i−1
s =

i−1∑
n=1

1−rn
1−ri (1− ri−n)

p(n)(1− r)
. (2.10)

Additionally, if p(n) = p is constant (so is q(n) then, since r(n) is constant) we have

r = 1 : EW0:1:i =
1

p

i−1∑
n=1

n

i
(i− n) =

(i− 1)(i+ 1)

6p
, (2.11)

r 6= 1 : EW0:1:i =
1

p

i−1∑
n=1

1−rn
1−ri (1− ri−n)

1− r
=

1

p(1− ri)(1− r)

i−1∑
n=1

(1− rn)(1− ri−n)

=
i(1 + ri)− (1 + r) 1−ri

1−r
p(1− ri)(1− r)

=
1

p(1− r)

(
i
1 + ri

1− ri
− 1 + r

1− r

)
.

Proof. We will only show case r = 1, general p(n) (the proof for r 6= 1 is very similar). Let us
calculate ξn+1,i−1

s first. From (2.8) and form of Cn,mk for r = 1 we have

ξn+1,i−1
s = Cn+1,i−1

s (−1)s2i−n−1−2s = 2i−n−1

(
i− n− 1− s

s

)(
−1

4

)s
.

From Theorem 2.3 (eq. (2.6)) and the fact that ρ0:n:i = n/i (since r = 1) we have

EW0:1:i =

i−1∑
n=1

n/i

p(n)

b(i−1−n)/2c∑
s=0

ξn+1,i−1
s

=

i−1∑
n=1

n/i

p(n)
2i−n−1

b(i−1−n)/2c∑
s=0

(
i− n− 1− s

s

)(
−1

4

)s
Lemma 2.4

=

i−1∑
n=1

n/i

p(n)
2i−n−1 i− n− 1 + 1

2i−n−1
=

i−1∑
n=1

n/i

p(n)
(i− n),

what finishes the proof.
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In 1977 Beyer and Waterman [BW77] showed that for a classical case i.e., for constant birth
p(n) = p and death q(n) = q rates such that p+ q = 1, the distribution of W0:i:N is symmetric
in p and q (i.e., it has the same distribution for birth rate p′ = q and death rate q′ = p). In
2009 Lengyel [Len09b] showed that this holds also for the classical case with ties allowed, i.e.,
p + q < 1. In the following theorem we show that EW0:i:N is symmetric in p and q (i.e., it
is the same for case with birth deaths p′(n) = q(n) and death rates q′(n) = p(n)) as long as
r(n) = q(n)

p(n) is constant.

Theorem 2.5. Consider the gambler’s ruin problem on E = {0, . . . , N} with constant r = q(i)
p(i) .

We have
EW0:i:N = EW0:i:N (p↔ q),

(i.e., EW0:i:N is symmetric in p and q).

Proof. By (2.5) it is enough to show that EW0:1:i = EW0:1:i(p↔ q).
LetW0:1:i be defined for rates p and q, whereasW ′0:1:i be defined for rates p′ = q and q′ = p,

thus r′ = 1/r. Since r = q(n)
p(n) , we have p′(n) = q(n) = rp(n).

EW ′0:1:i =

i−1∑
n=1

1

p′(n)

(1− 1
rn )

(1− 1
ri )

(1− 1
ri−n )

(1− 1
r )

=

i−1∑
n=1

1

rp(n)

ri(1− rn)

rn(1− ri)
r(1− ri−n)

ri−n(1− r)

=

i−1∑
n=1

1

p(n)

(1− rn)

(1− ri)
(1− ri−n)

(1− r)
,

what is equal to (2.10).

It is natural to state the following conjecture.

Conjecture 2.6. Consider the gambler’s ruin problem on E = {0, . . . , N} with constant r = q(i)
p(i) .

Then, the distribution of W0:i:N is symmetric in p and q.

2.2 The spatially non-homogeneous case
In this Section we consider gambler’s ruin problem with birth rates p(n) = p

2cn+1 and death
rates q(n) = q

2cn+1 , where c is a non-negative constant. This is often called the spatially
non-homogeneous gambler’s ruin problem. We will thus still consider case with constant r(n),
but with specific rates. As far as we are aware, all results in this section, except the one for
p(n) = q(n) = 1/2, are new.

Corollary 3. Consider the spatially non-homogeneous gambler’s ruin problem. We have

r = 1 : ET0:i:N =
1

2p

(
iN

(
1 +

2c

3
N

)
− i2

(
1 +

2c

3
i

))
,

r 6= 1 : ET0:i:N =
1

p(r − 1)

(
1− ri

1− rN

(
−cN2 −N (cr + c)

r − 1
−N

)
+ ci2 + i

(cr + c)

r − 1
+ i

)
.

Proof. Applying Corollary 1 we have:
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• Case r = 1

ET0:i:N =
i

N

N−1∑
n=1

n∑
s=1

1

p(s)
−

i−1∑
n=1

n∑
s=1

1

p(s)
=

i

N

N−1∑
n=1

n∑
s=1

2cn+ 1

p
−

i−1∑
n=1

n∑
s=1

2cn+ 1

p

=
1

p

(
i

N

N−1∑
n=1

n(cn+ c+ 1)−
i−1∑
n=1

n(cn+ c+ 1)

)

=
1

p

(
i

N

1

6
(N − 1)(N(2c(N + 1) + 3)− 1

6
(i− 1)(i(2c(i+ 1) + 3)

)

=
1

2p

(
iN

(
1 +

2c

3
N

)
− i2

(
1 +

2c

3
i

))
.

• Case r 6= 1

ET0:i:N =
1− ri

1− rN
N−1∑
n=1

[
rn

n∑
s=1

r−s

p(s)

]
−

i−1∑
n=1

[
rn

n∑
s=1

r−s

p(s)

]

=
1

p

(
1− ri

1− rN
N−1∑
n=1

[
rn

n∑
s=1

r−s(2cs+ 1)

]
−

i−1∑
n=1

[
rn

n∑
s=1

r−s(2cs+ 1)

])
.

We have
n∑
s=1

r−s(2cs+ 1) =
r−n

(r − 1)2

(
2crn+1 − 2cnr + 2cn− 2cr + rn+1 − rn − r + 1

)
and

k−1∑
n=1

[
rn

r−n

(r − 1)2

(
2crn+1 − 2cnr + 2cn− 2cr + rn+1 − rn − r + 1

)]

=
1

(r − 1)2

(
− 2cr(r−rk)

r−1 − c(k − 1)kr + c(k − 1)k − 2cr(k − 1)

−r(r − r
k)

r − 1
+
r − rk

r − 1
+ r − kr + k − 1

)

=
1

(r − 1)2

(
−ck2(r − 1) +

(2cr + r − 1)(rk − 1)

r − 1
− k(cr + c+ r − 1)

)
.
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Thus,

ET0:i:N =
1

p(r − 1)2

{ 1− ri

1− rN
(
−cN2(r − 1) + (2cr+r−1)(rN−1)

r−1 −N(cr + c+ r − 1)
)

−
(
−ci2(r − 1) + (2cr+r−1)(ri−1)

r−1 − i(cr + c+ r − 1)
)}

=
1

p(r − 1)2

{ 1− ri

1− rN
(
−cN2(r − 1)−N(cr + c+ r − 1)

)
+ci2(r − 1) + i(cr + c+ r − 1)

}
=

1

p(r − 1)

(
1− ri

1− rN

(
−cN2 −N (cr + c)

r − 1
−N

)
+ ci2 + i

(cr + c)

r − 1
+ i

)
,

what was to be shown.

Remark 2.2. Note that for p(n) = q(n) = 1/2 we have ET0:i:N = iN
(
1 + 2c

3 N
)
− i2

(
1 + 2c

3 i
)
,

i.e., we obtained Proposition 2.1 from [Lef08].

Concerning the conditional game duration (because of (2.7) it is enough to provide formula
only for EW0:i:N ) we have
Corollary 4. Consider the spatially non-homogeneous gambler’s ruin problem. We have

r = 1 : EW0:i:N =
(N2 − 1)(cN + 1)

6p
− (i2 − 1)(ci+ 1)

6p
,

r 6= 1 : EW0:i:N =
cN + 1

p(1− r)

(
r + 1

r − 1
−N rN + 1

rN − 1

)
− ci+ 1

p(1− r)

(
r + 1

r − 1
− i r

i + 1

ri − 1

)
.

