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Abstract

For all systolic groups we construct boundaries which are EZ—structures.
This implies the Novikov conjecture for torsion-free systolic groups.
The boundary is constructed via a system of distinguished geodesics
in a systolic complex, which we prove to have coarsely similar proper-
ties to geodesics in CAT(0) spaces.
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1 Introduction

There are many notions of boundaries of groups used for various purposes.
In this paper we focus on the notions of Z—structure and EZ-structure in-
troduced by Bestvina [3] and studied e.g. by Dranishnikov [12] and Farrell-
Lafont [16]. Our main result is the following.

Theorem A (Theorem 6.3). Let a group G act geometrically by simplicial
automorphisms on a systolic complex X. Then there exists a compactification
X = X U0X of X satisfying the following:

1. X is a Buclidean retract (ER),
2. 0X is a Z-set in X,
3. for every compact set K C X, (9K )g4eq is a null sequence,

4. the action of G on X extends to an action, by homeomorphisms, of G
on X.

A group G as in Theorem A is called a systolic group. It is a group
acting geometrically (i.e. cocompactly and properly discontinuously) by sim-
plicial automorphisms on a systolic complex—contractible simplicial complex
satisfying some local combinatorial conditions. Systolic complexes were in-
troduced by Chepoi [8] (under the name of bridged complexes) and, indepen-
dently, by Januszkiewicz-Swiatkowski [19] and by Haglund [17] (in Section 2
we give some background on them). Systolic complexes (groups) have many



properties of non-positively curved spaces (groups). There are systolic com-
plexes that are not CAT(0) when equipped with the path metric in which
every simplex is isometric to the standard Euclidean simplex. On the other
hand, there are systolic groups that are not hyperbolic, e.g. Z2?. Summariz-
ing, systolic setting does not reduce to the CAT(0) or to the hyperbolic one.
Systolic groups admit various combinatorial constructions [1,17,19] with un-
expected properties [1,20]. We also believe that eventually both systolic
complexes and C'AT'(0) cubical ones will be placed among a wider family of
combinatorially non-positively curved contractible cell complexes.

Here we give the other definitions that appear in the statement of Theo-
rem A. A compact space is a Fuclidean retract (or ER) if it can be embedded
in some Euclidean space as its retract. A closed subset Z of a Euclidean re-
tract Y is called a Z —set if for every open set U C Y, the inclusion U\ Z — U
is a homotopy equivalence. A sequence (K;)2, of subsets of a topological
space Y is called a null sequence if for every open cover U = {U;},.; of Y all
but finitely many K; are U —small, i.e. for all but finitely many j there exist
i(j) such that K; C Uy.

Conditions 1, 2 and 3 of Theorem A mean (following Bestvina [3], where
only free actions are considered, and Dranishnikov [12]) that any systolic
group G admits a Z-structure (X,0X). The notion of an EZ-structure, i.e.
a Z—structure with additional property 4 was explored by Farrell-Lafont [16]
(in the case of a free action).

Bestvina [3] showed that some local homological invariants of the bound-
ary 0X are related to cohomological invariants of the group. In particular,
the dimension of the boundary is an invariant of the group i.e. it does not
depend on the Z—structure we choose. This was generalized by Dranishnikov
[12] to the case of geometric actions. We emphasize that the homeomorphism
type of the boundary is not a group invariant (but the shape is an invariant,
see Bestvina [3]). This was proved by Croke-Kleiner [10] in the context of
visual boundaries of C'AT'(0) spaces.

Carlsson—Pedersen [7] and Farrell-Lafont [16] proved that existence of an
EZ—structure on a torsion-free group G implies that the Novikov conjecture
is true for G. Thus, by Theorem A, we get the following.

Corollary. Torsion-free systolic groups satisfy the Novikov conjecture.

Bartels—Liick [2] prove the Borel conjecture (which in particular implies
the Novikov conjecture) for a class B of groups which includes C'AT'(0) groups
and hyperbolic groups and is closed under some elementary operations. All
known to us systolic groups belong to the class B. However it is not likely
that all systolic groups belong to B.



There are only few classes of groups for which a Z-structure (X,9X)
has been found (and even fewer for which an EZ-structure is known). The
most important examples are: hyperbolic groups (see Bestvina—Mess [4]) —
where X is the Rips complex and 0X is the Gromov boundary; C'AT(0)
groups —where X is a CAT'(0) space and 0X is the visual boundary of X;
relatively hyperbolic groups whose parabolic subgroups admit a Z-structure
(see Dahmani [11]). Bestvina [3] asked whether every group G with finite
K(G,1) has a Z-structure.

The question whether for every systolic group there exists an FZ—structure
was posed by Januszkiewicz and Swiatkowski in 2004. Theorem A answers
affirmatively this question.

We hope that, similarly to the hyperbolic and C' AT(0) cases, our bound-
aries will be also useful for purposes other than the ones mentioned above.
In particular we think that splittings of systolic groups can be recognized
through the topology of the boundary, as in e.g. Bestvina [5], Papasoglu—
Swenson [22]. Studying more refined structures on the boundary could help
in obtaining rigidity results for some systolic groups.

The essential point of our construction is the choice of the system of good
geodesics (derived from the system of Fuclidean geodesics, the distinction
is not important at this moment), which is coarsely closed under taking
subsegments (Theorem B below), and which satisfies coarsely a weak form
of CAT'(0) condition (Theorem C below).

Recall that Januszkiewicz-Swigtkowski [19] considered a system of di-
rected geodesics in a systolic complex (c.f. Definition 2.11). One may try to
define the boundary of a systolic complex by taking the inverse limit of the
following system. Consider the sequence of combinatorial spheres around a
fixed vertex O and projections from larger to smaller spheres along the di-
rected geodesics terminating at O. Unfortunately, the inverse limit of this
system does not satisfy, in general, property 3 of Theorem A. Property 3
fails, for example, already for the flat systolic plane (c.f. Definition 7.1).

Hence, instead of using directed geodesics, we introduce Fuclidean geodesics,
which behave like CAT'(0) geodesics with respect to the flat subcomplexes of
a systolic complex. To define the Euclidean geodesic between two vertices,
say s,t, in a systolic complex, we consider the loop obtained by concatenat-
ing the two directed geodesics joining s to t and ¢ to s. Then we span a
minimal surface S on this loop. (We make use of minimal surfaces theory
developed by Elsner [14]. To obtain some uniqueness properties on S we
complement Elsner’s theory with our results on layers, which span the union
of all 1-skeleton geodesics between t and s.) The surface S is isometric to
a contractible subcomplex of the flat systolic plane and hence has a natural



structure of a CAT'(0) space. The Euclidean geodesic is defined as a sequence
of simplices in S, which runs near the CAT'(0) geodesic between s and ¢.

Now we pass to the more technical part of the exposition. Formally, the
Euclidean geodesic is defined for a pair of simplices o, 7 in a systolic complex,
which satisfies o C S,,(7),7 C S,(0) for some n > 0 (where S, (o) denotes
the combinatorial sphere of radius n around o, c.f. Definition 2.4). The
Euclidean geodesic is a certain sequence of simplices d;, where 0 < k < n,
such that g = 0,0, = 7, and 0, C S1(dk11), Opr1 C S1(dk) for 0 < k < n (c.f.
Lemma 9.15(i)). The two most significant features of Euclidean geodesics
are given by the following.

Theorem B (Theorem 12.2). Let 0,7 be simplices of a systolic complex
X, such that for some natural n we have o C S, (1), C Sp(0). Let (0)}_,
be the Euclidean geodesic between o and 7. Take some 0 <1 <m < n and let
(re)ie, be a 1-skeleton geodesic such that vy € 6 for 1 < k < m. Consider
the simplices Sl = rl,SHl,...,gm = 1, of the Euclidean geodesic between
vertices r; and r,,. Then for each | < k < m we have |5k,5k] < C, where C
18 a universal constant.

Theorem C (Theorem 13.1). Let s,s',t be vertices in a systolic complex
X such that |st| = n,|s't| = n'. Let (rp)7_y, (r})i_, be 1-skeleton geodesics
such that ry, € Oy, 1}, € d),, where (0x), (8;.) are Euclidean geodesics fort,s and
fort,s" respectively. Then for all 0 < ¢ <1 we have [r|en|| | < c|ss'|+C,
where C' is a universal constant.

cn

The article is organized as follows. It consists of an introductory part
(Sections 1-2), the two main parts (Sections 36 and Sections 7-13), which
can be read independently, and of a concluding Section 14.

In Section 2 we give a brief introduction to systolic complexes.

In the first part, assuming we have defined Euclidean geodesics satisfying
Theorem B and Theorem C, we define the boundary: In Section 3 we define
the boundary as a set of equivalence classes of good geodesic rays. Then we
define topology on the compactification obtained by adjoining the boundary
(Section 4) and we show its compactness and finite dimensionality (Section
5). Finally, in Section 6, we prove Theorem A —the main result of the paper.

In the second part of the article we define Euclidean geodesics and es-
tablish Theorem B and Theorem C: In Section 7 we recall Elsner’s results
on minimal surfaces. In Section 8 we study layers, whose union contains all
geodesics between given vertices. We define Euclidean geodesics in Section
9.

In the next two sections we prove Theorem 10.1 which is a weak version of
Theorem B (though with a better constant). Apart from the definitions these
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sections can be skipped by a hurried reader. We decided to include them since
this way of obtaining (the weak version of) Theorem B is straightforward in
opposition to the strategy in Section 12, which is designed to obtain Theorem
C. In Section 10 we study the position of directed geodesics between two
simplices of a given Euclidean geodesic with respect to the minimal surface
appearing in its construction. Then we verify Theorem 10.1 in Section 11 by
studying CAT(0) geometry of minimal surfaces.

The last two sections are devoted to the proofs of Theorem B and Theo-
rem C: In Section 12 we prove (in a technically cumbersome manner) pow-
erful Proposition 12.1 linked with C'AT'(0) properties of the triangles, whose
two sides are Euclidean geodesics. Proposition 12.1 easily implies Theorem
B, but its main application comes in Section 13, where we use it to derive
Theorem C.

We conclude with announcing some further results for which we do not
provide proofs in Section 14.

Acknowledgments. We are grateful to Tadeusz Januszkiewicz and Jacek
Swigtkowski for discussions and to Mladen Bestvina for encouragement. We
thank the Mathematical Sciences Research Institute and the Institut des
Hautes Etudes Scientifiques for the hospitality during the preparation of this
article.

2 Systolic complexes

In this section we recall (from Januszkiewicz-Swiatkowski [19,20], Haglund -
Swiatkowski [18]) the definition and basic properties of systolic complexes
and groups.

Definition 2.1. A subcomplex K of a simplicial complex X is called full
in X if any simplex of X spanned by vertices of K is a simplex of K. The
span of a subcomplex K C X is the smallest full subcomplex of X containing
K. We denote it by span(K). A simplicial complex X is called flag if any
set of vertices, which are pairwise connected by edges of X, spans a simplex
in X. A simplicial complex X is called k—large, for co > k > 4, if X is
flag and there are no embedded cycles of length less than k, which are full
subcomplexes of X (i.e. X is flag and every simplicial cycle of length at least
4 and less than k£ "has a diagonal”).

Definition 2.2. A simplicial complex X is called systolic if it is connected,
simply connected and links of all simplices in X are 6-large. A group I is
called systolic if it acts cocompactly and properly (i.e. geometrically) by
simplicial automorphisms on a systolic complex X. (Properly means X is
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locally finite and for each compact subcomplex K C X the set of v € ' such
that v(K) N K # 0 is finite.)

Recall a result of Januszkiewicz-Swigtkowski [19, Proposition 1.4 ], that
systolic complexes are themselves 6-large. In particular they are flag. More-
over, we have the following.

Theorem 2.3 ([19, Theorem 4.1(1)]). Finite dimensional systolic com-
plexes are contractible.

Now we briefly treat the definitions and facts concerning convexity.

Definition 2.4. For every pair of subcomplexes (usually vertices) A, B in
a simplicial complex X denote by |A, B| (|ab| for vertices a,b) the combinato-
rial distance between A®), B®) in X1 the 1-skeleton of X (i.e. the minimal
number of edges in a simplicial path connecting both sets). A subcomplex K
of a simplicial complex X is called 3—convez if it is a full subcomplex of X
and for every pair of edges ab, bc such that a,c € K, |ac| = 2, we have b € K.
A subcomplex K of a systolic complex X is called convez if it is connected
and links of all simplices in K are 3—convex subcomplexes of links of those
simplices in X.

