Properties of quadratic forms associated with positive definite Hankel matrices (joint project with Christian Berg)

Every strictly positive definite Hankel matrix $H = \{m_{k+l}\}_{k,l=0}^{\infty}$ gives rise to the positive definite quadratic form on $\mathcal{F} \subset \ell^2$

$$Q(f,g) = \sum_{k,l=0}^{\infty} m_{k+l} f_k \overline{g_l},$$

where \mathcal{F} denotes the sequences with finitely many nonzero terms. By Hamburger theorem, there exists a finite measure μ , with infinite support on the real line, such that

$$m_k = \int_{-\infty}^{\infty} x^k \, d\mu(x). \tag{1}$$

There are two entirely different cases, when the form Q is closable:

- (1) supp $\mu \in (-1, 1)$ or $m_n \to 0$, the result obtained by Yafaev
- (2) The sequence $\{m_n\}$ is indeterminate, i.e. the measure μ in (1) is not uniquely determined. In particular $\sum m_n^{-1} < \infty$, joint result with Berg.

Given a measure satisfying (1), we study the operator A_{μ} with $D(A_{\mu}) = \mathcal{F}$ given by

$$\mathcal{F} \ni g \xrightarrow{A_{\mu}} \sum_{k=0}^{\infty} g_k x^k \in L^2(\mu).$$

As $Q(f,g) = (A_{\mu}f, A_{\mu}g)$, the form Q is closable iff the operator A_{μ} is closable.

We are going to study the properties of \overline{A}_{μ} , the closure of A_{μ} . In case (2) the operator \overline{A}_{μ} is a bijection from its domain onto $L^{2}(\mu)$, for any N-extremal measure μ , i.e. a measure μ for which the polynomials are dense in $L^{2}(\mu)$.

In case (1) the operator A_{μ} may be surjective only when the set supp μ is discrete in (-1, 1) and concentrated on a sequence of points x_n satisfying

$$\sum (1 - |x_n|) < \infty$$

and

$$\mu(\{x_n\}) \ge c(1 - |x_n|)$$

for a positive constant c.

The problem of surjectivity in case (1) is closely related to the Carleson theorem on interpolation in $H^2(\mathbb{D})$ space.