Proof. Applying Corollary 2 we have:

• r = 1

EW0:1:i =

i−1∑
n=1

n/i

p(n)
(i− n) =

1

p

i−1∑
n=1

n

i
(i− n)(2cn+ 1) =

(i− 1)(i+ 1)(ci+ 1)

6p
.

• r 6= 1

EW0:1:i =

i−1∑
n=1

(1− rn)(1− ri−n)

p(n)(1− ri)(1− r)
=

1

p

i−1∑
n=1

(1− rn)(1− ri−n)

(1− ri)(1− r)
(2cn+ 1)

=
(ci+ 1)((r + 1)(ri − 1)− i(r − 1)(ri + 1))

p(1− ri)(1− r)2

=
ci+ 1

p(1− r)

(
r + 1

r − 1
− i r

i + 1

ri − 1

)
.

Applying (2.5), i.e., EW0:i:N = EW0:1:N − EW0:1:i, completes the proof.
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2.3 The classical case.
For constant winning/losing probabilities we recover known results (all given in Sarkar [Sar06]).
We state them here for completeness and will indicate how they can be derived from our more
general results.

Corollary 5. Consider the gambler’s ruin problem on E = {0, 1, . . . , N} with constant win-
ning/losing probabilities p(i) = p, q(i) = q, i = 1, . . . , N − 1, p+ q = 1. We have

ρ0:i:N =


1−ri
1−rN if r = 1,

i
N if r 6= 1,

ET0:i:N =


i(N − i) if r = 1,

r+1
r−1

(
i−N ri−1

rN−1

)
if r 6= 1,

EW0:i:N =


1
3 (N − i)(N + i) if r = 1,

r+1
r−1

[
N rN+1
rN−1

− i r
i+1
ri−1

]
if r 6= 1,

EB0:i:N =


1
3 i(2N − i) if r = 1,

r+1
r−1

[
N rN+1
rN−1

− (N − i) r
N−i+1
rN−i−1

]
if r 6= 1,

Results for ET0:i:N follows from Corollary 1 (case r = 1); EW0:i:N from Corollary 2 eq.
(2.11) followed by (2.5); EB0:i:N follows from results on EW0:i:N and Theorem 2.3 (eq. (2.7)).

2.4 Example
Fix an integer N and some p, q > 0. Consider a gambler’s ruin problem with rates

p(i) =
p(1 + α1i)

2ci+ 1
, q(i) =

q(1 + α2i)

2ci+ 1
,

with fixed α1, α2, c ≥ 0 such that p(i), q(i) > 0, p(i) + q(i) ≤ 1, i ∈ {1, ..., N}. We want to
calculate EW0:1:N .

2.4.1 N = 3

We have

p =

(
0,
p(1 + α1)

2c+ 1
,
p(1 + 2α1)

2c+ 1
, 0

)
, q =

(
0,
q(1 + α2)

2c+ 1
,
q(1 + 2α2)

2c+ 1
, 0

)
.

Note that in general (for α1 6= α2) r(n) = q(n)
p(n) = q

p
(1+α2n)
(1+α1n) is non-constant, thus we will apply

Theorem 2.3. Eq. (2.6) takes form

EW0:1:3 =

2∑
n=1

ρ0:n:3

p(n)

b(2−n)/2c∑
s=0

ξn+1,2
s =

ρ0:1:3

p(1)
ξ2,2
0 +

ρ0:2:3

p(2)
ξ3,2
0 .
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We need winning probabilities ρ0:1:3 and ρ0:2:3, which can be calculated from Theorem 2.1:

ρ0:i:3 =

i∑
n=1

n−1∏
s=1

r(s)

3∑
n=1

n−1∏
s=1

r(s)

=
1 + (i− 1)r(1)

1 + r(1) + r(1)r(2)
=

1 + (i− 1) qp
1+α2

1+α1

1 + q
p

1+α2

1+α1
+ q2

p2
(1+α2)(1+2α2)
(1+α1)(1+2α1)

=:
1 + (i− 1) qp

1+α2

1+α1

γ(p, q, α1, α2)
.

We also need ξ2,2
0 and ξ3,2

0 . We have j2,20 = j3,20 = {∅}, thus

ξ2,2
0 = δ2,2

j = 1 + r(2) = 1 +
q

p

1 + 2α2

1 + 2α1
, ξ3,2

0 = δ3,2
j = 1

(in the latter the second product was 1, since {3, . . . , 2} ≡ ∅).
Finally,

EW0:1:3 =
1

pγ(p, q, α1, α2)

[
2c+ 1

1 + α1

(
1 +

q

p

(1 + 2α2)

(1 + 2α1)

)
+

(
1 +

q

p

(1 + α2)

(1 + α1)

)
4c+ 1

1 + 2α1

]
. (2.12)

Special cases:

• α1 = α2 = α. Then (2.12) reduces to

EW0:1:3 =
1 + q

p

p
(

1 + q
p + q2

p2

) (2c+ 1

1 + α
+

4c+ 1

1 + 2α

)
. (2.13)

Note that in this case r(n) = q
p is constant, thus (2.13) could be derived in an easier way

using Corollary 2:

r = 1 : EW0:1:3 =

2∑
n=1

n

3

2cn+ 1

p(1 + α1n)
(3− n) =

2

3p

(
2c+ 1

1 + α
+

4c+ 1

1 + 2α

)
,

r 6= 1 : EW0:1:3 =

2∑
n=1

1−rn
1−r3 (1− r3−n)

(1− r)
2cn+ 1

p(1 + α1n)
=

1− r2

p(1− r3)

(
2c+ 1

1 + α
+

4c+ 1

1 + 2α

)
,

what is equivalent to (2.13) in both cases. Note also that this is not a spatially non-
homogeneous case as long as α > 0.

• α1 = α2 = 0. Then (2.12) (and thus (2.13)) reduces to

EW0:1:3 =
2
(

1 + q
p

)
p
(

1 + q
p + q2

p2

) (3c+ 1

1 + α

)
. (2.14)

Note that this is a spatially non-homogeneous case, thus (2.14) could be derived from
Corollary 4 (we skip the calculations).

• α1 = α2 = 0 and c = 0, then (2.14) reduces to

EW0:1:3 =
2
(

1 + q
p

)
p
(

1 + q
p + q2

p2

) .
This situation corresponds to a gambler’s ruin problem with constant birth and death
rates. In particular, for p = q = 1/2 we have EW0:1:3 = 8

3 what agrees with Example 1
in [Len09b].
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2.4.2 General N ≥ 3, p = q and α2 = α1 = 1

We thus have p(i) = p(1+i)
2ci+1 , q(i) = q(1+i)

2ci+1 . This is constant r(n) = q(n)
p(n) = q

p = 1 case, which is
however not spatially non-homogeneous. We skip the lengthy calculations, but we can obtain
EW0:1:N from Corollary 2 (HN is the N -th harmonic number):

EW0:1:N =

N−1∑
n=1

n(N − n)(2cn+ 1)

pN(1 + n)

= 1
p

(
c
3 (N − 5)(N + 2) + 1

2 (3 +N)
)

+ 1
Np (2c− 1)(1 +N)HN = c

3pN
2 + Θ(N),

which for p(i) = p(1 + i), q(i) = q(1 + i) (i.e., for c = 0) simplifies to

EW0:1:N =
N + 3

2p
− 1

Np
(N + 1)HN =

N

2p
+ Θ(log(N)).

2.4.3 General N ≥ 3, p = q and α2 = α1 = α

EW0:1:i =

i−1∑
n=1

n(i− n)(2cn+ 1)

pi(1 + αn)

=
1

6α4pi

(
α(i− 1)(α2i(2c(i+ 1) + 3) + α(6− 6ci)− 12c)+

6(α− 2c)(αi+ 1)
[
ψ
(
1 + 1

α

)
− ψ

(
i+ 1

α

)])
,

where ψ is a digamma function. It is known that ψ(m) = Hm−1 − γ, where γ = 0.5772156...
is a known Euler–Mascheroni constant. Let us assume that α = 1

m and m is an integer. Then
ψ
(
1 + 1

α

)
− ψ

(
i+ 1

α

)
= Hm −Hi+m−1.