Januszkiewicz-Swiatkowski [19, Lemma 7.2] conclude that convex sub-
complexes of a systolic complex X are full and 3—convex in X, and sys-
tolic themselves, hence contractible by Theorem 2.3. The intersection of
a family of convex subcomplexes is convex. For a subcomplex YV C X,
n > 0, the combinatorial ball B,(Y) of radius n around Y is the span of
{pe XO:|p,Y|] <n}. (Similarly S,(Y) = span{p € X©: |p,Y| = n}.)
If Y is convex (in particular, if Y is a simplex) then B,(Y") is also convex,
as proved by Januszkiewicz-Swigtkowski [19, Corollary 7.5]. Combining this
with previous remarks we record:

Corollary 2.5. In systolic complexes, balls around simplices are contractible.
Haglund-Swiatkowski prove the following.

Proposition 2.6 ([18, Proposition 4.9]). A full subcomplexY of a systolic
complex X is convex if and only if YV is geodesically conver in XV (i.e. if
all geodesics in XY joining vertices of Y lie in Y (V).

We record:

Corollary 2.7. In systolic complexes balls around simplices are geodesically
convez.



We will need a crucial ”projection lemma”. The residue of a simplex o
in X is the union of all simplices in X, which contain o.

Lemma 2.8 ([19, Lemma 7.7]). Let Y be a convex subcomplez of a systolic
compler X and let o be a simplex in S1(Y). Then the intersection of the
residue of o and of the complex'Y is a simplex (in particular it is nonempty).

Definition 2.9. The simplex as in Lemma 2.8 is called the projection of o
onto Y.

The following lemma immediately follows from Definition 2.9.

Lemma 2.10. Let 0 C & be simplices in S1(Y) for some convexr Y and let
7,7 be their projections onto Y. Then © C 7.

Definition 2.11. For a pair of vertices v, w with |[vw| = n in a systolic com-
plex X we define inductively the sequence of simplices 09 = v, 01,...,0, = w
as follows. Take o; equal to the projection of o;_; onto B,_;(w) for i =
1,...,n — 1,n. The sequence (o;), is called the directed geodesic from v
to w (this notion is introduced and studied by Januszkiewicz—Swigtkowski
[19]).

We can extend this construction to any pair (o, W), where W is a convex
subcomplex of X and oy is a simplex. Namely, if for some n we have oy C
Sy (W) then take o; to be the projection of o, onto B,,_;(W). If oy intersects
both S,(W) and S,,_1(W) then take o1 = 09 N S,_1(W) and then proceed
as previously. We call the final o,, C W the projection of oy onto W. Note
that this coincides with Definition 2.9. Observe that if oy C W then the
projection of oy onto W is equal to oy.

Finally, recall a powerful observation.

Lemma 2.12 ([20, Lemma 4.4]). Every full subcomplez of a systolic com-
plex 1s aspherical.

3 Definition of the boundary

Let X be a systolic complex. In this section we give two equivalent definitions
of the boundary of X as a set. We use the notion of Euclidean geodesics which
will be introduced in Section 9, but actually we need only its features given
by Theorem B and Theorem C. Thus, it is enough to read Sections 1-2 to
follow the first part of the article (Sections 3-6). Let C' be a natural number,
which is a universal constant satisfying assertions of both Theorem B and
Theorem C.



Remark 3.1. Let (4;)", be a Euclidean geodesic and let vy, be a vertex in Jj
for some 0 < k < n. Then there exists a 1-skeleton geodesic (v;)?, such that
v; € 0; for 0 < i < n. This follows from the fact that d;;1; C S1(¢;), which
we use for 1 < i < k, and from 0; C S1(d;11), which we use for k <i<n-—1
(see Section 1 or Lemma 9.15(i)).

Definition 3.2. Let v, w be vertices of a systolic complex X. Let v = (vg =
v, V1, Ve, ...,0, = w) be a geodesic in the 1-skeleton of X between v and
w or let v = (v = vy, vy, v9,...) be a 1-skeleton geodesic ray starting at v
(then we set n = c0). For 0 < i < j < n, we denote the Euclidean geodesic
between v; and v; by (677 = v, fﬁl, . ,5;’j = v;). We say that v is a good
geodesic between v and w or that v is a good geodesic ray starting at v if
for every 0 <1i < 7 <mn and every i < k < j we have |vy, 6;7| < C + 1 (the
constant C' is defined at the beginning of this section).

We denote the set of all good geodesic rays in X by R. For a given vertex

O of X, we denote the set of all good geodesic rays starting at O by Ro.

The following two results are immediate corollaries of Theorem B and
Theorem C.

Corollary 3.3. For every two vertices v,w € X there exists a good geodesic
between them.

Proof. Let (g = v,01,...,0, = w) be the Euclidean geodesic between
v and w. By Remark 3.1, there exists a 1-skeleton geodesic v = (vy =
v, V1, U, ..., 0, = w) with v; € §;. We claim that ~y is a good geodesic. To
justify the claim let 0 < ¢ < j < n. Let (;5;,8;“, e ,8;) be the Euclidean
geodesic between v; and v;. By Theorem B, for every ¢ < k < j, we have

|0k, Ok < |0k, %] +1 < C +1,
which justifies the claim. O

Corollary 3.4. Let (vg = O,v1,v9,...,0,), (wog = O,wy,ws, ..., wy) be
good geodesics in X. Then for all0 < ¢ <1 we have |V|enWem|| < c|vnwn,|+
D, where D = 3C + 2.

Proof. Let (67), (6") be the Euclidean geodesics between O and v,,, w,,, re-
spectively. Fix 0 < ¢ < 1. Pick vertices U’Lm | € o7 | and w’Lcm | € ov | which

len lem
realize the distance to v|cn|, Wem), respectively. Find 1-skeleton geodesics



(v and (w])™, such that v} € §Y and w, € 6. Their existence is guaran-

teed by Remark 3.1. By Theorem C, we have

|U\_C”Jw\_ch| S |U|_C7lj U,Lcn” + |U/Lcnj w,Lcmj‘ + |w/Lchw|_ch| -
= |’ULCTLJ’ 61L]cnj | + |'U,\_cnj w/\_cmj | + |51Llj:mj y Wiem| | <
< (C+1)+ (cJogwn| + C) 4+ (C+ 1),

as desired. 0

The following simple corollary of Corollary 3.4 will be useful.

Corollary 3.5. Let (vg = O, v, v, ...,0), (wg = O, wy,ws, ..., w;) be good
geodesics in X. Then for all 0 < N < min {k,l} we have [vywy| < 2|vw| +
D.

Proof. W.lo.g. we can assume that k& < [. Observe that | — k < |vpw].
Hence, by Corollary 3.4, we have

lovwy| < Jvgwg|+D < |vgw |+ |wwg |+ D = |vgw|+(I—k)+D < 2|vw|+D.

OJ

Below we define the central object of the article.

Definition 3.6. The ideal boundary (or shortly the boundary) of a systolic
complex X is the set 0X = R/ ~ of equivalence classes of good geodesic
rays, where rays n = (v, v1,09,...), & = (wp,wy,ws,...) are identified if
|v;w;| is bounded above by a constant independent of i (one can check that
this happens exactly when the Hausdorff distance between 1 and £ is finite).
For a good geodesic ray 7, we denote its equivalence class in 0X by [n].

In order to introduce topology on X = X UJX we give another definition
of the boundary. The two definitions will turn out to be equivalent in the
case of a systolic complex with a geometric group action.

Definition 3.7. Let O be a vertex of a systolic complex X. Then the
(ideal) boundary of X with respect to the basepoint vertex O is the set 0p X =
Ro/ ~ of equivalence classes of good geodesic rays starting at O, where rays
n = (v = O,v1,0v9,...), & = (wg = O,wy,wy,...) are identified if |v;w;| is
bounded above by a constant independent of i (again this happens exactly
when the Hausdorff distance between 1 and ¢ is finite). For n € Rp, we
denote its equivalence class in dpX by [n] (we hope this ambiguity of the
notation will not cause confusion).
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Lemma 3.8. Let n = (vg = O,v1,v,...), & = (wg = O, w1, ws,...) € Ro.
Then [n] = [&] iff |viw;| < D for all i.

Proof. We show that if for some i we have |v;w;| — D > 1, then [£] # [n].
Let 7 be as above and R be a natural number. Then, by Corollary 3.4, we
have

lvriwri| > R(Jviw;| — D) > R.
Since R can be chosen arbitrarily large, we get [£] # [n]. O

In the remaining part of this section we prove equivalence of the above
two notions of boundaries in the case of locally finite complexes. Assume
that X is a locally finite systolic complex. Let O € X be a fixed vertex and
let n = (v°, 0%, 0%, ...) be a good geodesm ray in X. For every i > 0 we choose
a good geodesm 7] = (vi = O, v, vh, ...  Upy = v'), guaranteed by Corollary
3.3. Since B;(O) is finite, for some vertex v; € S1(O) there are infinitely
many ¢ such that n(i) = |Ov| > 1 and v} = v;. Similarly, since all balls
are finite, we obtain inductively vertices vy € Si(O) satisfying the following.
For each k there are infinitely many 7 such that n(:) > k and for all j < k
we have v§ = v;. For each k denote some such i by (k). The following easy
facts hold.

Lemma 3.9. The sequence (vg = O, vy, vs,...) obtained as above is a good
geodesic ray. Moreover, for every j we have |viv;| < 3|Ov°| + D.

Proof. The first assertion follows from the fact that for every k the sequence
(vo = O,v1, vy, ..., V) is a subsequence of the good geodesic 7°*) and hence,
by Definition 3.2, it is a good geodesic.

Now we prove the second assertion. Let j > 0. Consider the case of
n(i(7)) < i(j) (the case of n(i(j)) > z(j) can be examined analogously).
Then for k = i(j) — n(z(j)) we have [vFvi0)| = [v}Pvi0)|. Thus we can apply
Corollary 3.4 with m = n to good geodesics n'V) and (v*,v**!, ... v'0)),
which yields the following.

k+jvj’ _ |Uk+jU;(j)‘ < ’Ukvé(j)‘ +D< (|OUO| + /{Z) +D.

v
Hence ' '
[viv;| < k4 0" < |00 + 2k + D < 3|00°| + D,
where the last inequality follows from & < |Ov°|, which is the triangle in-
equality for v°,v%0) and O. 0J

Corollary 3.10. Let X be a locally finite systolic complex and O,O’ its
vertices. Then the map ®o: 0X — 0oX given by Po([(v°,v!,0%..))]) =
[(vo = O, vy, v,...)] is well defined. It is a bijection between (‘)X and JoX.
Its restriction ®oro = Pola,, x is a bijection between Jor X and 9o X .
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4 Topology on X = X U0pX

Let X be a systolic complex and O € X be its vertex. In this section we define
the topology on the set X = X U 9pX, which extends the usual topology
on the simplicial complex X. The idea is to define the topology through
neighborhoods (not necessarily open) of points in X. The only problem is to
define the neighborhoods of points in the boundary.

For a 1-skeleton geodesic or geodesic ray n = (vg,v1,ve,...), we de-
note by Bi(n) the combinatorial ball of radius 1 around the subcomplex
{vo, v1,09,...}. Let C and D = 3C + 2 be the constants from the previous
section.

Definition 4.1. Let n = (vg = O, vy, v, ...) be a good geodesic ray in X and
let R > D (i.e. R> D+1)and N > 1 be natural numbers (in fact we could
also allow N = 0, but this would complicate some computations later on).
By Go(n, N, R) we denote the set of all good geodesics (wg = O, wy, ..., wy)
with £ > N and good geodesic rays (O = wp, wy, . . .), such that lwyvy| < R.
By G'o(n, N, R) we denote the set

{(wy,wny1,-..)| (wo=O,wy,...) € Go(n,N,R)}.

A standard neighborhood of [n] € 0o X C X is the set

UO(nv N, R) = {[5“ é € gO<n7N7 R) N RO}UU {lntBl(£)| é € g,O(nu N, R)} :

We write G(n, N, R), G'(n, N, R) and U(n, N, R) instead of Go(n, N, R),
G'o(n, N, R) and Up(n, N, R) if it is clear what is the basepoint O.

Before we define the topology, we need the following useful lemmas. The
first one is an immediate consequence of the above definition.

Lemma 4.2. Let n,§ € Rp and let N,N',R > D, R' > D be natural num-
bers such that N' > N. If G(,N',R") C G(n,N,R) then U({,N',R') C
U(n, N, R).

Lemma 4.3. Let U(n, N, R) be a standard neighborhood, let £ € Ro be such
that [€] = [n] and let R > D be a natural number. Then, for N' > (R'+D)N,
we have U({, N',R') C U(n, N, R).

