Properties of quadratic forms
 associated with positive definite Hankel matrices
 (joint project with Christian Berg)

Every strictly positive definite Hankel matrix $H=\left\{m_{k+l}\right\}_{k, l=0}^{\infty}$ gives rise to the positive definite quadratic form on $\mathcal{F} \subset \ell^{2}$

$$
Q(f, g)=\sum_{k, l=0}^{\infty} m_{k+l} f_{k} \overline{g_{l}}
$$

where \mathcal{F} denotes the sequences with finitely many nonzero terms. By Hamburger theorem, there exists a finite measure μ, with infinite support on the real line, such that

$$
\begin{equation*}
m_{k}=\int_{-\infty}^{\infty} x^{k} d \mu(x) . \tag{1}
\end{equation*}
$$

There are two entirely different cases, when the form Q is closable:
(1) $\operatorname{supp} \mu \in(-1,1)$ or $m_{n} \rightarrow 0$, the result obtained by Yafaev
(2) The sequence $\left\{m_{n}\right\}$ is indeterminate, i.e. the measure μ in (1) is not uniquely determined. In particular $\sum m_{n}^{-1}<\infty$, joint result with Berg .

Given a measure satisfying (1), we study the operator A_{μ} with $D\left(A_{\mu}\right)=\mathcal{F}$ given by

$$
\mathcal{F} \ni g \stackrel{A_{\mu}}{\longmapsto} \sum_{k=0}^{\infty} g_{k} x^{k} \in L^{2}(\mu) .
$$

As $Q(f, g)=\left(A_{\mu} f, A_{\mu} g\right)$, the form Q is closable iff the operator A_{μ} is closable.
We are going to study the properties of \bar{A}_{μ}, the closure of A_{μ}. In case (2) the operator \bar{A}_{μ} is a bijection from its domain onto $L^{2}(\mu)$, for any N -extremal measure μ, i.e. a measure μ for which the polynomials are dense in $L^{2}(\mu)$.

In case (1) the operator \bar{A}_{μ} may be surjective only when the set $\operatorname{supp} \mu$ is discrete in $(-1,1)$ and concentrated on a sequence of points x_{n} satisfying

$$
\sum\left(1-\left|x_{n}\right|\right)<\infty
$$

and

$$
\mu\left(\left\{x_{n}\right\}\right) \geq c\left(1-\left|x_{n}\right|\right)
$$

for a positive constant c.
The problem of surjectivity in case (1) is closely related to the Carleson theorem on interpolation in $H^{2}(\mathbb{D})$ space.