3 Random walk on a polygon

Fix an integer m ≥ 2. Let

p = (p(0), p(1), . . . , p(m)), q = (q(0), q(1), . . . , q(m)),

where p(i), q(i) > 0, p(i) + q(i) ≤ 1 for i ∈ {0 . . . ,m}. Consider the following random walk
X ≡ {Xt}t∈N on E = Zm+1. Being in state i we move to the state i + 1 with probability
p(i), we move to the state i − 1 with probability q(i), and we do nothing with the remaining
probability. Throughout the chapter, in the context of a random walk on a polygon, all additions
and substractions are performed modulom+1. We will refer to this walk as to a random walk on
a polygon. The notation intentionally resembles that of gambler’s ruin problem. Throughout
the section we consider fixed p,q and m ≥ 2 (and omit subscripts p,q in random variables
below). We are interested in:
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Ai = {X : X0 = i,Xn = i,∀0<t<nXt 6= i, ∀k∈E∃0≤t≤nXt = k}

Li,j = {X : X0 = i,Xn = j,∀0<t<nXt 6= j,∀k∈E∃0≤t≤nXt = k}

Vi,j = inf{n ≥ 1 : X0 = i,Xn = j,∀k∈E∃0≤t≤nXt = k}

Vi = inf{n ≥ 1 : X0 = i,∀k∈E∃0≤t≤nXt = k}

Ri = inf{n2 ≥ 1 : X0 = i,Xn1+n2
= i, n1 = inf{n ≥ 1 : ∀k∈E∃0≤t≤nXt = k}}

In other words: Ai is the event that the process starting at i will return for the first time to i
after all other vertices are visited; Li,j is the event that the process starting at i will reach for
the first time state j after visiting all other vertices; Vi,j is the number of steps of the process
starting at i to reach for the first time state j after visiting all other vertices; Vi is the number
of steps of the process starting at i needed to visit all vertices; Ri is the number of additional
steps for the process starting at i needed to reach i after visiting all the vertices.

For j � i � k, where � is a cyclic order, i.e., j ≤ i ≤ k or i ≤ k ≤ j or k ≤ j ≤ i, let
G(p,q, j, i, k) denote a gambler’s ruin game with i being a starting state, j being a losing state
and k being a winning state. Note that independently of j, i, k, winning and losing probabilities
p,q are fixed.

Notation. In contrast to a usual notation neither
∑t
k=s ak = 0 nor

∏t
k=s ak = 1 for t < s−1.

Since we are considering operations in Zm+1, we define

For t < s ≤ m, s− t > 1 :

t∑
k=s

ak := as + as+1 + . . .+ am + a0 + . . .+ at,

t∏
k=s

ak := as · as+1 · . . . · am · a0 · . . . · at,

For s = t+ 1 mod m+ 1 :

t∑
k=s

ak = 0

t∏
k=s

ak := 1.

In all other cases we use usual sums and products. Using this notation, we are ready to state
our results.

Theorem 3.1. Consider the random walk on a polygon described above. We have
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P (Ai) =
1

1 + r(i)


1

i−1∑
n=i+1

n−1∏
s=i+1

r(s)

+
1

i∑
n=i+2

i∏
s=n

(
1

r(s)

)
 (3.1)

P (Li,j) =
1

j−1∑
n=j+2

n−1∏
s=j+2

r(s)


j−1∑
n=i+1

n−1∏
s=j+2

r(s)

j−1∑
n=j+1

n−1∏
s=j+1

r(s)

+

i∑
n=j+2

n−1∏
s=j+2

r(s)

j∑
n=j+2

j−1∏
s=n

1

r(s)

 (3.2)

EVi,j = ρj+1:i:j−1 (EWj+1:i:j−1 + EBj+1:j−1:j + ETj:j+1:j)

+(1− ρj+1:i:j−1) (EBj+1:i:j−1 + EWj:j+1:j−1 + ETj:j−1:j) (3.3)

EVi =

i−1∑
j=i+1

P (Li,j)EVi,j (3.4)

ERi =

i−1∑
k=i+1

P (Li,k)ETi:k:i (3.5)

The proof of Theorem 3.1 is postponed to Section 5.2.1.

Constant r(n) = r = q(n)
p(n) .

In this case the starting point does not matter, we consider i = 0. Note that P (Ai) and
P (Li,j) depend on p(n) and q(n) only through r(n), thus they must reduce to known results
for constant birth p(n) = p and death q(n) = q rates (see (3.1) and (3.3) in [Sar06]). Indeed,
substituting r(n) = r to (3.1) and (3.2) yields

Corollary 6. Consider the random walk on polygon with constant r(n) = q(n)
p(n) , then we have

P (A0) =

{ 1
m if r = 1,
r−1
r+1

rm+1
rm−1 if r 6= 1,

P (L0,j) =

{
1
m if r = 1,
rm−j(r−1)
rm−1 if r 6= 1.

We skip the formulas for EV0,j , EV0 and ER0 in this case, noting that they can be derived
from Corollaries 1 and 2.

Constant q(n) = q, p(n) = p

First, let us recall formulas for EV0, ER0 for the case p+ q = 1.

Corollary 7. [Sar06] Consider the random walk on a polygon with constant q(n) = q, p(n) =
p, p+ q = 1. We have
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EV0 =

{
m(m+1)

2 if r = 1,
r+1
r−1

[
m− 1

r−1 −
m2

rm−1 + (m+1)2

rm+1−1

]
if r 6= 1,

ER0 =

{
1
6 (m+ 1)(m+ 2) if r = 1,
r+1
r−1

[
r
r−1 −

m(m+2)
rm−1 + (m+1)2

rm+1−1

]
if r 6= 1,

In the case p+ q ≤ 1 note that EBj:i:k = 1
p(1+r)EB

1
j:i:k, EWj:i:k = 1

p(1+r)EW
1
j:i:k, ETj:i:k =

1
p(1+r)ET

1
j:i:k, where superscript 1 denotes the case p + q = 1. Thus Theorem 3.1 implies

EV0 = EV 1
0 , ER0 = ER1

0, i.e., we have

Corollary 8. Consider the random walk on a polygon with constant q(n) = q, p(n) = p. We
have

EV0 =

{ m(m+1)
4p if r = 1,
1

p(r−1)

[
m− 1

r−1 −
m2

rm−1 + (m+1)2

rm+1−1

]
if r 6= 1,

ER0 =

{ 1
12p (m+ 1)(m+ 2) if r = 1,

1
p(r−1)

[
r
r−1 −

m(m+2)
rm−1 + (m+1)2

rm+1−1

]
if r 6= 1,

4 Fastest Strong Stationary Time for a symmetric random
walk on a circle

Consider an ergodic Markov chain X = {Xk}k≥0 ∼ (ν,PX) on a finite state space E =
{e1, . . . , eM} with a stationary distribution π, initial distribution ν and a transition matrix
PX . We are interested in measuring nonstationarity of Xk via separation “distance”

sep(νPkX , π) = max
e∈E

(
1− νPkX(e)

π(e)

)
.

Note that it is not symmetric, that is why it is not an actual distance, however it is an upper
bound on a total variation distance dTV (νPkX , π) = 1/2

∑
e∈E |P (Xk = e)− π(e)|.

A random variable T is a strong stationary time (SST) T for X if it is a randomized stopping
time for X such that

∀(e ∈ E) P (Xk = e|T = k) = π(e).

The notion of separation distance fits perfectly into a notion of SST, in [AD87] it is shown that
for an SST T we have

sep(νPkX , π) ≤ P (T > k).

We say that T is a fastest strong stationary time (FSST) if sep(νPkX , π) = P (T > k).

In this section we consider a symmetric random walk on a polygon with constant rates
p(i) = q(i) = p on d points (i.e., m = d− 1). Moreover, we will refer to the random walk as to a
symmetric random walk on a circle (to be consistent with [DF90b], we will compare our result
to a result from this article) on Zd, i.e., {0, . . . , d− 1}. We will show a construction of a fastest
strong stationary time for this symmetric random walk on a circle, moreover we have
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Lemma 4.1. For the fastest strong stationary time T for a symmetric random walk on a circle
with d = 2N we have

ET =



2N2 + 1

12p
for p ∈ (0, 1/3] and N > 1,

1

4p
for p ∈ (0, 1/4] and N = 1,

1

2(1− 2p)
for p ∈ (1/4, 1/2) and N = 1.