Proof. Denote n = (vg = O, vy, vs,...) and & = (wg = O, wy, wo, . . .).
By Lemma 4.2, it is enough to show that for every ( € G(&, N', R') we
have ¢ € G(n, N, R).
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Let ( = (20 = O, 21,29,...) € G(§, N, R'). By Corollary 3.4 and Lemma
3.8, we have

/ / D <
Ry o>

(R"+D)+D<R.

lzvun| < (|znvrwne| + lwnron]) + D <

R'+D
<

R +D
Thus ¢ € G(n, N, R) and the lemma follows. O
The following defines topology on X.

Proposition 4.4. Let A be the family of subsets A of X = XU0p X satisfying
the following. AN X is open in X and for every x € AN OpX there is some
n € Ro such that [n] = x and there is a standard neighborhood U(n, N, R) C
A. Then A is a topology on X.

Proof. The only thing we have to check is the following. If A;, Ay € A and
[n] € A1 N Ay N JpX, then there is a standard neighborhood U(n, N, R) of
[n] contained in A; N As.

Since A; € A, fori = 1,2, there are standard neighborhoods U (n;, N;, R;) C
A; such that [n;] = []. Thus, by Lemma 4.3, for any natural R > D there ex-
ists N > N;, i = 1,2, such that U(n, N, R) C U(m, N1, R1)NU(n2, No, Ry) C
Al N AQ. O

Remark 4.5. The boundary 9o X is a closed subset of X = X U9pX.

Remark 4.6. It is easy to verify that when X is 0—hyperbolic (in the sense
of Gromov) then our boundary dpX (with topology induced from X) is
homeomorphic in a natural way with the Gromov boundary of X.

We still did not prove that the topology defined in Proposition 4.4 is non-
trivial. This will follow from the next two lemmas, in which we characterize
the intersections with the boundary of the interiors of standard neighbor-
hoods. In particular, we show (in Lemma 4.8) that [{] is contained in the

interior of U(&, N, R).

Lemma 4.7. For a set A C X, the intersection int ANdpX consists of those

points x € JpX for which there exists a representative n with a standard
neighborhood U(n, N, R) C A.

Proof. Let B be the set of those points © € Jp X for which there exists a
representative ) of  with a standard neighborhood U(n, N, R) C A.
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It is clear that intA N Jdp X C B, since intA is open in the topology
defined in Proposition 4.4. We want now to prove the converse inclusion
B CintAN0dpX. It is clear that B € AN JdpX. Thus to prove the lemma
we only have to show that B is open in dp X (in the topology induced from
X).
Let x € B and let its representative 1 be such that the standard neigh-
borhood U(n, N, R’) is contained in A. By Lemma 4.3, we can assume that
R' > 2(D + 1). Choose natural numbers R > D and N’ > RN. We claim
that U(n, N',R) N 0o X C B (i.e. that equivalence classes of elements in
G(n,N', R) N Rp lie in B). This implies that B is open in dpX.

To justify the claim let £ € G(n, N', R) N Ro. To prove that [{] € B it is
enough to establish U(¢, N’ R) C U(n, N, R'), since the latter is contained
in A. By Lemma 4.2, it is enough to show that for every ( € G(¢, N, R),
we have ( € G(n,N,R'). Let ¢ = (20 = O,21,...) € G(§, N', R). Denote
n=(vg=0,v1,...), £ =(wy=0,wy,...).

By Corollary 3.4, we have

lzvun] < levwn| + Jwyoy| <
1 1
< (Glewwn| + D) + (glowow| + D) <

< (%R+D)+(}%R+D) —2D+1)<R.

Thus ¢ € G(n, N, R') and it follows that U(¢, N, R) C U(n, N, R"), which
justifies the claim. 0

Lemma 4.8. Let U(n, N, R) be a standard neighborhood. Let & = (wy =
O,wy,ws,...) € Ro be such that vy = wy, where n = (vg = O, v, 09, ...).
Then [£] is contained in the interior of U(n, N, R).

Proof. By Lemma 4.7, it is enough to show that there exists a standard
neighborhood U (&, N', R) of [£] contained in U(n, N, R). Let N’ > RN. By
Lemma 4.2, it is enough to show that for (2o = O, 21, 29,...) € G({, N', R),
we have |zyvn| < R. By Corollary 3.4, we have

1 1
lzvun| = |znvwn| < }_%|ZN’7~UN’| +D < }_%R+ D <R,

as desired. O

Below we give a sufficient condition for two standard neighborhoods to
be disjoint.
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Lemma 4.9. Let U(n, N, R) and U(&, N, S) be two standard neighborhoods,
with n = (vg = O,vy,v9,...) and § = (wy = O, wy,we,...). If loywy| >
R+S+D+2, then U(y, N, R)yNU(E, N, S) = 0.

Proof. By contradiction. Assume U(n, N,R)NU(E, N, S) # 0.

Case 1: Let z € U(n, N,R)NU(&,N,S) N X. Then, by Definition
4.1, there exist ' = (v, = O,v},v},...) € G(n,N,R) and & = (w) =
O,wy,w),...) € G(& N, S) such that = belongs to the interior of both some
simplex with vertex v;, and some simplex with vertex wj, for some %k, > N.
Then these simplices coincide and |vjw;| < 1. By Corollary 3.5, we have

loywy| < Jonvy |+ vywiy |+ wywy| < R+(2|vw)|+D)+S < R+(2+D)+S,

contradiction.

Case 2: Let ¥ = (v) = O,v},v),...) € G(n,N,R) and & = (w), =
O,wi,wy,...) € G(& N, S) be such that [n] = [¢/]. Then, by Lemma 3.8, we
get

lovwy] < Jovvy] + [oywi] + [wywy| < R+ D+ S,

contradiction. O

5 Compactness and finite dimensionality

Let X be a locally finite systolic complex and let O € X be its vertex. In
this section we show that X = X U JpX is compact metrizable and (if X
satisfies some additional local finiteness conditions) finitely dimensional. We
also prove that, for a different vertex O’ of X, the compactifications X Udp X
and X U dopr X are homeomorphic.

Proposition 5.1. If X is locally finite then the space X = X U 0pX is
second countable and reqular.

Proof. It is clear that X is second countable. We show that X is regular.

First we show that X is Hausdorff. We consider only the case of two points
of the boundary—the other cases are obvious. Let [n] # [£] be two boundary
points with n = (vg = O, v1,vs,...) and & = (wg = O, wy,wy,...). Fix a
natural number R > D (for example R = D + 1). We can find N such that
loywn| > 2R+ D+ 2. Then, by Lemma 4.8, we have [n] € intU(n, N, R) and
(€] € intU (&, N, R) and, by Lemma 4.9, we get intU(n, N, R)NintU (¢, N, R) C
U(n, N,R)NU(&, N, R) = (). Thus we get disjoint non-empty open neighbor-
hoods of [n] and [¢].
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To show that X is regular it now suffices to find, for every point z € X
and every closed subset A C X which does not contain x, disjoint open sets
U,V such that x € U and A C V. The case of x € X is obvious, hence
we consider only the case of x = [n] € 0pX, for n = (vg = O,vy,09,...).
Fix some natural R > D. Since X \ A is open, by the definition of the
topology (Proposition 4.4) and by Lemma 4.3, we can find a natural number
N > 0 such that U(n, N,R) € X \ A, where R’ > 2D + 2. Let N' =
(R+1)N + 1 and let U = intU(n, N’, R). Observe that, by Lemma 4.8, we
have z € U. Now we define V. For each y € AN X, choose an open set
V, = int By (2’) for some vertex 2’ in X such that y € intB;(2’). Then we set
V=U{V,| ye ANX}UuU{intU(,, N',R) | [{] € ANODpX}. By Lemma
4.8, we have ANJdpX C V, hence A C V. Thus to prove that U and V are
as desired we only need to show that U NV = (.

First we prove that U N intU(, N',R) = 0, for [§] € AN JpX. Let
£ = (wp = O, wy,ws,...). Then, by Corollary 3.4 and by ANU(n, N, R") = 0,
we have
/

N
>(R+1)(D+2)>2R+D+2.

Thus, by Lemma 4.9, U NintU(§, N',R) C U(n, N, R)yNU (&, N', R) = 0.

Now we show that U NV, =0, for y € AN X. By contradiction, assume
p € UNV,. Since p € U, there exist a vertex z of the simplex containing p in
its interior and a good geodesic (290 = O, z1,..., 2, = 2) € G(n, N', R), where
k > N'. Then, by Corollary 3.4, we have

N 1
< —|vyzn |+ D < =R+D <D+ 1.
luvzn| < N”UN Zn |+ 7 +D <D+
On the other hand, since p € V,, there is a vertex 2z’ such that {y,p} €

intB;(2’). Then |z2/| < 1. Let (O = 2{,21,...,2 = 2') be a good geodesic.
We have [ > N’ — 1, hence by Corollary 3.4 and Corollary 3.5, we get

N 1
|ZNZ;V| S N — 1|ZN’—IZ§V’71| + D S R—H(2|ZZ/| + D) + D S
1
<——2+D)+D=D+1.
< D+2( + D) + +

Summarizing, we have |vyzy| < |vyzn| + |22y < 2D 42 < R'. It follows
that (O = 2{,2],...,2;, = 2') € G(n, N,R') and hence y € U(n, N, R')—
contradiction. O
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Corollary 5.2. If X is locally finite then the space X = X U0pX is metriz-
able.

Proof. This follows from the Urysohn Metrization Theorem—cf. Dugundji
[13, Corollary 9.2]. O

Proposition 5.3. If X is locally finite then the space X = X U 0pX is
compact.

Proof. By Corollary 5.2, it is enough to show that every infinite sequence
of points in X contains a convergent subsequence. Let (zt,22 2%,...) be a
given sequence of points in X. If for some n > 0 there are only finitely many
z* outside the ball B,(O) (which is finite), then we can find a convergent
subsequence. From now on we assume there is no n as above.

For every i we choose a good geodesic or a good geodesic ray n' =
(vy = O,vi,vs,...) in the following way. If 2' € X then ' = (v =
O,vi vl ... ,v;(i)) is a good geodesic between O and a vertex v;(i) lying
in a common simplex with the point 2. If * € 9pX then we take n° so
that ' = [n’] and we set n(i) = co. By our assumptions on (x!, 22 23, ...),
for every n > 0 there exists an arbitrarily large i such that n(i) > n. Since
S1(0) is finite, for some vertex v, € S1(O) there are infinitely many ¢ such
that n(i) > 1 and v{ = v;. Let i(1) be some such 7. Similarly, since all
spheres are finite, we obtain inductively vertices v, € S,(O) and numbers
i(k) satisfying the following. For each k there are infinitely many 7 such that
n(i) > k and for all j < k we have v} = v;; we denote some such i > i(k — 1)
by (k).

Observe that for every k the sequence (vg = O, vy, vq,...,0;) is a sub-
sequence of the good geodesic or the good geodesic ray 1**) and hence, by
Definition 3.2, it is a good geodesic. Thus every subsequence of the infinite
sequence (vg = O, vy, v9,...) is a good geodesic and again, by Definition 3.2,
(vg = O, v1,v9,...) is a good geodesic ray.

We claim that the sequence (2/)° | of points of X converges to [] €
Jo X, where n = (vg = O, vy, va,...). To prove the claim it is enough to show
(since every open set containing [n] contains some U(n, N, R), by Lemma

4.3) that we have n'®¥) € G(n, N, R), for every k > N. This follows from the
equality vﬁ\(,k) = vy, which holds for every k > N. O

Observe that by the above proof we get the following.

Corollary 5.4. If a locally finite systolic complex is unbounded then its
boundary is non-empty.
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Below we prove that the bijection ® /o defined in Corollary 3.10 extends
to a homeomorphism of compactifications coming from different basepoints.

Lemma 5.5. Let X be a locally finite systolic complex and let O, 0" be its
vertices. Then the map ®oro: XUy X — X U0pX defined as an extension
by identity on X of the map ®oo: 000 X — 0o X is a homeomorphism.

Proof. By compactness (Proposition 5.3) and by Corollary 3.10, we only
have to show that ®o is continuous. It is enough to check the continuity at
the boundary points. Let £ = (vg = O, vy, v9,...) be obtained from a good
geodesic ray n = (v = O',v!,v?,...) as in the definition of the map ®po.
We show that ®po is continuous at [n]. Let d = |OO’|, let R > D be a
natural number, let R = R + 3D + 6d and let U be an open neighborhood
of [¢] in X UdpX. We have to show that there exists an open neighborhood
V of [n] in X U 0o X such that ®oo(V) C U. By Lemma 4.3, there exists
N such that Up(&, N, R') C U. Let V = intUp(n, N +d, R). By Lemma 4.8,
[n] € V. We claim that ®oo(V) C U—this will finish the proof.