Remark 4.1. A construction of a strong stationary time for a symmetric random walk on a circle
with p = 1/3 is presented in [DF90b]. For d = 2a, a > 1 their construction yields an SST T0

such that
ET0 =

3

2
22a
(

2−4 + 2−6 + · · ·+ 2−2(a−1) + 2× 2−2a
)

=
1

8
d2 + 1

(see the bottom of the page 1484 in [DF90b]), whereas Lemma 4.1 states that a fastest strong
stationary time T fulfills (N = d/2)

ET =
1

8
d2 +

1

4
,

what means that a construction from [DF90b] does not yield a fastest strong stationary time (au-
thors mention this fact in their Example 3.1). Note that ET and ET0 differ by 3

4 (independently
of d).

Strong stationary duality For a general description of a strong stationary duality see
[DF90b] (total ordering and set-valued chains) and [LS12a], [Lor18] (general partial ordering).
Here we will describe this duality for chains on the same state space. Let both X ∼ (ν,PX) and
X∗ ∼ (ν∗,P∗X) be chains on E = {e1, . . . , eM}, chain X is ergodic with a stationary distribution
π, whereas X∗ is an absorbing chain with a unique absorbing state eM . We say that a stochastic
matrix of size d × d is a link if Λ(eM , e) = π(e) for all e ∈ E. We say that X∗ is a strong
stationary dual of X with the link Λ if

ν = ν∗Λ and ΛPX = P∗XΛ. (4.1)

Diaconis and Fill [DF90b] proved that the absorption time T ∗ of X∗ is an SST for X. If the
corresponding T ∗ is an FSST for X, then the chain X∗ is called a sharp SSD.

Fix some partial ordering � on E, such that e1 is the minimum and eM is the maximum.
Let C(ei, ej) = 1(ei � ej) be the corresponding ordering matrix (always invertible, the inverse
C−1 is called the Möbius matrix). Assume that ν(e1) = 1 (i.e., chain X starts in e1), then
(4.1) implies that also ν∗(e1) = 1. Let

←−
PX be a transition matrix of a time reversed chain, i.e.,

←−
PX(ei, ej) =

π(ej)
π(ei)

PX(ej , ei). We have

Theorem 4.2 (Theorem 2 in [LS12a], Remark 2.2 in [LS16], simplified version). Let X ∼
(ν,PX) be an ergodic Markov chain on a finite state space E = {e1, . . . , eM} starting at e1

(i.e., ν(e1) = 1), with a stationary distribution π, partially ordered by � (with ordering matrix
C), with e1 being the minimum and eM being the maximum. Assume that C−1←−PXC is a
non-negative matrix. Then there exists a sharp SSD X∗ ∼ (ν∗,P∗X) on E with ν∗(e1) = 1 and
transitions

P∗X(ei, ej) =
H(ej)

H(ei)

(
C−1←−PXC

)
(ej , ei) (4.2)

with a unique absorbing state eM , where H(e) =
∑

e′�e π(e).
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Remark 4.2. The condition that C−1←−PXC is a non-negative matrix was called ↓-Möbius mono-
tonicity in [LS12a].

Proof of Lemma 4.1. First, we will construct a sharp SSD for this symmetric random walk on
a circle using Theorem 4.2. It will be more convienient to work with states numerated as
1∗, 2∗, . . . , d∗ = (2N)∗ (instead of 0, 1, . . . , 2N − 1). Our walk X moves either right or left, or it
does not move, i.e., it has the transition matrix:

PX(i∗, j∗) =


1− 2p if j∗ = i∗,

p if (j∗ = (i+ 1)∗, i∗ 6= (2N)∗) ∨ (j∗ = (i− 1)∗, i∗ 6= 1∗)

∨ (j∗ = 1, i∗ = (2N)∗) ∨ (j∗ = (2N)∗, i∗ = 1).

It will be even more convienient to work with another enumeration of states. Consider a set of
states {1, . . . , 2N} and let us define a bijection between this set and the set {1∗, . . . , (2N)∗} in
the following way:

σ(i∗) =

 2i− 1 if i ≤ N,

2(2N − i+ 1) if i > N.
, σ−1(i) =


(
i+1
2

)∗ if is odd,(
2N − i

2 + 1
)∗ if is even.

The bijection for d = 2N = 8 is following

σ((1∗, 2∗, 3∗, 4∗, 5∗, 6∗, 7∗, 8∗)) = (1, 3, 5, 7, 8, 6, 4, 2),

σ−1((1, 2, 3, 4, 5, 6, 7, 8)) = (1∗, 8∗, 2∗, 7∗, 3∗, 6∗, 4∗, 5∗),

it is depicted in Fig. 1 (left). The transition matrix of the chain X can be rewritten as:

PX(i, j) =


1− 2p if i = j,

p if |i− j| = 2 ∨ (i = 1, j = 2) ∨ (i = 2, j = 1) ∨

(i = 2N − 1, j = 2N) ∨ (i = 2N, j = 2N − 1).

Continuing our example d = 2N = 8 we have (using enumeration of states 1, 2, . . . , 2N))

PX =



1− 2p p p 0 0 0 0 0

p 1− 2p 0 p 0 0 0 0

p 0 1− 2p 0 p 0 0 0

0 p 0 1− 2p 0 p 0 0

0 0 p 0 1− 2p 0 p 0

0 0 0 p 0 1− 2p 0 p

0 0 0 0 p 0 1− 2p p

0 0 0 0 0 p p 1− 2p


We will now compute an SSD chain using total ordering 1 < 2 < . . . < 2N . Mapping the total
ordering 1 < 2 < . . . 2N into the ordering on original states 1∗, 2∗, . . . , (2N)∗, we have

i∗ ≺ j∗ ⇔ σ(i∗) < σ(j∗),
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Note that ≺ is also a total ordering, we have

1∗ ≺ (2N)∗ ≺ 2∗ ≺ (2N − 1)∗ ≺ · · · ≺ (N + 1)∗.

We will thus work with total ordering 1 < 2 . . . < 2N – which is equivalent (with easier notation)
to working with 1∗ ≺ (2N)∗ ≺ . . . ≺ (N + 1)∗.
The ordering matrix for total ordering is C(i, j) = 1(i ≤ j), the Möbius matrix (i.e., the inverse
of C) is then following:

C−1(i, j) =

{
1 if i = j,

−1 if i = j − 1, i < 2N.

We have
H(i) =

∑
j≤i

π(j) =
∑
j≤i

1

2N
=

i

2N
. (4.3)

Using above derivations and the fact that the chain is reversible (
←−
PX = PX), for i < 2N we

have:

(
C−1←−PXC

)
(i, j) =

(
C−1PXC

)
(i, j) =

∑
l

C−1(i, l)
∑
k≤j

PX(l, k)

=
∑
k≤j

PX(i, k)−PX(i+ 1, k)

= PX(i, j) +

∑
k<j

PX(i, k)−PX(i+ 1, k + 1)

−PX(i+ 1, 1),

whereas for i = 2N we have

(
C−1←−PXC

)
(i, j) =

∑
k≤j

PX(2N, k) =


0 if j < 2N − 2,

p if j = 2N − 2,

2p if j = 2N − 1,

1 if j = 2N,

We also have:

PX(i, k)−PX(i+1, k+1) =

{
p if (i = 1, j = 2) ∨ (i = 2, j = 1),

−p if (i = 2N − 1, j = 2N − 2) ∨ (i = 2N − 2, j = 2N − 1).

Using above derivations we can easily calculate all the cases:

(
C−1←−PXC

)
(i, j) =



1− 2p if 1 < i = j < 2N − 1,

1− 3p if i = j = 1 ∨ i = j = 2N − 1,

1 if i = j = 2N,

p if |i− j| = 2, j 6= 2N,

2p if i = 2N, j = 2N − 1.

(4.4)
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Continuing our example d = 2N = 8 we have (again, using enumeration 1, 2, . . . , 8)

C−1←−PXC =



1− 3p 0 p 0 0 0 0 0

0 1− 2p 0 p 0 0 0 0

p 0 1− 2p 0 p 0 0 0

0 p 0 1− 2p 0 p 0 0

0 0 p 0 1− 2p 0 p 0

0 0 0 p 0 1− 2p 0 0

0 0 0 0 p 0 1− 3p 0

0 0 0 0 0 p 2p 1


.

Combining (4.4) with (4.3) and noting that H(i)
H(j) = i

j , Theorem 4.2 and yields the following
transitions of a sharp SSD chain X∗ (written using the original enumeration of states)

P∗X(i∗, j∗) =
H(j∗)

H(i∗)

(
C−1←−PXC

)
(j∗, i∗) =

H(σ(j∗))

H(σ(i∗))

(
C−1←−PXC

)
(σ(j∗), σ(i∗)),

thus

P∗X(i∗, j∗) =



1− 2p if 1 < σ(j∗) = σ(i∗) < 2N − 1,

1− 3p if σ(j∗) = σ(i∗) = 1 ∨ σ(j∗) = σ(i∗) = 2N − 1,

1 if σ(j∗) = σ(i∗) = 2N,

pσ(j∗)
σ(i∗) if |σ(j∗)− σ(i∗)| = 2, σ(i∗) 6= 2N,

2pσ(j∗)
σ(i∗) if σ(j∗) = 2N, σ(i∗) = 2N − 1.

We leave it to the reader to check that the condition |σ(j∗)− σ(i∗)| = 2 for j, i ≤ N or j, i > N
is equivalent to |j − i| = 1, whereas for j ≤ N, i > N or for i ≤ N, j > N the condition is never
met. Thus, the transition matrix of X∗ can rewritten in the following way, using ordering ≺:

P∗X(i∗, j∗) =



1− 2p if j∗ = i∗, 2∗ � i∗ ≺ N or (N + 1)∗ ≺ i∗ � (2N)∗,

1− 3p if j∗ = i∗, i∗ ∈ {1∗, N∗},

1 if j∗ = i∗ = (N + 1)∗,

(2i+1)p
2i−1 if j = i+ 1, 1∗ � i∗ ≺ N∗,

(2i−3)p
2i−1 if j = i− 1, 1∗ ≺ i∗ � N∗,

(2N−i)p
2N−i+1 if j = i+ 1, (N + 2)∗ � i∗ ≺ (2N)∗,

(2N−i+2)p
2N−i+1 if j = i− 1, (N + 2)∗ � i∗ � (2N)∗,

4Np
2N−1 if i∗ = N∗, j∗ = (N + 1)∗.

• First, let us consider case p ∈ (0, 1/3] and N > 1.

Note that the assumption p ∈ (0, 1/3] implies that P∗X is a transition matrix. Continuing
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the example d = 2N = 8, we have (using the enumeration 1∗, 2∗, . . . , (2N)∗)

P∗X =



1− 3 p 3 p 0 0 0 0 0 0
p/3 1− 2 p 5/3 p 0 0 0 0 0
0 3/5 p 1− 2 p 7/5 p 0 0 0 0

0 0 5/7 p 1− 3 p 16 p
7

0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 4/3 p 1− 2 p 2/3 p 0
0 0 0 0 0 3/2 p 1− 2 p p/2
0 0 0 0 0 0 2 p 1− 2 p


.

Note that the resulting chain (recall, it starts at 1∗) will never reach states (N+2)∗, . . . , (2N)∗.
Denote the resulting chain on {1∗, . . . , (N + 1)∗} by Y∗. This is a birth and death chain
with a unique absorbing state (N + 1)∗, let us write down the relevant transitions only

P∗Y (i∗, j∗) =



1− 3p if j = i, i ∈ {1, N},

1− 2p if j = i, 2 ≤ i < N,

1 if j = i = N + 1,

(2i+1)p
2i−1 if j = i+ 1, 1 ≤ i < N,

4Np
2N−1 if i = N, j = N + 1,

(2i−3)p
2i−1 if j = i− 1, 1 < i ≤ N.

For d = 2N = 8 the transitions are depicted in Fig. 1 (right).

8

6

4

2

1

3

5

7
5∗

6∗

7∗

8∗

1∗

2∗

3∗

4∗

p

p

1− 2p

1∗ 2∗ 3∗ 4∗ 5∗

3p
5
3p

7
5p

16
7 p

1
3p

3
5p

5
7p

1− 2p 1− 2p 1− 3p

11− 3p

X and the “Zig-zag” ordering A sharp SSD X∗

Figure 1: Case d = 2N = 8: “zig-zag” ordering and state space of X (left), the corresponding
sharp SSD Y∗ (right)

Since there is no confusion (in the chain Y∗), we will identify a state i∗ simply with i. Let
T ≡ T1:1:N+1 denote the absorption time (in N + 1) of Y∗ (starting at 1). Using Theorem
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2.2 we have:

ET1:1:N+1 =

N∑
n=1

[
dn

n∑
s=1

1

p(s)ds

]
. (4.5)

Let us write a formula for p(s) explicitly:

p(s) =


(2s+1)p

2s−1 if i < N,

4Np
2N−1 if i = N.

(4.6)

We need to compute d(s). For 1 ≤ s < N we have

ds =

s∏
i=2

q(i)

p(i)
=

s∏
i=2

2i−3
2i−1
2i+1
2i−1

=

s∏
i=2

2i− 3

2i+ 1
=

3

(2s− 1)(2s+ 1)

and for s = N we have

dN =

N∏
i=2

q(i)

p(i)
= dN−1

q(N)

p(N)
=

3

(2N − 3)(2N − 1)

2N−3
2N−1

4N
2N−1

=
3

4N(2N − 1)
.

Plugging above formulas for p(s), ds in (4.5) (and using a formula
∑n
s=1(2s − 1)2 =
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n(2n−1)(2n+1)
3 ) we obtain for N > 1: ET1:1:N+1 =

N∑
n=1

[
dn

n∑
s=1

1

p(s)ds

]

=

N−1∑
n=1

[
dn

n∑
s=1

1

p(s)ds

]
+ dN

N∑
s=1

1

p(s)ds

=

N−1∑
n=1

[
dn

n∑
s=1

1

p(s)ds

]
+ dN

N−1∑
s=1

1

p(s)ds
+

dN
p(N)dN

=

N−1∑
n=1

[
3

(2n− 1)(2n+ 1)

n∑
s=1

1

p 2s+1
2s−1

3
(2s−1)(2s+1)

]
+

3

4N(2N − 1)

N−1∑
s=1

1

p 2s+1
2s−1

3
(2s−1)(2s+1)

+
1

p 4N
2N−1

=

N−1∑
n=1

[
1

p(2n− 1)(2n+ 1)

n∑
s=1

(2s− 1)2

]
+

1

p4N(2N − 1)

N−1∑
s=1

(2s− 1)2 +
2N − 1

p4N

=

N−1∑
n=1

[
1

p(2n− 1)(2n+ 1)

n(2n− 1)(2n+ 1)

3

]
+

1

p4N(2N − 1)

(N − 1)(2N − 3)(2N − 1)

3
+

2N − 1

p4N

=
1

3p

N−1∑
n=1

n+
(N − 1)(2N − 3)

p12N
+

2N − 1

p4N

=
4N

12pN

N(N − 1)

2
+

(N − 1)(2N − 3)

p12N
+

3(2N − 1)

p12N

=
2N2(N − 1) + (N − 1)(2N − 3) + 3(2N − 1)

12pN

=
2N3 − 2N2 + 2N2 − 5N + 3 + 6N − 3

12pN
=

2N3 +N

12pN
=

2N2 + 1

12p
. .

• Now consider case N = 1.
We can directly compute a separation distance sep(νPkX , π) for X starting at 1 (i.e.,
ν = (1, 0)). We have

sep(νPkX , π) = max
i∈{1,2}

(
1− PkX(1, i)

1
2

)
= 1− 2 min

i∈{1,2}
PkX(1, i). (4.7)

Spectral decomposition yields

PkX =
1

2

(
1 −1
1 1

)(
1 0
0 (1− 4p)k

)(
1 1
−1 1

)
=

1

2

(
1 + (1− 4p)k 1− (1− 4p)k

1− (1− 4p)k 1 + (1− 4p)k

)
(4.8)

and thus

sep(νPkX , π) = 1−min{1 + (1−4p)k, 1− (1−4p)k} =

 (1− 4p)k if p ∈ (0, 1/4),

(4p− 1)k if p ∈ (1/4, 1/2).