First we show that for z € VN X we have ®pp(x) = 2 € U. For
such an z choose, by the definition of Uo/(n, N + d, R), a good geodesic
(w® = O, wh,w?, ..., w*) € Go/(n, N + d, R) such that x belongs to the
interior of a simplex with vertex w*, where k > N +d. Let ( = (wy =
O,wi,wy,...,w; = w*) be a good geodesic guaranteed by Corollary 3.3.
Then |l — k| < d, hence [ > N and wy is defined. By Lemma 3.9 and
Corollary 3.4, we have

lwyon| < Jwpw™ ] + [woN| + vV o] <
< (3d+ D) + (Jw™ TNt £ D)+ (3d + D) <
<R+3D+6d=R.

This inequality implies that ¢ € Go(&, N, R) and hence x € Up(§, N, R') C
U.

Now we show that for [p] € V N 0o X we have ®oo([p]) € U. Let p =
(w® = O, whw?,...) € Gor(n, N +d, R)yNRor. Let ¢ = (wy = O, wy,ws, ...)
be obtained from p as in the definition of ®o/o. Then, by Lemma 3.9 and
Corollary 3.4, we can perform the same computation as in the previous case
to get lwyvy| < R+3D+6d = R'. Thus ®oo([p]) =[¢] € Uo({, N,R') CU
and we have completed the proof of ®oo(V) C U and of the whole lemma.

OJ

Now we address the question of finite dimensionality of X. Let us remind
that a simplicial complex X is uniformly locally finite if there exists a natural
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number L such that every vertex belongs to at most L different simplices.
This happens for example when some group acts geometrically on X.

Proposition 5.6. Let X be a uniformly locally finite systolic complex. Then
X = X U0pX is finitely dimensional.

Proof. Recall that a space Y has dimension at most n if, for every open
cover U of Y, there exists an open cover V < U (V is a refinement of U, i.e.
every element of V is contained in some element of I) such that every point
in Y belongs to at most n + 1 elements of V (i.e. the multiplicity of V is at
most n + 1).

It is clear that X is finitely dimensional. It is thus enough to show that
there exists a constant K such that for every open (in X) cover U of 9p X
there exists an open cover V < U of 0pX of multiplicity at most K.

Let R > D be a natural number. Then, by uniform local finiteness, there
is a constant K such that every ball of radius at most 2R 4+ D + 2 contains
at most K vertices.

Let U be an open cover of dpX in X. We construct an open cover V < U
of 9pX in X consisting of interiors of standard neighborhoods such that the
multiplicity of V is at most K.

Let R = 2R + 2D. By the definition of topology (Proposition 4.4) and
by Lemma 4.3, for every [n] € 0pX there exists a standard neighborhood
U(n, Ny, R') contained in some element of ¢. By Lemma 4.8 we have [n] €
intU(n, N, R'). By compactness of 0o X (Proposition 5.3 and Remark 4.5),
among such neighborhoods we can find a finite family {U(n’, N, R’ )};n:1

such that the family of smaller standard neighborhoods {U (n, Ny, R)};.nzl
covers JpX. Let N = max{N,1,N,2,...,Nym}. Let A denote the set of
vertices v in Sy (O) for which there exists a good geodesic ray starting at
O and passing through v. For each v € A, pick some such good geodesic
ray £ = (wy = O, w},ws, ..., wl = v,...). We claim that the family V =
{intU (£, N, R)| v € A} is as desired.

First we show that V covers dpX. Let ( = (29 = O, 21, 29,...) be an
arbitrary good geodesic ray. Then zy = w3 and thus, by Lemma 4.8,
[€] € intU(&*N, N, R).

Now we show that V < U. To prove this it is enough to show that for every
v € A there exists j € {1,2,...,m} such that U(§",N,R) C U(n’, Ny, R').
Let v € A. Choose j such that [£] € U(r?, Ny, R). By Lemma 4.2, to show
that U(£", N, R) C U(n’, N,s, R') it is enough to show that, for every ¢ €
G(€", N, R), wehave ¢ € G(, Ny, R'). Let ¢ = (20 = O,21,22,..., 2N, ...) €
G(€*,N,R) and denote 7/ = (v} = O,v!,v},...). By Lemma 3.8, we have

19



’w})\fnj U{an] < R+ D. Then, by Corollary 3.4, we have

o, vk | < Jon |+ Jwhy vk | < (Jaw| + D)+ (R+ D) <

<2R+2D=R.

Thus ¢ € G(1, N, R') and it follows that V < U.

Finally, we claim that the multiplicity of V is at most K. By Lemma 4.9,
if [vv'| > 2R 4 D + 2 then intU (¢, N, R) NintU (€Y, N,R) C U(¢", N, R) N
U(¢Y, N, R) = (. Thus multiplicity of V is at most the number of vertices in
a ball of radius 2R+ D + 2 in X, i.e. it is at most K. |

6 The main result

The aim of this section is to prove the main result of the paper—Theorem
A (Theorem 6.3).
The following result will be crucial.

Proposition 6.1 ([4, Proposition 2.1], [3, Lemma 1.3]). Let (Y, Z) be
a pair of finite-dimensional compact metrizable spaces with Z nowhere dense
in'Y, and such that Y \ Z is contractible and locally contractible and the
following condition holds:

o For every z € Z and every open neighborhood U of z in'Y , there exists
an open neighborhood V' of z contained in U such that V \ Z — U\ Z
18 null-homotopic.

Then'Y 1is an ER and Z is a Z-set in'Y .
Before proving Theorem A we need an important preparatory lemma.

Lemma 6.2. Let [n] € 00X and let U(n, N, R) be a standard neighborhood
of [n] in X. Then there exists N such that U(n, N',R) C U(n, N, R) and the
inclusion map U(n, N', R)N X — U(n, N, R) N X is null-homotopic.

Proof. Let R’ = 4D+7. By Lemma 4.3, there exists N such that U(n, N, R) C
U(n, N, R), so that it is enough to prove the following. For natural R > D
there exists N’ such that U(n, N', R) C U(n, N, R') and the inclusion map
Un,N,R)N X — U(n, N, R') N X is null-homotopic.

Before we start, let us give a rough idea of the proof. Let us restrict to the
problem of contracting loops from U(n, N',R) N X in U(n, N, R') N X (this
turns out to be the most complicated case). Let a be such a loop. We connect
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each vertex of a by a good geodesic with O, and we are interested in the vertex
of this geodesic at certain distance M from O, where N < M < N'. All
vertices constructed in this way lie in a certain ball (see Condition 1 below),
which is in turn contained in U(n, N, R') N X (see Condition 3 below). If we
connect these vertices by 1-skeleton geodesics in the right order, we obtain a
loop ayy, which lies in the ball considered (Corollary 2.7) and is contractible
inside this ball (Corollary 2.5). So we need to find a free homotopy between «
and a;;, which we construct via intermediate loops ;. To find that two such
consecutive loops are homotopic in U(n, N, R') N X, we need Condition 2.
This condition guarantees that all relatively small loops by which consecutive
«y differ can be contracted inside U(n, N, R') N X.

Let M = N+R+1and N'—1> (R+ D+ 4)M. We will show that
N’ is as desired. Denote n = (vg = O, vq,vs,...). The choice of M and N’
guarantees that the following three conditions hold.

Condition 1. Let £ = (wy = O, wy,...,wg) be a good geodesic with
k> N'—1and w, € U(n,N',R) N X. Then wy; € Bpi1(va).

Indeed, let (290 = O, z1,...,2) € G(n, N, R) be such that |wgz| < 1
(guaranteed by the definition of U(n, N’, R)). Since k > N’ — 1, we have, by
Corollary 3.5, that

\wn—1vn—a] < Jwncazna| + [evecione o] <
< 2wgz|+ D)+ (1 + |znvon | +1) < R+ D + 4.

Thus, by Corollary 3.4, we have

1
|1UMUM| S |wN’—1UN’—1| + D < —|UJN/_1UN/_1| + D S D + 1.

N —1 " R+D+4

Condition 2. Let £ = (wg = O, wy,...,wy) be as in Condition 1. Then,
for every k > 1> M + 1 we have Bp,3(w;) C U(n,N,R') N X.

To show this observe that, as in the proof of the previous condition, we
have |wy/_1vn—1| < R4+ D +4. Now, let z be a vertex of Bp,3(w;). Choose
a good geodesic (zg = O, 21, 22, ..., 2m = 2) (guaranteed by Corollary 3.3).
Since [ > M+1=N+R+2> N+ (D +3), we have that m > N and zy
is defined. Thus, by Corollary 3.4 and Corollary 3.5, we have

N
N _ 1|wN/,1vN/,1\ + D) <

(R+D+®+D>ZMHJ=RC

lzvon| < lzvwn| + Jwyon| < (2|znwi| + D) + (
1

< (2(D +3 D <—

RP+3)+ D)+ (57 D74
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Thus z € U(n, N, R') N X and it follows that Bp 3(w;) C U(n, N,R')N X.
Condition 3. We have Bpy1(vy) C U(n, N,R')N X.

This follows immediately from Condition 2, but we want to record it
separately.

The goal. First observe that U(n, N',R) C U(n, N, R') by Lemma 4.3
and the definition of N’. Now we show that the map =;(U(n, N, R)N X) —
mi(U(n, N, R") N X) induced by inclusion is trivial, for every i = 0,1,2,....
Let A be the smallest full subcomplex of X containing U(n, N, R) N X.
Observe that the vertices of A lie in U(n, N, R) N X. By Condition 2, A
is contained in U(n, N, R’) N X. Thus it is enough to show that the map
mi(A) — m(U(n, N, R") N X)) induced by the inclusion is trivial and we may
restrict ourselves only to simplicial spherical cycles.

Case (i = 0). Let z' 22 be two vertices of A. We will construct a
simplicial path in U(n, N, R') N X connecting z' and 2°. . .
Choose (using Corollary 3.3) good geodesics (25 = O,21,..., 2, =

S : A 7)
27), j = 1,2. By Condition 2, (25\4,25\4+1,.j.,zi(j) = 27) is contained in
U(n,N,R') and, by Condition 1, we have z}, € Bpii(vy). Choose a 1-
skeleton geodesic (u; = zi;, U, ..., u; = 23;). Since balls are geodesically

convex (Corollary 2.7), this geodesic is contained in Bp.;(vas) and hence, by
Condition 3, it is contained in U(n, N, R') N X.

Then the 1-skeleton path (2! = z;(l), z,i(l)fl, 2N = UL, Uy Uy =
230 Zait1s -+ gy = #°) connects z' and 2 and is contained in U(n, N, R')N

X. Therefore the map my(A) — mo(U(n, N, R') N X) is trivial.

Case (i = 1). Let a = (2%, 21,...,2" = 2°) be a 1-skeleton loop in A.
We show that this loop can be contracted within U(n, N, R") N X.

Choose good geodesics (zé =0,2,... ,zi(j) = 27) (guaranteed by Corol-
lary 3.3), for j = 0,1,2,...,n — 1. By z], for k > k(j), we denote 27.
Let K = max {k(0),k(1),...,k(n —1)}. Observe that, by Corollary 3.5, we
have |2/2/*'| < D + 2 (we consider j modulo n), for every | = M, M +
1,M +2,..., K (we are not interested in smaller 7). For these [ let (2] =
g0t D) =
m(j) <D +2.

Thus, for every l = M +1, M +2,..., K and for every j =0,1,...,n—1,
we have a 1-skeleton loop

be arbitrary 1-skeleton geodesics. Record that

R Y R A N | Jpi-1(d) _ _j+1
v =25 =000, 00 = %1

J+1 _ i) pap(@)—1 ; J
2T =t 4 st =2])
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of length at most
T4pa()+14+mG) <1+ (D+2)+1+(D+2)=2D+6.

Hence fylj C BD+3(zlj ). Since balls are contractible (Corollary 2.5), ’ylj is con-
tractible inside Bpys(2]), which is, by Condition 2, contained in U(n, N, R).
Thus, for M <1 < K, the loops

(.0 _ 40,0 40,1 0p(0) 1,10 11 Lp(l) 2
ar= (2, =t ..., =z =ttt ..., =2z,...
n—-1_ mn—-10 ,n—-11 n—Llp(n—-1)  n 0
Ly T =T T =2'=2)

for consecutive [ are freely homotopic in U(n, N, R').

Observe that & = ag. On the other hand ay; C Bpyi(var), by Condition
1 and by geodesic convexity of balls (Corollary 2.7). Moreover, since balls are
contractible (Corollary 2.5), ajs can be contracted inside Bp.i(vys), which
lies in U(n, N, R'), by Condition 3. Thus « is contractible in U(n, N, R'). Tt
follows that the map m (A) — 7 (U(n, N, R) N X) is trivial.