81



Conditional gambler’s ruin problem

On the other hand we know that there always exists a fastest strong stationary time T
(see Proposition 1.10 (b) in [DF90b]), i.e., sep(νPkX , π) = P (T > k). For p ∈ (0, 1/4) we
have that T has distribution Geo(4p), whereas for p ∈ (1/4, 1/2) we have P (T > k) =
(4p− 1)k = (1− 2(1− 2p))k, thus T has distribution Geo(2(1− 2p)). It implies that

ET =


1

4p
if p ∈ (0, 1/4),

1

2(1− 2p)
if p ∈ (1/4, 1/2).

Remark 4.3. For a case N = 1 and p ≤ 1/4 we can have a duality-based proof, similar to the
one we had for N > 1. From equation (4.6) we have p(1) = p(N) = 4p, using Theorem 2.2 we
directly have

ET1:1:2 = d1
1

p(1)d1
=

1

p(1)
=

1

4p
.

Let us have a closer look at this case. Note that both, a random walk on a circle and a
resulting strong stationary dual, are the chains on two points. The ordering matrix is given by

C =

(
1 1
0 1

)
and we directly have

PX =

(
1− 2p 2p
2p 1− 2p

)
, C−1←−PXC =

(
1− 4p 2p
0 1

)
.

From (4.2) we obtain (with π(1) = π(2) = 1/2)

P∗X =

(
1− 4p 4p
0 1

)
.

The transitions of X and X∗ are depicted in Figure 2.

1 2

2p 1− 2p

2p

1− 2p

1 2

4p 11− 4p

Random walk X* A sharp SSD X∗

Figure 2: Case d = 2N = 2: Original random walk on a circle X (left), the corresponding sharp
SSD X∗ (right)

Of course, time to absorption in X∗ has Geo(4p) distribution, thus ET = 1
4p .

Remark 4.4. Note that the assumptions on p in Lemma 4.1 (i.e., p ≤ 1/3 for N > 1 and casee
p ≤ 1/4, p ∈ (1/4, 1/2) for N = 1) are equivalent to non-negativity of the resulting matrix
P∗X . In other words the assumption implies that X is ↑-Möbius monotne (it is if and only if
condition).
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5 Proofs

5.1 Gambler’s ruin problem, absorbing birth and death chain

5.1.1 Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Consider the birth and death chain with j and k (j < k) as recurrent
absorbing states (p(j) = q(j) = p(k) = q(k) = 0). First step analysis yields (for j < i < k)

ETj:i:k = p(i)(1 + ETj:i+1:k) + q(i)(1 + ETj:i−1:k) + (1− q(i)− p(i))(1 + ETj:i:k), (5.1)

thus
ETj:i+1:k = ETj:i:k +

q(i)

p(i)

(
ETj:i:k − ETj:i−1:k −

1

q(i)

)
. (5.2)

Since ETj:j:k = 0, we have:

ETj:j+2:k = ETj:j+1:k

(
1 +

q(j + 1)

p(j + 1)

)
− q(j + 1)

p(j + 1)

1

q(j + 1)
.

Recall that ds =
∏s
i=j+1

q(i)
p(i) (where dj = 1), iterating the above equations yields:

ETj:i:k = ETj:j+1:k

i−1∑
s=j

ds −
i−1∑

s=j+1

ds s∑
m=j+1

1

p(m)dm

 , (5.3)

what can be checked by induction. Plugging (5.3) into (5.2) we have:
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ETj:i+1:k =

ETj:j+1:k

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds


+
q(i)

p(i)

ETj:j+1:k

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds


−ETj:j+1:k

i−2∑
n=j

dn −
i−2∑

n=j+1

[dn

n∑
m=j+1

1

p(s)ds
]− 1

q(i)


= ETj:j+1:k

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds


+
q(i)

p(i)

ETj:j+1:kdi−1 − di−1

i−1∑
s=j+1

1

p(s)ds
− di

1

diq(i)


= ETj:j+1:k

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds

+ ETj:j+1:kdi − di
i−1∑

s=j+1

1

p(s)ds
− di

1

dip(i)

= ETj:j+1:k

i∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds

− di i∑
s=j+1

1

p(s)ds

= ETj:j+1:k

i∑
n=j

dn −
i∑

n=j+1

dn n∑
s=j+1

1

p(s)ds

 .

Since ETj:k:k = 0, we have:

0 = ETj:j+1:k

k−1∑
n=j

dn −
k−1∑
n=j+1

dn n∑
s=j+1

1

p(s)ds

⇒ ETj:j+1:k =

k−1∑
n=j+1

dn n∑
s=j+1

1

p(s)ds


k−1∑
n=j

dn

,

thus

ETj:i:k =

∑k−1
n=j+1

[
dn
∑n
s=j+1

1
p(s)ds

]
∑k−1
n=j dn

i−1∑
n=j

dn −
i−1∑

n=j+1

dn n∑
s=j+1

1

p(s)ds

 ,
what was to be shown.

Proof of Theorem 2.2. Similarly as to proof of the Theorem 2.1 we consider birth and death
chain on {j, . . . , k} (j < k), however now only k is absorbing (i.e., p(k) = q(k) = q(j)0, but
p(j) > 0). For i : j < i < k we can rewrite Eq. (5.1):

84



Conditional gambler’s ruin problem

ETj:i:k = p(i)(1 + ETj:i+1:k) + q(i)(1 + ETj:i−1:k) + (1− q(i)− p(i))(1 + ETj:i:k),

we have
ETj:i:k = ETj:i+1:k −

q(i)

p(i)

(
ETj:i:k − ETj:i−1:k −

1

q(i)

)
. (5.4)

However, for i = j we have

ETj:j:k = (1− p(j))(1 + ETj:j:k) + p(j)(1 + ETj:j+1:k),

i.e.,

ETj:j:k =
1

p(j)
+ ETj:j+1:k.

Recall that ds =
∏s
i=j+1

q(i)
p(i) (where dj = j), iterating the above equations yields:

ETj:i:k = ETj:i+1:k +

i∑
s=j

di
p(s)ds

, (5.5)

what can be checked by induction. Plugging (5.5) (for i := i− 1) into (5.4) we have:

ETj:i:k = ETj:i+1:k −
q(i)

p(i)

ETj:i:k −
ETj:i:k +

i−1∑
s=j

di−1

p(s)ds

− 1

q(i)


= ETj:i+1:k +

di
di−1

i−1∑
s=j

di−1

p(s)ds

+
di−1

p(i)di


= ETj:i+1:k +

i∑
s=j

di
p(s)ds

.

Since ETj:k:k = 0, we have:

ETj:k−1:k =
k−1∑
s=1

dk−1

p(s)ds
.

Iterating the above equations yields:

ETj:i:k =

k−1∑
n=i

[
dn

n∑
s=1

1

p(s)ds

]
,

what was to be shown.

5.1.2 Proof of Lemma 2.4 and Theorem 2.3

Proof of Lemma 2.4. Denote by f(n) lhs of (2.9) and by h(n) its rhs. We will show that gener-
ating functions of f and h are equal. Let us start with gf (x), the generating function of f at
x:
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gf (x) =

∞∑
n=0

f(n)xn =

∞∑
n=0

n∑
k=0

(
n− k
k

)(
− r

(1 + r)2

)k
xn =

∞∑
n=0

∞∑
k=0

(
n− k
k

)(
− r

(1 + r)2

)k
xn

=

∞∑
k=0

∞∑
n=k

(
n− k
k

)(
− r

(1 + r)2

)k
xn

=

∞∑
k=0

∞∑
n=0

(
n

k

)(
− r

(1 + r)2

)k
xn+k =

∞∑
k=0

(
− r

(1 + r)2

)k
xk
∞∑
n=0

(
n

k

)
xn

Applying
∞∑
n=0

(
n

k

)
xn =

xk

(1− x)k+1
we have

gf (x) =

∞∑
k=0

(
− r

(1 + r)2

)k
xk

xk

(1− x)k+1
=

1

1− x

∞∑
k=0

(
−rx2

(1 + r)2(1− x)

)k

=
1

(1− x)

(1 + r)2(1− x)

(1 + r)2(1− x) + rx2
=

(1 + r)2

(1 + r)2(1− x) + rx2
.

On the other hand, the generating function of h is following:

gh(x) =

∞∑
n=0

h(n)xn =

∞∑
n=0

1− rn+1

(1 + r)n(1− r)
xn =

1

(1− r)

( ∞∑
n=0

1

(1 + r)n
xn −

∞∑
n=0

rn

(1 + r)n
xn

)

=
1

(1− r)

( ∞∑
n=0

1

(1 + r)n
xn −

∞∑
n=0

rn

(1 + r)n
xn

)
=

1

(1− r)

(
1 + r

1 + r − x
− r 1 + r

1 + r − xr

)
=

1 + r

(1− r)
1 + r − xr − r − r2 − xr
(1 + r − x)(1 + r − xr)

=
1 + r

(1− r)
(1 + r)(1− r)

(1 + r)2 − (1 + r)(x+ xr) + x2r

=
(1 + r)2

(1 + r)2(1− x) + rx2
,

thus gh(x) = gf (x), what finishes the proof.

The following lemma will be needed in the proof of Theorem 2.3.

Lemma 5.1. Consider the gambler’s ruin problem with general rates p,q. Define

ai = −ρ0:i:i+1

p(i)
,

bi =
(p(i) + q(i))ρ0:i:i+1

p(i)
,

ci = −q(i)
p(i)

ρ0:i−1:i+1.

Then, for all N ≥ 1 we have
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N∏
j=2

bj cj aj
1 0 0
0 0 1

 ·
1 0 a1

1 0 0
0 0 1

 =

1 0 AN
1 0 AN−1

0 0 1

 ,

where

AM = −
M∑
n=1

1

p(n)
ρ0:n:M+1

b(M−n)/2c∑
k=0

ξn+1,M
k ,

ξn+1,M
k was defined in (2.4).

Proof. Recall that jn,mk was defined in (2.2) as

jn,mk =
{
{j1, j2, . . . , jk} : j1 ≥ n+ 1, jk ≤ m, ji ≤ ji+1 − 2 for i ∈ {1, k − 1}

}
.

For given p,q, bn, cn and j ∈ jn,mk define

Dn,m
j = bnbn+1 . . . bj1−2cj1bj1+1bj1+2 . . . bj2−2cj2 . . . bjk−1+1bjk−1+2 . . . bjk−2cjkbjk+1bjk+2 . . . bm

and let
Sn,mk =

∑
j∈jn,mk

Dn,m
j .

Let

αi = − 1

p(i)
,

βi =
(p(i) + q(i))

p(i)
= 1 + r(i),

γi = −q(i)
p(i)

= −r(i).

Dn,m
j can be rewritten as

Dn,m
j = ρ0:n:m+1βnβn+1 · · ·βj1−2γj1βj1+1βj1+2 · · ·βj2−2γj2 · · ·

·βjk−1+1βjk−1+2 . . . βjk−2γjkβjk+1βjk+2 · · ·βm

= (−1)k
∏
s∈j

r(s)
∏

s∈{n,...,m}\j∪j−1

1 + r(s) = ρ0:n:m+1δ
n,m
j .

Thus Sn,mk =
∑

j∈jn,mk

Dn,m
j = ρ0:n:m+1

∑
j∈jn,mk

δn,mj =: ρ0:n:m+1ξ
n,m
k and AM can be rewritten as

AM =

M∑
n=1

an

b(M−n)/2c∑
k=0

Sn+1,M
k .

We will show this by induction.

• For M = 1 we have

A1 =

1∑
n=1

an

b(1−n)/2c∑
k=0

Sn+1,1
k = a1

b0/2c∑
k=0

S2,1
k = a1S

2,1
0 = a1.
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• ForN ≥M ≥ 2 assumingAM =
∑M
n=1 an

∑b(M−n)/2c
k=0 Sn+1,M

k we shall prove thatAN+1 =
bN+1AN + cN+1AN−1 + aN+1. We have

bN+1AN + cN+1AN−1 + aN+1 =

= bN+1

N∑
n=1

an

b(N−n)/2c∑
k=0

Sn+1,N
k + cN+1

N−1∑
n=1

an

b(N−n−1)/2c∑
k=0

Sn+1,N−1
k + aN+1

=

N∑
n=1

an

b(N−n)/2c∑
k=0

bN+1

∑
jn+1,N
k

Dn+1,N

jn+1,N
k

+

N−1∑
n=1

an

b(N−n−1)/2c∑
k=0

cN+1

∑
jn+1,N−1
k

Dn+1,N−1

jn+1,N−1
k

+ aN+1

=

N∑
n=1

an

b(N+1−n)/2c∑
k=0

∑
jn+1,N+1
k :jk 6=N+1

Dn+1,N+1

jn+1,N+1
k

+

N∑
n=1

an

b(N+1−n)/2c∑
k=0

∑
jn+1,N+1
k :jk=N+1

Dn+1,N+1

jn+1,N+1
k

+ aN+1

=

N+1∑
n=1

an

b(N+1−n)/2c∑
k=0

∑
jn+1,N+1
k

Dn+1,N+1

jn+1,N+1
k

=

N+1∑
n=1

an

b(N+1−n)/2c∑
k=0

Sn+1,N+1
k = AN+1

what finishes the proof.

Proof of Theorem 2.3. First step analysis yields (for N > i > 1):

EW0:i:N = (1 + EW0:i−1:N )P (X1 = i− 1|X0 = i,XT = N)

+(1 + EW0:i:N )P (X1 = i|X0 = i,XT = N)

+(1 + EW0:i+1:N )P (X1 = i+ 1|X0 = i,XT = N).

We have EW0:N :N = 0 and for simplicity we also set EW0:0:N = 0. We have

P (X1 = i− 1|X0 = i,XT = N) = P (X1=i−1|X0=i)P (XT=N |X1=i−1)
P (XT=N |X0=i) =

q(i)ρ0:i−1:N

ρ0:i:N
= q(i)ρ0:i−1:i,

P (X1 = i|X0 = i,XT = N) =
(1− p(i)− q(i))ρ0:i:N

ρ0:i:N
= 1− p(i)− q(i),

P (X1 = i+ 1|X0 = i,XT = N) =
p(i)ρ0:i+1:N

ρ0:i:N
= p(i)ρ0:i+1:i.

For i = 1 we have

EW0:1:N = [1 + EW0:1:N ](1− p(1)− q(1)) + [1 + EW0:2:N ]p(1)ρ0:2:1,

thus
EW0:2:N =

(p(1) + q(1)− 1)ρ0:1:2

p(1)
− 1 +

(p(1) + q(1))ρ0:1:2

p(1)
EW0:1:N .

For 1 ≤ i ≤ N we have

EW0:i:N = (1+EW0:i−1:N )q(i)ρ0:i−1:i+(1+EW0:i:N )(1−p(i)−q(i))+(1+EW0:i+1:N )p(i)ρ0:i+1:i

(5.6)
and

88



Conditional gambler’s ruin problem

EW0:i+1:N =
(p(i) + q(i))ρ0:i:i+1

p(i)
− q(i)

p(i)
ρ0:i−1:i+1 − 1− ρ0:i:i+1

p(i)

+
(p(i) + q(i))ρ0:i:i+1

p(i)
EW0:i:N −

q(i)

p(i)
ρ0:i−1:i+1EW0:i−1:N ,

= bi + ci − 1 + ai + biEW0:i:N + ciEW0:i−1:N

(∗)
= ai + biEW0:i:N + ciEW0:i−1:N , (5.7)

where ai, bi, ci were defined in Lemma 5.1 and in (∗) we used the fact that

bi + ci =
(p(i) + q(i))ρ0:i:i+1

p(i)
− q(i)

p(i)
ρ0:i:i+1

=
p(i) + q(i)

p(i)

∑i
n=1

∏n−1
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

) − q(i)

p(i)

∑i−1
n=1

∏n−1
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

)

=

∑i
n=1

∏n−1
k=1

(
q(k)
p(k)

)
+ q(i)

p(i)

∑i
n=1

∏n−1
k=1

(
q(k)
p(k)

)
− q(i)

p(i)

∑i−1
n=1

∏n−1
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

)

=

∑i
n=1

∏n−1
k=1

(
q(k)
p(k)

)
+ q(i)

p(i)

∑i
n=i

∏n−1
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

)

=

∑i
n=1

∏n−1
k=1

(
q(k)
p(k)

)
+
∏i
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

) =

∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

)
∑i+1
n=1

∏n−1
k=1

(
q(k)
p(k)

) = 1.