Case (i > 1). Since A is a full subcomplex of a systolic complex it is,
by Lemma 2.12; aspherical and thus m;(A) = 0 and the map in question is
obviously trivial. O

Theorem 6.3 (Theorem A). Let a group G act geometrically by simplicial
automorphisms on a systolic compler X. Then X = X U0p X, where O is a
vertex of X, is a compactification of X satisfying the following:

1. X is a Buclidean retract (ER),
2. 00X is a Z-set in X,
3. for every compact set K C X, (9K )4ec is a null sequence,

4. the action of G on X extends to an action, by homeomorphisms, of G
on X.

Proof. (1. and 2.) By Corollary 5.2, Proposition 5.3, Remark 4.5, and
Proposition 5.6 we have that (X, 9o X) is a pair of finite-dimensional compact
metrizable spaces.

Since X is a simplicial complex, it is locally contractible and, by Theorem
2.3, it is contractible since it is a finitely dimensional systolic complex. By
the definition of the topology on X (c.f. Proposition 4.4), it is clear that
0o X is nowhere dense in X. Thus we are in a position to apply Proposition
6.1. Let € 9pX and let U be its open neighborhood in X.
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By the definition of the topology (Proposition 4.4) we can find a stan-
dard neighborhood U(n, N, R) C U, where [n] = z. By Lemma 6.2, there
exists a standard neighborhood U(n, N, R) C U(n,N,R) C U (with [n] €
int(U(n, N', R), by Lemma 4.8) such that the map int(U(n, N', R) N X) —
Umn, N, R)NX — U(n,N,R)N X — UN X is null-homotopic. Thus X is
an ER and 0pX is a Z-set in X.

(3.) Let U be an open cover of X and let K C X be a compact set. We
will show that all but finitely many translates gK, for g € GG, are UY—small.

Let R > D be such that K C Bg(z), for some vertex z. As in the
proof of Proposition 5.6, we can find a natural number N, a finite set of
vertices A C Sn(0O) and a collection of good geodesic rays {€"| v e A}
with &V passing through v such that the following holds. The family V =
{intU (", N, R) | v € A} covers 0p X and the family V' = {U (", N,4R) | v € A}
is a refinement of &. Thus we can find an open cover W = VUW' of X such
that every W € W' is contained in X. By compactness—Proposition 5.3—
there is a finite subfamily of W covering X. It follows that there exists a natu-
ral number N’ > N such that X\ By+(O) C |JV. By properness of the action
there exists a cofinite subset H C G such that gK C Bgr(gz) C X \ By/(O),
for g € H.

We claim that, for every g € H, we have gK C Bgr(gz) C U(£Y, N,4R) N
X, for some v € A. Assertion (3.) follows then from the claim. Let g € H.
Since X \ Bn(0) C |JV, there exists v € A such that gz € intU(£%, N, R).
We show that Br(gz) C U(€Y, N,AR). Let © € Bgr(gz) and let ¢ = (2, =
O,z],...,2]) be a good geodesic (which exists by Corollary 3.3) such that
2] € Bg(gz) is a vertex of the simplex containing x in its interior. Since
gz € U(£”, N, R) there exists a good geodesic (z9 = O, 21, 29,..., 2 = g2),
such that |zyv| < R. We have [,k > N’ and |z/z;| < R. Hence, by Corollary
3.5, we have

|zyv] < |2pen| + [2nv] < 2]z 2] + D) + |znv] <
<(2R+ D)+ R < 4R.

Thus ¢ € G(£”, N,4R) and hence z € U(¢", N,4R). It follows that Bg(gz) C
U(€Y,N,4R). Since g € H was arbitrary we have that elements of (¢K)sen
are V'—small and thus they are U—small.

(4.) For g € G we define a map go: X U JdpX — X U 9,0X as follows.
For x € X let gox = gz and for z = [(vg = O,vy,v9,...)] € 00X let
gox = [(guvg = 9O, gv1, gva,...)] € 0,0X. This is obviously a well defined
homeomorphism.

We extend the action of G on X to X U dpX by the formula g - v =
®,00(gox), for x € 0pX. By Lemma 5.5, the map g - : XU0p X — XUJdpX
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is a homeomorphism. To see that (gh) -z = g - (h- ), for x € 0p X, pick
some representative n = (vg = O, vy, ...) of x. We need to show that

®n00(gh o [n]) = y00(g © Proo(h o [1])).

Recall that, by Lemma 3.9, mappings ®,00, Proo and Pgu00 displace rep-
resentative rays by a finite Hausdorff distance. Hence ®g,00(gh o [1]) is
the class of rays starting at O at a finite Hausdorff distance from (ghvy =
ghO, ghvy,...). On the other hand, ®,o0(h o [n]) is the class of rays start-
ing at O at a finite Hausdorff distance from (hvy = hO, hvy,...), hence
g o Droo(h o [n]) as well as Py00(g © Proo(h o [n])) is the class of rays
(starting at gO and O, respectively) at a finite Hausdorff distance from
(ghvg = ghO, ghvy, . ..). This proves the desired equality.

Hence we get an extension of the action of G on X to an action on X by
homeomorphisms. O

7 Flat surfaces

With this section we start the second part of the article, in which we de-
fine Fuclidean geodesics, establish Theorem B and Theorem C. Before we
define Euclidean geodesics, we first need to study, as mentioned in Section
1, the minimal surface spanned on a pair of directed geodesics connecting
given vertices. The tools for this are minimal surfaces (Section 7) and layers
(Section 8).

In this section we recall some definitions and facts concerning flat minimal
surfaces in systolic complexes proved by Elsner [14, 15].

Definition 7.1. The flat systolic plane is a systolic 2—complex obtained by
equilaterally triangulating the Euclidean plane. We denote it by EX. A
systolic disc is a systolic triangulation of a 2—disc and a flat disc is any
systolic disc A, which can be embedded into E2, such that A is embedded
isometrically into the 1-skeleton of E4. A systolic disc A is called wide if A
is a full subcomplex of A. For any vertex v € A©® the defect at v (denoted
by def(v)) is 6 — t(v) for v ¢ A and 3 — t(v) for v € OA® | where t(v) is
the number of triangles in A containing v. It is clear that internal vertices
of a systolic disc have nonpositive defects.

We will need the following easy and well known fact.

Lemma 7.2 (Gauss—Bonnet Lemma). If A is any triangulation of a 2—

disc, then
Z def(v) =6
veA)
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Flat systolic discs can be characterized as follows.

Lemma 7.3 ([14, Lemma 2.5]). A systolic disc D is flat if and only if it
satisfies the following three conditions:

(i) D has no internal vertices of defect < 0
(i1) D has no boundary vertices of defect < —1

(i1i) any segment in 0D connecting vertices with defect < 0 contains a vertex

of defect > 0.
Now we recall another handful of definitions.

Definition 7.4. Let X be a systolic complex. Any simplicial map S: A —
X, where A is a triangulation of a 2—disc, is called a surface. We say that S
is spanned on a loop 7, if S|ga = . A loop 7 is triangulable, if there exists a
surface S spanned on 7, such that all the vertices of A are in 0A. A surface
S is systolic, flat or wide if the disc A satisfies the corresponding property.
If S is injective on JA and minimal (the smallest number of triangles in A)
among surfaces with the given image of A, then S is called minimal. A
geodesic in A is called neat if it stays out of OA except possibly at its
endpoints. A surface S is called almost geodesic if it maps neat geodesics in
AW isometrically into X1,

The following is part of the main theorem of Elsner [14].

Theorem 7.5 ([14, Theorem 3.1]). Let X be a systolic complex. If S is
a wide flat minimal surface in X then S is almost geodesic.

We will also use the following handy fact, whose proof can be extracted
from Elsner [15]. In case where v has length 2, it follows immediately from
6-largeness.

Proposition 7.6 ([15, Proposition 3.10]). Let X be a systolic complex
and S: A — X a wide flat minimal surface. Let v be a neat 1-skeleton
geodesic in A C EA, which is contained in a straight line. Then, for any
1-skeleton geodesic 7 in X with the same endpoints as S(y), there is another
minimal surface S": A — X such that S'() =7 and S = S' on the vertices
of A outside 7.

8 Layers

In this section we introduce and study the notion of layers for a pair of convex
subcomplexes of a systolic complex. If those subcomplexes are vertices v, w,
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then the layer k is the span of all vertices, in 1-skeleton geodesics vw, at
distance k from v (c.f. Definition 8.1). In particular, simplices of the directed
geodesics between v and w (c.f. Definition 2.11), as well as the simplices
of Euclidean geodesics (which we construct in Section 9) lie in appropriate
layers.

On the other hand, layers in systolic complexes seem to be interesting on
their own.

Definition 8.1. Let V, W be convex subcomplexes of a systolic complex X
andn = |V, W|. Fori =0,1,...,n we define the layer i between V and W as
the subcomplex of X equal to B;(V) N B,_;(W). We denote it by L;(V, W)
(or shortly L; when V, W are understood).

Remark 8.2. L; are convex, since they are intersections of convex B;(V'), B,,_;(WW)
(see remarks after Definition 2.4).

Lemma 8.3.
(i) Li = S;(V)NS,_;(W), for 0 < i< n.

(i) Ly C Sj—i(L;), for 0 < i < j < n. In particular Liy1 C Si(L;), for
0<7<n.

Proof. (i) W.lLo.g we only need to prove that L; C S;(V). Take a vertex
x € L;. Then we have |z, V| <1 and |z, W| < n —4, while |V, W| = n. Thus
by the triangle inequality we have |z, V| = i, as desired.

(ii) By (i) we have that L; N B;_;_1(L;) = (), thus we only need to prove
that L; C B;_;(L;). Let x be a vertex in L;. Since, by (i), we have z € S;(V),
there is a vertex y € B;(V) at distance j — i from x. Since x € B,_;(W), we
have y e Bn—z(W) Thus y e L; and z € Bj—z(Lz) O

Now we study the properties of layers.

Lemma 8.4. For 0 <1 < n we have that L; is co-large.

Proof. Suppose the layer L; is not oo—large. Then there exists an embedded
cycle I in L; of length at least 4, which is a full subcomplex of X.

Denote Dy = span{B;_1(V),I'}, Dy = span{B,,_;_1(W),['}. We have
that DN Dy = I'. Notice that D;UD; is a full subcomplex of X, because there
are no edges in X between vertices in B;_1(V') and vertices in B,,_;_1(W).

Observe that I' is contractible in D; (and similarly in Ds). Indeed, by
Lemma 8.3(i) we have that I' C S;(V'). Thus we can project the edges of
I onto B;_1(V) (c.f. Definition 2.9). If we choose a vertex in each of these
projections, we get, by Lemma 2.8, that these vertices form a loop. This loop
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is homotopic to I' in Dy. Moreover, since B;_1(V) is contractible (by remarks
after Definition 2.4) it follows that I is contractible in D; (and similarly in
Dy), as desired. The simplicial sphere S formed of these two contractions is
contractible in D; U Do, since full subcomplexes of X are aspherical (Lemma
2.12).

Now use Meyer-Vietoris sequence of the pair D;, Dy. Since [I'] is the
image of [S] = 0 under Ho(D; U Dy) — Hi(DyN Dy) it follows that the cycle

I' is homological to zero in itself. This is a contradiction. O

Lemma 8.5. Let 01,09,03 be mazximal simplices in the layer L; for some
0 < 1 <n andﬁ :UlﬂJQ, Ty = 09 () 03. Then71ﬁ7'2 :(Z) or 1 C T or
Ty C Tq.

Proof. W.l.o.g. assume that i # 0 (but we might have i = n). Suppose the
lemma is false. Then there exist vertices p; € 71\ 72, p2 € T\, 7 € 71 N To.
By Lemma 8.3(ii) we have that o1,03 C Si(L;—1). Denote by ¢, g2 some
vertices in the projections (c.f. Definition 2.9) of 01,03 onto L; ;. We have
|q1g2] < 1, because both ¢; and g, are neighbors of r and the projection
of r € L; C S1(L;—1) (c.f. Lemma 8.3(ii)) onto L;_; is a simplex (Lemma
2.8). Now we will argue that we can assume that ¢;p, is an edge. In case
q1 # qo consider the 4-cycle qi1qopop1qi.- It must have a diagonal. We can
then assume w.l.o.g. that ¢;p, is an edge. In case ¢ = g2 we also have that
q1p2 is an edge. In both cases it follows that p, belongs to the simplex which
is the projection of ¢; € L;—y C Si(L;) (c.f. Lemma 8.3(ii)) onto L;. This
simplex also contains o;. But py ¢ oy, which contradicts the maximality of
oq. O

Corollary 8.6. Let T be the following simplicial complex: the trapezoid built
out of the three triangles p1rsy, p1rp2, p2rse. Then there is no isometric em-
bedding of TV into Ll(-l), for0 <i<mn.