Equations (5.6) and (5.7) can be written in a matrix form:EW0:i+1:N

EW0:i:N

1

 =

bi ci ai
1 0 0
0 0 1

 EW0:i:N

EW0:i−1:N

1

 . (5.8)

Note that c1 = − q1
p1
W 2

0 = − q1
p1

0 = 0 and

b1 =
(p(1) + q(1))ρ0:1:2

p(1)
=
p(1) + q(1)

p(1)

∑1
n=1

∏n−1
k=1

(
q(k)
p(k)

)
∑2
n=1

∏n−1
k=1

(
q(k)
p(k)

) =
1 + q(1)

p(1)

1

1

1 + q(1)
p(1)

= 1,
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thus using (5.8) recursively we obtain 0
EW0:N−1:N

1

 =

 EW0:N :N

EW0:N−1:N

1

 =

N−1∏
j=2

bj cj aj
1 0 0
0 0 1

 ·
1 0 a1

1 0 0
0 0 1

EW0:1:N

EW0:0:N

1



=

1 0 AN−1

1 0 AN−2

0 0 1

EW0:1:N

0
1

 ,

where AN is given in Lemma 5.1, what implies

EW0:1:N = −AN−1

and thus proves (2.6). Equation (2.5) follows from the fact that W0:1:N
(distr)

= W0:1:i + W0:i:N

(Markov property, W0:1:i and W0:i:N are independent).

5.2 Random walk on a polygon

5.2.1 Proof of Theorem 3.1

Proof of eq. (3.1) . Let Fi denote the event that at the first time we leave state i (recall, ties
are allowed) we move clockwise. Similarly, let F ci denotes the event that at the first time we
leave state i we move counterclockwise. We have

P (Fi) =
p(i)

p(i) + q(i)
=

1

1 + r(i)
,

P (F ci ) =
q(i)

p(i) + q(i)
=

r(i)

1 + r(i)

and

P (Ai) = P (Fi)P (Ai|Fi) + P (F ci )P (Ai|F ci ) =
1

1 + r(i)
P (Ai|Fi) +

r(i)

1 + r(i)
P (Ai|F ci ).

• For P (Ai|Fi) we have: we start at i+ 1 and we have to reach i− 1 before reaching i. This
is the probability of winning in the game G(p,q, i, i+ 1, i− 1). We thus have

P (Ai|Fi) = ρi:i+1:i−1 =
1

i−1∑
n=i+1

n−1∏
s=i+1

r(s)

.

• Similarly for P (Ai|F ci ) we have: we start at i−1, and we have to reach i+1 before reaching
i which corresponds to losing in the game G(p,q, i+ 1, i− 1, i). We thus have

P (Ai|F ci ) = 1− ρi+1:i−1:i = 1−

i−1∑
n=i+2

n−1∏
s=i+2

r(s)

i∑
n=i+2

n−1∏
s=i+2

r(s)

=

i−1∏
s=i+2

r(s)

i∑
n=i+2

n−1∏
s=i+2

r(s)

=
1

i∑
n=i+2

i−1∏
s=n

(
1

r(s)

) .
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Finally

P (Ai) =
1

(1 + r(i))

i−1∑
n=i+1

n−1∏
s=i+1

r(s)

+
r(i)

(1 + r(i))

i∑
n=i+2

i−1∏
s=n

(
1

r(s)

)
=

1

(1 + r(i))

i−1∑
n=i+1

n−1∏
s=i+1

r(s)

+
1

(1 + r(i))

i∑
n=i+2

i∏
s=n

(
1

r(s)

) .

Proof of eq. (3.2). Let us define T1 = inf{t : Xt = j − 1 ∨ Xt = j + 1|X0 = i} and consider
separately two cases when at T1 we are at j − 1 or j + 1. The first one corresponds to winning,
whereas the second one corresponds to losing in the game G(p,q, j + 1, i, j − 1). The winning
probability is

ρj+1:i:j−1.

In the first case (when we get to the j − 1 before j + 1) vertex j will be the last one if we reach
j+ 1 earlier - this can be interpreted as losing in the game G(p,q, j+ 1, j− 1, j), what happens
with probability:

1− ρj+1:j−1:j = 1−

j−1∑
n=j+2

n−1∏
s=j+2

r(s)

j∑
n=j+2

n−1∏
s=j+2

r(s)

=

j−1∏
s=j+2

r(s)

j∑
n=j+2

n−1∏
s=j+2

r(s)

.

In the second case (when we get to the j + 1 before j − 1) vertex j will be the last one if we
reach j − 1 earlier - this can be interpreted as winning in the game G(p,q, j, j + 1, j − 1), what
happens with probability:

ρj:j+1:j−1 =
1

j−1∑
n=j+1

n−1∏
s=j+1

r(s)

.
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Finally:
P (Li,j) = (1− ρj+1:i:j−1)ρj:j+1:j−1 + ρj+1:i:j−1(1− ρj+1:j−1:j)

=

1−

i∑
n=j+2

n−1∏
s=j+2

r(s)

j−1∑
n=j+2

n−1∏
s=j+2

r(s)


1

j−1∑
n=j+1

n−1∏
s=j+1

r(s)

+

i∑
n=j+2

n−1∏
s=j+2

r(s)

j−1∑
n=j+2

n−1∏
s=j+2

r(s)

j−1∏
s=j+2

r(s)

j∑
n=j+2

n−1∏
s=j+2

r(s)

=

j−1∑
n=i+1

n−1∏
s=j+2

r(s)

j−1∑
n=j+2

n−1∏
s=j+2

r(s)

1
j−1∑

n=j+1

n−1∏
s=j+1

r(s)

+

i∑
n=j+2

n−1∏
s=j+2

r(s)

j−1∑
n=j+2

n−1∏
s=j+2

r(s)

j−1∏
s=j+2

r(s)

j∑
n=j+2

n−1∏
s=j+2

r(s)

= 1
j−1∑

n=j+2

n−1∏
s=j+2

r(s)



j−1∑
n=i+1

n−1∏
s=j+2

r(s)

j−1∑
n=j+1

n−1∏
s=j+1

r(s)

+

 i∑
n=j+2

n−1∏
s=j+2

r(s)

 j−1∏
s=j+2

r(s)


j∑

n=j+2

n−1∏
s=j+2

r(s)



= 1
j−1∑

n=j+2

n−1∏
s=j+2

r(s)


j−1∑

n=i+1

n−1∏
s=j+2

r(s)

j−1∑
n=j+1

n−1∏
s=j+1

r(s)

+

i∑
n=j+2

n−1∏
s=j+2

r(s)

j∑
n=j+2

j−1∏
s=n

1

r(s)

 .

Proof of eqs. (3.3), (3.4) and (3.5) . Let us start with the expectation of Vi,j – number of steps
to visit all vertices starting at i when j is the last visited vertex. As earlier, let T1 = inf{t :
Xt = j − 1 ∨Xt = j + 1}. We have two cases:

• If XT1
= j−1 (and j was the last visited vertex) then the expected game time consists of:

expected time to win in G(p,q, j+1, i, j−1), expected time to lose in G(p,q, j+1, j−1, j)
and expected duration of the game G(p,q, j, j + 1, j). That is:

EWj+1:i:j−1 + EBj+1:j−1:j + ETj:j+1:j

• If XT1
= j + 1 (and j was last visited vertex) then the expected game time consists of:

expected time to lose in G(p,q, j+1, i, j−1), expected time to win in G(p,q, j, j+1, j−1)
and expected duration of the game G(p,q, j, j − 1, j). That is:

EBj+1:i:j−1 + EWj:j+1:j−1 + ETj:j−1:j

Now, conditioning on XT1
, we obtain:

EVi,j = ρj+1:i:j−1 (EWj+1:i:j−1 + EBj+1:j−1:j + ETj:j+1:j)

+(1− ρj+1:i:j−1) (EBj+1:i:j−1 + EWj:j+1:j−1 + ETj:j−1:j) .

Equations (3.4) and (3.5) are simply obtained by conditioning on the states.
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