Proof. Extend the images of those three triangles to maximal simplices
01,09,03 and apply Lemma 8.5. O

Corollary 8.7. Let 0 < i < n. Let |poro| < 1,|paral < 1 for vertices
Do, To,PasTa € L; such that |popa| = |roral = d > 2 and |pers| > d,|ropa| > d.
Then, for any 1-skeleton geodesics (p;), (r;),0 <1i < d, connecting py with pg
and ro with rq, respectively, and for any 0 < i,j < d such that |i — j| < 1,
we have that |p;r;| <1 (i.e. pir; is an edge or p; =r;).

Proof. We will prove the corollary by induction on d. First observe that since
L; is oo-large (Lemma 8.4), the loop pop1 - . - para - - - r17opo is triangulable and
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there exists a diagonal cutting off a triangle. There are only four possibilities
for this diagonal and we can w.l.o.g assume that this diagonal is pyr;. Now
since pg € Sy(rgps) and both p; and ry lie in the projection of py onto
By _1(rgpg), then by Lemma 2.8 either p;r; is an edge or p; = 1.

Now we start the induction. If d = 2 and the loop pir17apap: is embedded,
then it has a diagonal. The rest of the required inequalities follows from
applying Corollary 8.6 twice.

Suppose that for d — 1 the corollary is already proved. Then applying it
to the pair piry, pgry yields all the required inequalities except for the esti-
mate on |rop;|. But this follows from Corollary 8.6 applied to the trapezoid

ToPoT1P1D2- O

Corollary 8.8. If pr,p'r’ are edges in L;, for some 0 < i < n, such that
pp'| = |rr'| = d > 2 and |pr'| < d,|p'r| < d, then |pr'| = |p'r| = d.

Proof. By contradiction.
Case |pr'| = |p'r] = d—1. If d > 2 (if d = 2 there is a diagonal
in the square pr'p'rp) then Corollary 8.7 applied to d — 1 in place of d,
Po=p,Pa1="1", 10 =71, Tq_1 = gives |pp/| = |rr'| = d — 1, contradiction.
Case |[pr'| = d — 1, [p'r| = d. Again apply Corollary 8.7, with py =
p, To =1, pa=7q =70, pa_1 =1, getting |rr’| = d — 1, contradiction. [

Below we present another important property of layers. Since it will
not be needed in the article, we do not include the proof. Denote L =
span(L; U L;yq) for some 1 <i<n—1.

Lemma 8.9. L is co-large.
We end with a simple, but useful observation.

Lemma 8.10. For any edges vw, xy such that v,x € L;, w,y € L;\1, where
0 < i <n, we have that ||vz| — |wy|| < 1.

Proof. By contradiction. Suppose, w.l.o.g., that |wy| = 2 + |vz|. Hence v
lies on a 1-skeleton geodesic wy. Thus, by convexity of layers (Remark 8.2)
and by Proposition 2.6, we have that v lies in L;,,, which is, by Lemma 8.3,
disjoint with L;, contradiction. O

9 Euclidean geodesics

In this section we define, for a pair of simplices o, 7 as below, a sequence
of simplices in the layers between o and 7, which can be considered as a
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"Fuclidean” geodesic joining ¢ and 7. Unlike the directed geodesics defined
by Januszkiewicz and Swigtkowski (see Definition 2.11), Euclidean geodesics
are symmetric with respect to ¢ and .

The definition requires a lenghty preparation. Roughly speaking, we start
by spanning a minimal surface between directed geodesics from o to 7 and
from 7 to 0. We observe that this surface is flat whenever the two directed
geodesics are far apart (we call the corresponding layers thick). Next we show
that this ”piecewise” flat surface is in some sense unique. This occupies the
first part of the section, up to Definition 9.9. Then we look at the geodesics
in the Euclidean metric in the flat pieces and use them to define Fuclidean
geodesics in systolic complexes, c.f. Definition 9.12. Finally, we establish
some of their basic properties.

The setting, which we fix for Sections 9-13 is the following. Let o, 7 be
simplices of a systolic complex X, such that for some natural n > 0 we have
o C Sy(r),7 C Sy(o). Let 09 C 0,01,...,0, CTand 7, C T, Tp_1,...,70 C
o be sequences of simplices in X, such that for 0 < k < n we have that
Ok, Or+1 Span a simplex and 7y, 7x+1 span a simplex. In particular, oy, 7, lie
in the layer k& between o and 7 (c.f. Definition 8.1).

Note that if 09 = 0,01,...,0, C 7 is the directed geodesic from o to
T and 7, = T,Ty_1,...,79 C o is the directed geodesic from 7 to o (c.f.
Definition 2.11), then the above condition is satisfied. This special choice of
(ok), (1) will be very important later and we will frequently distinguish it.

Definition 9.1. For 0 < ¢ < n the thickness of the layer ¢ for (o), (1) is the
maximal distance between vertices in o; and in 7;. If the layer ¢ for (oy), (7%)
has thickness < 1 we say that the layer i for (oy), (7x) is thin, otherwise we
say that the layer ¢ for (oy), (13) is thick. If (o), (1) are directed geodesics
from o to 7 and from 7 to o, respectively, then we skip "for (oy), (7)” for
simplicity.

Caution. Perhaps, to avoid confusion, we should not have used the word
"layer” in the above definition, since we are in fact only checking the position
of o; w.r.t. 7;. Even if the layer ¢ between ¢ and 7 is large, it can happen
that the thickness of the layer ¢ for (o} ), (7%) is small. However, we decided
that this terminology suits well our approach, in which we will be mostly
interested in the part of the layer ¢ between ¢ and 7, which lies ”between”
g; and Ti-

Definition 9.2. A pair (i, ), where 0 < i < j < n, is called a thick interval
(for (o%), (1)) if the layers i and j (for (o), (7%)) are thin, i+ 1 < j, and for
every [, such that i <l < j, the layer [ (for (o), (7)) is thick. We say that
the thick interval (i, 7) contains lif i <1 < j.
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Lemma 9.3.
(i) The thickness of consecutive layers varies at most by 1.

(i) If (i,7) is a thick interval (for (o), (7x)), then o;,7; are disjoint.

Proof. Both parts follow immediately from Lemma 8.10. 0J

Definition 9.4. Let (i,j) be a thick interval (for (oy), (7%)). Let vertices
Sk € ok, tp € T be such that for each i < k < j the distance |spty| is
maximal (i.e. sty realize the thickness of the layer k). By Lemma 9.3(ii)
the sequence s;, S;41,...,5;5,t,tj—1,.. .1, s; is an embedded loop, thus we can
consider a minimal surface S: A — X spanned on this loop (c.f. Definition
7.4). We say that S is a characteristic surface (for the thick interval (i, 7))
and A is a characteristic disc.

Lemma 9.5. Suppose that the layer k is thick. For sy, s) € ok, tg,t, € Tk,
if distances |sgty|,|s)ti| equal the thickness of the layer k then also |sytyl
equals the thickness of the layer k, i.e. if vertices sy € oy, tx € T realize the
thickness in some pairs, then they also realize the thickness as a pair.

Proof. Immediate from the definition of thickness and Corollary 8.8. 0

The lemma below summarizes the geometry of characteristic discs, which
we need to introduce the concept of a Euclidean geodesic. The special fea-
tures of characteristic discs in the case where (o), (74) are directed geodesics
will be given in Lemma 9.16 at the end of this section.

Let S: A — X be a characteristic surface. Denote by v, wy in A the
preimages of sg,t, in X, respectively. This notation will be fixed for the
entire article. Let us point out that we use numbers i,...,7 to number the
layers in A (c.f. Definition 8.1) between v;w; and v;wj;, instead of 0,...j5 —1,
for the sake of clarity.

Lemma 9.6.

(i) A (and thus the characteristic surface S) is wide and flat,

(ii) if we embed A C E3, then the edges v;w; and vjw; are parallel and
consecutive layers between them are contained in consecutive straight lines
(treated as subcomplexes of EA ) parallel to the lines containing v;w; and vjw;.

Proof. (i) To prove wideness it is enough to show that any nonconsecutive
vertices of the boundary loop are at distance > 2. Since the layers k, where
i < k < j, are thick (for (o}), (7%)), the only possibility for this to fail is that
(w.lo.g.) |[sgtgs1] = 1 for some i < k < j. If this happens, then both sy
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and tj lie in the projection of t;; onto the layer k between o and 7 (the
projection is defined by Lemma 8.3(ii)), hence they are neighbors (Lemma
2.8), which contradicts |sgtx| > 2. Thus a characteristic disc is wide.

Before proving flatness, we need the following general observation. If I is
a 1-skeleton geodesic, which is in the boundary of a triangulation of a disc,
then the sum of the defects at the vertices in the interior of I' is at most 1.
Moreover, all the defects at these vertices are at most 1 and each two vertices
of positive defect are separated by a vertex of negative defect.

To prove flatness we compute possible defects at the boundary vertices of
A. By wideness, they are at most 1 at v;, v;, w;, w;. Moreover, their sum over
the interior vertices of both 1-skeleton geodesics (vg)l_,, (wy)]_, is at most 1
(they are 1-skeleton geodesics, since their images are). Thus Gauss—Bonnet
Lemma 7.2 implies that the defects of the interior vertices are equal to zero,
the sums of the defects over the vertices (vy,)]_} oy (wi )]} 41 equal 1 each and
the defects at v;, v;, w;, w; are equal to 1.

We now want to say more about the defects at (vk)i;i +1- Up to now we
know that their sum is 1, they equal 1,0, —1 or —2 and each two vertices
of positive defect are separated by a vertex of negative defect (since (vk)i:i
is a l-skeleton geodesic). This implies that the defects equal alternatingly
1,—-1,1—1,...,1 with possible 0’s between them. The same holds for the
defects at (wy)l_} +1- Thus, by Lemma 7.3 (characterization of flatness), the
characteristic disc A is flat, i.e. we have an embedding A C 3 isometric on
the 1-skeleton.

(ii) By the computation of defects in the proof of (i) we get that the edges
v;w; and vjw; are parallel in E%. We also get that vy, wy, for i < k < j, are
at combinatorial distances k — 7,7 — k from the lines containing the edges
v;w;, vjw;. Hence vy, wy lie on the appropriate line parallel to v;w; and the
vertices of A split into families lying on geodesics vywg. By convexity of
layers, Remark 8.2, (or by direct observation) these geodesics are equal to
the layers. 0

When speaking about the layers in A between v;w; and v;w;, we will

often skip "between v;w; and vjw;”.

Remark 9.7. Denote the layer k£ in A (between v;w; and vjw;) by Li. Then
S(Ly) is contained in the layer k in X between o and 7. This follows from

S(Li) © S(By—i(viwi)) N S(Bj-r(vjw;)) C
C Bi—i(S(viw;)) N Bj—(S(vjw;)) C
C By_i(sit;) N Bj_x(sjt;) C
C Bi—i(Bi(0)) N Bj—k(Bn;j(7)) = Bi(o) N Bpy(7).
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The next lemma summarizes some uniqueness properties of characteristic
surfaces for a fixed thick interval (i, 7).

Lemma 9.8.

(i) A characteristic surface is almost geodesic. In particular, it is an iso-
metric embedding on the 1-skeleton of a subcomplex spanned by any pair of
consecutive layers between v;w; and vjw; in A.

(ii) A characteristic disc A C EA does not depend (up to isometry) on the
choice of sy, ty, and the choice of a characteristic surface.

If we have two characteristic surfaces S1: A1 — X, 95: Ay — X, then after
identifying the characteristic discs Ay = Ao (which is possible by (ii)) we
have that

(iii) for any vertices x,y € Ay = Ay at distance 1, Si(x) and So(y) are also
at distance 1, i.e. for any two characteristic surfaces S1, Sy we can substitute
an tmage of a vertex of the first surface with the corresponding image in the
second and get another characteristic surface,

(iv) for any vertex x € Ay = Ag, Si(x) and Sy(x) are at distance at most 1.

Proof. (i) This follows from Elsner’s Theorem 7.5, since, by Lemma 9.6(i),
a characteristic disc is flat and wide. The second part follows from the fact
that any two vertices in a same or consecutive layers in A C E4 can be
connected by a neat geodesic, which can be verified by direct observation.

(ii) Observe that, by Lemma 9.6(ii), the isometry class of A is determined
by the distances |vxwg|, |vgwgi1|, for ¢ < k < j—1, which are equal, by (i), to
|sktk|, |Sktrr1], respectively. The value |sgtx| equals the thickness of the layer
k, so it does not depend on the choices. To prove the same for |syty. 1|, con-
sider two characteristic surfaces constructed for choices s, s) € oy, t,t] € 7,
where | = k,k 4+ 1. We will prove that |sptpii| = |spt), 1| = |sptpe.|. We
restrict ourselves to proving the first equality (the second is proved analo-
gously). By Lemma 9.5 we have that |s;11t} | is the thickness of the layer
k+1. Thus there is a characteristic surface spanned on a loop passing through
Sks i, Skt1, tyq- Hence, by (i), the distance |st) | is determined by [sjty]
and |sgy1tx|, thus it is the same as |sptgi1|, as desired.

(iii) If  and y are both boundary vertices, then this is obvious. Otherwise,
w.l.o.g. assume that x is an interior vertex of A. Suppose that z lies in the
layer k (we denote it by Ly) in A between v;w; and vjw,;. Denote the thickness
of the layer k for (oy), (1) by d.

First consider the case where y € L. By Remark 9.7 we have that Sy (L)
and Sz(Ly) lie in the layer k in X between ¢ and 7. By Lemma 9.5 we have
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that [Sa(vk)S1(wg)| = [S1(vk)S2(wg)| = d. Hence Corollary 8.7 applied to
S1(Ly) and Sa(Ly) gives |S1(z)S2(y)| = 1, as desired.

Now, w.l.o.g., consider the remaining case that y is in the layer k£ — 1
(denoted by Li_1) in A between v;w; and v;w;. Denote by v/, 2" the com-
mon neighbors of x,y in Lj_1, Ly, respectively, and by x’ the neighbor of
x in L different from 2”. Then, from the previous case, we have that
S1(2)Sa2(x")S2(y")Sa(y)Sa (") S1(x) is a loop of length 5, hence it is triangu-
lable. By (i), all |Sa(2")S2(z")], |S2(2")S2(y)|, |S2(z")S2(y')| equal 2, hence
we obtain |S1(x)S2(y)| = 1, as desired.

Observe that this proof actually implies Proposition 7.6 in the case where
v C vipwy for some k.

(iv) For boundary vertices this is obvious. For an interior vertex z, let
2’2" be its neighbors in a common layer in A between v;w;,vjw;. Then,
by (iii), we have that Sj(x)Sa(x’)S2(y)S2(2”)S1(x) is a loop of length 4.
Moreover, by (i), we have that |Sy(z)Se(2”)| = 2. Thus |S;(z)S2(y)| < 1, as
desired. O]

As a corollary, the following definition is allowed.

Definition 9.9. Let p be a simplex of the characteristic disc A for some
thick interval (i,7) (for (o%), (7x)). Its characteristic image is a simplex in
X, denoted by S(p), which is the span of the images of p under all possible
characteristic surfaces. Note that S(p) is a simplex by Lemma 9.8(iii,iv), and
if p C g/, then S(p) C S(p'), i.e. S respects inclusions. The characteristic
image of a subcomplex of A is the union of the characteristic images of all
its simplices. We call this assignment the characteristic mapping.

If v is a vertex in S(A), we denote by S7(v) the vertex v € A such that
S(v) 7. We claim that this vertex is unique. Indeed, characteristic images
of different layers in A between v;w;, v;w; are disjoint since, by Remark 9.7,
they lie in different layers in X between o, 7, which are disjoint by Lemma
8.3. Moreover, by Lemma 9.8(i,iii), we have that Si(v) # Sy(v') for any
characteristic surfaces S, S, and any vertices v # v’ in a common layer in A.
This justifies the claim. If 7 is a simplex in S(A), we denote by S~1(p) the
span of the union of S7(v) over all v € p. We have that S~*(p) is a simplex,
by Remark 9.7, Lemma 8.3, and Lemma 9.8(i,iii). If Y is a subcomplex of
S(A), we denote by SH(Y) the union of S~!(p) over all p C Y.

Having established the uniqueness properties of characteristic surfaces,
we start to exploit the C'AT(0) structure of the corresponding characteristic
discs. From now on, up to the end of Section 13, unless stated otherwise, we
assume that (oy), (75) are the directed geodesics between o, 7.
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Definition 9.10. Let (i, j) be a thick interval and let A C E2 be its charac-
teristic disc. We will define a sequence of simplices pr € A, where i < k < j,
which will be called the Fuclidean diagonal of the characteristic disc A.

Let vy, w;, be points (barycenters of edges) on the straight line segments
vwy at distance % from vy, wy, respectively. In particular v; = wj, vj = w}.
Consider the closed polygonal domain A’ C A enclosed by the piecewise
linear loop with consecutive vertices vj, v ,...,v; = wj,wj_y,...,w; = vj.
Note that, since A’ is simply-connected, it is CAT(0) with the Euclidean
path metric induced from E% identified with E2. We call A’ a modified
characteristic disc. Let o' be the CAT(0) geodesic joining v; = w; to v; = w
in A", We call v a CAT(0) diagonal of A. For each ¢ < k < j, among the
vertices of A lying in the interior of the 1-skeleton geodesic vyw, we find
the ones nearest to 7' N vywy. For each k this is either a single vertex or
two vertices spanning an edge (if 7/ goes through its barycenter and vy, wy
are not some of its vertices). We put py equal to this vertex or this edge,
accordingly.

At first sight it might seem strange that in the above definition we pass
to A’ and take the geodesic v there instead of doing it in A itself. How-
ever, this construction allows us to exclude vy, w;, from being in pg, which a
careful reader will find to be a necessary condition for the arguments of the
combinatorial Proposition 10.2 to be valid.

Here are some basic properties of the Euclidean diagonals.

Lemma 9.11.
(i) Each pair of consecutive py, pri1, for i < k < j—1, spans a simplex.

(11) pit1, v, w; span a simplex and pj_1,vj, w; span a simplex.

Proof. Part (ii) is obvious, since we excluded vy, wy from being in pg. To
prove (i), consider A’ C A C E% oriented in such a way that vjwy, are
horizontal, this is possible by Lemma 9.6(ii). Moreover, Lemma 9.6(ii) yields
that the boundary of A’ consists of line segments at angle 30° from the
vertical direction. Let 7 be as in Definition 9.10. It is a broken line with
vertices at the boundary of A'.

We claim that any line segment of 7/ is at angle less than 30° from the
vertical direction. First we prove that this angle is at most 30°. Otherwise,
let p be an endpoint of such a line segment. Obviously p is different from the
endpoints of 4/. The interior angle at p between the segment of 4’ and any
of the boundary line segments of A’ is less than 180°, which contradicts the
fact that p is an interior vertex of a geodesic 7/. Thus we proved that any
line segment of 4’ is at angle at most 30° from the vertical direction.
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If for some line segment of 4’ this angle equals 30°, then by the previous
considerations the whole 7' is in fact a straight line at angle 30° from the
vertical. This implies that the defects at all vertices in (vk)i;i 4 or all vertices

in (wk)i;i 41 are zero. Contradiction. We have thus proved the claim.

Now part (i) follows from the following observation, whose proof is easy
and is left to the reader. Consider two consecutive horizontal lines aq, s in
E%. Let (8 be some straight line segment joining points p € oy, € s at angle
less than 30° from the vertical direction. Then there exist two 2-simplices
abe, bed in B such that ab C ay,cd C ap and p € ab,r € cd. Moreover, it
cannot happen simultaneously that |pa| < |pb| and |rd| < |rc. O

Thus we can finally introduce the main definition of this section.

Definition 9.12. We define a sequence of simplices d;, where 0 < k < n,
which is called the Fuclidean geodesic between o, T, as follows. For each k,
if the layer k is thin, then we take J, to be the span of o} and 7.

If the layer k is thick, consider the thick interval (7, j) which contains
k. Let pr be an appropriate simplex of the Euclidean diagonal of the char-
acteristic disc A for (i,7) (c.f. Definition 9.10). We take dp = S(px) (c.f.
Definition 9.9).

Remark 9.13. In the above setting, we have o; = S(v;), 7 = S(w;), by
Lemma 9.3(ii). Hence d; = span{o;, 7;} = S(v;w;).

Remark 9.14. By the symmetry of the construction, the Euclidean geodesic
between o and 7 becomes the Euclidean geodesic between 7 and o if we take
the simplices of the sequence in the opposite order.

Here is the justification for using the name ”geodesic” in Definition 9.12.

Lemma 9.15.
(i) For any 0 < k <1 <n we have that 0, C S;_(0;), 9 C S;_r (k).

(ii) For any 0 < k < n — 1 if the layer k or the layer k + 1 is thick, then dy
and Ogy1 span a simplex.

(11i) For any 0 <1 < m < n such that there exists | < k < m such that the
layer k is thick, and for any vertices x € §,,,y € §;, we have |zy| =m — .

Proof. Assertion (ii) follows from Lemma 9.11(i,ii), Remark 9.13 and Lemma
9.8(ii, iv).

To prove assertion (i), say the first inclusion, observe that for any 0 <
k < n we have span(oy U ) C Bi(span(og1 U Tkt1)). Hence, assertion (ii)
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gives already, for any 0 < k <[ < n, that 6y C B;_x(d;). Then 6, C S;_x (&)
follows from Remark 9.7 and Lemma 8.3(ii).

To prove part (iii), assume that | < k < m (other cases are easier). Take
any vertex z € 0. Then, by (i), there are vertices ' € dx_1, 3y € dg41 such
that |z2'| = (k—1) =1, |yy| = m — (k+1). By (ii) (and (i)), we have
|za'| = |2/ = 1. Hence |xy| < m — [ and by (i) we have |zy| = m — [, as
desired. O

Now we state an extra property of characteristic discs in the case where
(ok) (but (1) not necessarily) is the directed geodesic. This property was
not necessary for Definition 9.12, but will become indispensable in the next
section.

Lemma 9.16.

(i) If the defect at some vy, where i +1 < k < j — 1, equals —1, then the
defect at vgq equals 1.

(i1) The defect at v;11 equals 1.

Proof. (i) Proof by contradiction. Suppose the defect at some vy, where
1+ 1 < k < j7—1, equals —1, and the defect at vy, equals 0. Denote
by x the vertex next to vgy; on the 1-skeleton geodesic v w1 and by
y the vertex next to vy on the l-skeleton geodesic viwg. We aim to prove
that, for any characteristic surface S, S(z) belongs to ox1. Suppose for
a moment we have already proved this. Then, since by Lemma 9.8(i) we
have |S(x)S(vri2)] = 2 and at the same time S(vgyo) € 0pio, We get a
contradiction.

Now we prove that S(z) € oy1. By Remark 9.7 we have that S(z)
lies in B,,_x_1(7). Hence by the definition of projection (c.f. Definition 2.9)
it remains to prove that S(z) is a neighbor of each z € o;. Case z =
S(y) is obvious, so suppose zZ # S(y). Since, by the definition of thickness,
125 (wg)| < |S(vg)S(wy)|, we have by Lemma 8.7 (applied to ro = S(vg), 1 =
S(y),rqa = pa = S(wg) and to po = Z in case of |2S(wy)| = |S(vx)S(wy)| or
to po = S(vk),p1 = Z in case of |2S(wy)| < [S(vx)S(wg)|) that [2S(y)| = 1.
Considering the loop zS(y)S()S(vk+1)Z, since |S(y)S(vks1)| = |yves1]| = 2
(Lemma 9.8(i)), we get |z2S(x)| = 1, as desired.

(ii) By contradiction. Denote by x the vertex between v;;; and w;
on the l-skeleton geodesic v;;jw;11. Since o; = S(v;) (see Remark 9.13),
we have by Remark 9.7 and Lemma 9.8(iii) that S(x) belongs to o,41. By
Lemma 9.8(i) we have |S(z)S(vi12)] = 2. At the same time S(v;y2) € 019,
contradiction. O
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We will repeat some steps of this proof later on in the proof of Lemma
10.3. We decided, for clarity, not to intertwine these two proofs.

As a consequence of Lemma 9.16, we get the following lemma, whose
proof, similar to the proof of Lemma 9.11, we omit. Here we assume that
both (o), (1) are directed geodesics.

Lemma 9.17. If j —i > 2 then the CAT(0) diagonal %' in A crosses each
line orthogonal to the layers transversally.

10 Directed geodesics between simplices of
Euclidean geodesics

In this section we start to prove a weak version of Theorem B, which concerns
one of the main properties of Euclidean geodesics. Roughly speaking, the
theorem says that pieces of Euclidean geodesics are coarsely also Euclidean
geodesics.

We keep the notation from the previous section. The simplices (o), (7%)
are in this section the directed geodesics between o, 7.

Theorem 10.1 (weak version of Theorem B). Let 0,7 be simplices of
a systolic complex X, such that for some natural n we have o C S,(7),T C
Sn(0) (as required in the definition of the Euclidean geodesic). Let (0x)p_,
be the Euclidean geodesic between o and 7. Take some 0 <[ < m < n and
constder the simplices Sl = 51,5~l+1, .. .,Sm = 0,, of the Fuclidean geodesic
between 6; and 6,, (we can define it by Lemma 9.15(i)). Then for each | <
k < m we have |5k,(§k| < 3.

The proof of Theorem 10.1 splits into two steps. The first step is to
prove that directed geodesics between ¢; and ¢,, stay close to the union of
characteristic images of all characteristic discs (for (o), (7)). This is the
content of Proposition 10.2, whose proof occupies the rest of this section.

The second step is to check that characteristic images for the directed
geodesics between ¢§; and d,, also stay close to the union of characteristic
images for (oy), (7). Properties of layers actually imply that characteristic
discs of the former are embedded into characteristic discs of the latter, mod-
ulo small neighborhood of the boundary. So everything boils down to the
fact that Theorem 10.1 is valid for C AT (0) subspaces of the Euclidean plane.
We carry out this program in the next section. We also indicate there an
argument, how to promote Theorem 10.1 to Theorem B, with a reasonable
constant C.
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A complete alternative proof of Theorem B, with a worse constant C| is
obtained as a consequence of Proposition 12.1. We present it at the end of
Section 12. We advise the reader to have a look at the proof of Theorem 10.1
via Proposition 10.2. This proof is straightforward and allows us to introduce
gradually some concepts needed later. However, to save time, one can skip
the remaining part of Section 10, go over the definitions in Section 11 and
then go directly to Section 12.

For each thick layer [ < k < m contained in a thick interval (i,7) (for
(0¢), (1¢); from now on we often skip "for (o), (7)”), denote by «aj the ap-
propriate simplex (in the corresponding characteristic disc A) of the directed
geodesic from p;, if @ < [, or v; otherwise, to py,, if m < j, or v; other-
wise. The simplices (6y)}", of the directed geodesic from d; to d,, satisfy the
following.

Proposition 10.2. Let | < k < m.
(i) If the layer k is thin, then Gy contains or is contained in oy,

(i) if the layer k is thick, then &y contains or is contained in S(oy).

Before we give the proof of Proposition 10.2, we need to establish some
necessary lemmas. The first one describes the position of o, with respect to
the characteristic image. Like in Lemma 9.16, here (75) does not need to be
the directed geodesic.

Lemma 10.3. For a thick layer k let x; be the vertex, which is the neigh-
bor of vy on the 1-skeleton geodesic vywy in the characteristic disc for the
thick interval containing k. If the defect at vy equals 1, then o = S(vrxy).
Otherwise o, = S(vg).

Proof. First of all oy C S(vrxy) follows from the definition of thickness
and Proposition 7.6 (one could also verify this by hand, similarly like in the
proofs of Lemma 9.8(iii) and Lemma 9.16(i)). Suppose that the defect at vy
is # 1. Hence |vg_1x| = 2, by Lemma 9.16(i,ii). The inclusion S(v) C oy
is obvious and the converse inclusion follows from o, C S(vxxy) and from
Lemma 9.8(i).

Now suppose the defect at v, equals 1. If the layer £ — 1 is thick, then
the defect at vp_1 is # 1 and we apply what we have just proved to get
S(vg—1) = op—1. If the layer k — 1 is thin we get immediately that S(vx_1) =
ok—1 (Remark 9.13). In both cases using Remark 9.7, Lemma 9.8(iii), and
the definition of projection we get S(vgzy) C 0%, as desired. O

As a corollary we get the following technical lemma.
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Lemma 10.4. Suppose k < m do not satisfy i < k < m < j for any thick
interval (i, ) or if they violate this then |vgy1, pm| = m — (k+1). Then the
progection of oy, onto By,_k11)(0m) equals oj .

Proof. To justify speaking about the projection of o}, onto Bi,_(t41)(6m)
we must show that oy C S,,_x(d,,). The simplex oy is outside B,,__ 1( Om)
by Remark 9.7 and Lemma 8.3(ii). Thus we only need to check that oy C
Bk (0m).

To verify this, we prove that ox11 C B (k41)(0m). If the layer k£ + 1 is
thin then this follows from Lemma 9.15(i). If the layer k + 1 is thick, then
denote by (i, 7) the thick interval containing k 4+ 1. By Lemma 10.3 we have
Ok+1 C S(Vp1Zk+1) (41 as in Lemma 10.3). Thus it is enough to establish
the inclusion S(vp41T441) C Brn—k41)(9). If m < j, then this follows from
our hypothesis. If j < m, then from Remark 9.13 and Lemma 9.15(i) we
have

S(rs1r+1) C S(Bj-(er1)(v5)) C Bj—w+1)(S(v;)) C
C ij(lﬁ»l) (6]) C Bmf(k:+1)(5m)7

as desired.

Hence the projection of o, onto Bm_(k+1)(6m) is defined. Denote it by
7. Since Bp,—(k41)(6m) C Bn—(k41)(7), we have m C o441. For the converse
inclusion we need 041 C By (k41) (05 ), which we have just proved. O

The next lemma is valid for any (oy.), (7 ), not necessarily directed geodesics.

Lemma 10.5. Let e be an edge in the layer k of A (between v;w;, vw;),
such that e has three neighboring vertices in the layer k+1. Let T be a vertex
in the residue (defined before Lemma 2.8) of S(e) (for some characteristic
surface S) in the layer k + 1 between o,7 in X. Then T € S(x), where x is
the vertex in the layer k+ 1 of A in the residue of e.

Proof. Denote by y;,ys the neighbors of e in the layer k 4+ 1 of A different
from z, and let 5, = S(y1),7, = S(y2). We claim that 7,7, are neighbors
of . Indeed, let z; be the vertex in e, which is a neighbor of y;. Let
Z1 = S(z1) € S(e). Observe that both 7,,T lie in the projection of z;
onto By,_(x+1)(7) (by Remark 9.7), hence, by Lemma 2.8, they are neighbors,
as desired. Analogously, ¥,,Z are neighbors. Thus, by the easy case of
Proposition 7.6, we have that T € S(x), as required. O

The following lemma describes the behavior of the simplices «, appearing
in the statement of Proposition 10.2. The proof of Lemma 10.6 requires
Lemma 9.16(i,ii), apart from this it is straightforward and we skip it. For
the same reason we will usually not invoke it in the proof of Proposition 10.2.
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Lemma 10.6. Let A be a characteristic disc for some thick interval (i, 7).
Suppose that for some i <1 < m < j we have simplices o, o/ in the layers
[, m respectively between v;w;,v,w; in A. Suppose that o C Sp,_i(c) and
o C Sp_i(a). Moreover, assume that o is an interior vertex of A or an edge
disjoint with the boundary or o = v;. Assume that o is an interior vertex
or an edge disjoint with boundary or o/ = v;. Let (o)}, be the directed
geodesic in A joining « to o/ (in particular oy = a, iy C &' ). Then:

(i) If ay, is an edge, then ayyq is the unique vertex, which is in the residue
of ay in the layer k + 1.

(1) If o, = vy, and the defect at vy, equals 0, then a1 = Ugy-

(111) If oy is a vertex with two neighbors in the layer k + 1, both at distance
m — (k+1) from o, then axyy is an edge spanned by these two vertices.

() If oy is a vertex with two neighbors in the layer k + 1, but only one of
them at distance m — (k + 1) from o/, then agyy is this special verter.

Moreover, oy never equals wy. If ay is an edge containing wy. then the defect
at wy is —1. If ay, = vy, then the defect at vy, is not equal to 1, except possibly
for the cases k =1, j.

Now we are ready for the following.

Proof of Proposition 10.2. We prove by induction on k, for [ < k < m,
the following statement, which, by Lemma 10.6 and Lemma 10.3, implies the
proposition.

Induction hypothesis. (1) If the layer k is thick and a4 is an edge disjoint
with the boundary or meeting the boundary at a vertex of defect # 1, then
71 contains S(ag),

(2) if the layer k is thick and a4 is a non-boundary vertex, then & is con-
tained S(ag),

(3) if the layer k is thick and a4 is a boundary vertex or an edge intersecting
the boundary at a vertex of defect 1, or the layer k is thin, then ) contains
or is contained in oy.

For k = [ the hypothesis is obvious. Suppose it is already proved for some
I <k <m-—1. We would like to prove it for k£ + 1. First suppose that the
layer k is thick and a4 is an edge disjoint with the boundary or meeting the
boundary at a vertex of defect # 1 (case (1)). Then ay,q is a vertex. If it is a
boundary vertex, then vy € ay. By the induction hypothesis, since the defect
at vg is not 1, S(ax) C %, moreover, by Lemma 10.3 we have o, C S(ay),
hence o, C 6. Hence, by Lemma 2.10, 7, is contained in the projection of
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0 onto B,—(x+1)(0m), which in this case equals oj41 by Lemma 10.4. Thus
Ok+1 C 011, as desired.

Now, still assuming that the layer k£ is thick and that «; is an edge
disjoint with the boundary or meeting the boundary at a vertex of defect
# 1, suppose that ag.1 is not a boundary vertex. Let T be any vertex in
Gr+1. Our goal is to prove that T € S(agy1). By induction hypothesis we
know that S(ay) C 6. Since 7 lies in the layer k+ 1 between o, 7, by Lemma
9.7, we can apply Lemma 10.5 with e = aj. Hence we get T € S(ayy1), as
desired.

Thus we have completed the induction step in case (1), i.e. for the layer
k thick and o4 an edge disjoint with the boundary or meeting the boundary
at a vertex of defect # 1.

Now suppose that the layer k is thick and «; is a non-boundary vertex
(case (2)). Then it has two neighbors in the layer k& + 1 of A, suppose first
that both of them are at distance m — (k + 1) from p,, (we put p,, = v; if
m > 7). Then ay; is the edge spanned by those two vertices. If it intersects
the boundary, the defect at the boundary vertex is not 1. Thus we must
show that ;1 contains S(ayy1). But by induction hypothesis we know that
. is contained in S(ay). Thus, by Lemma 2.10, it is enough to observe that
S(kt1) C B (k1) (0m). This follows from agy1 C B kg 1) (Pm)-

If one of the two neighbors of «; in the layer k£ + 1 is not at distance
m — (k+ 1) from p,,, then a1 is the second neighbor, it is a non-boundary
vertex (unless k + 1 = j, which will be considered in a moment) and m < j.
Thus we must show that 441 is contained in S(ag41). Let Z be a vertex
in 6541. Then z lies on a 1-skeleton geodesic 7 of length m — k from some
vertex of 6, C S(ay) to some vertex T € 0, = S(pm). We claim that if p,,
is an edge, then the vertex r = S71(z) € A is the vertex closer to v, then
the other vertex of p,,. Indeed, let y € p,, be the vertex closer to w,,. Since
laxy| > m — k and this distance is realized by a neat geodesic, hence by
Lemma 9.8(i) we have |S(ax),S(y)| > m — k. This proves the claim. Thus
we can apply Lemma 7.6 to v = oz and z € 7, and get z € S(agy1), as
desired.

Now we come back to the case k + 1 = j and o a non-boundary vertex.
By induction hypothesis we have ¢, C S(ai). By Lemma 9.15(i) we have
that o411 = S(vp41) (Remark 9.13) lies in By, —(441)(drn). Hence, by Lemma
2.10, we have that 641 contains o1, as desired.

Thus we have completed the induction step in case (2), i.e. for the layer
k thick and oy a non-boundary vertex.

Now consider the case that the layer £ is thick and «4 is a boundary
vertex of defect —1 or the layer k is thin, but the layer k 4 1 is thick (in this
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case put ¢ = k). In both cases o = wv. If the hypothesis of Lemma 10.4
are not satisfied, then we can finish as in the previous case (no matter what
is the direction of the inclusion given by the induction hypothesis) getting
Fri1 C S(ags1). Otherwise, g,y is the edge spanned by two neighbors of vy
in the layer £+ 1. By Lemma 9.16(i,ii) the defect at vy equals 1. Hence we
want to prove that o, either contains or is contained in oy ;. We know,
by the induction hypothesis, that &5 contains or is contained in oy, hence it
is enough to use Lemma 2.10 and Lemma 10.4.

Now assume that either the layer £ is thick and oy is a boundary vertex
of defect 0 or an edge intersecting the boundary at a vertex of defect 1, or
the layer £ is thin and the layer k + 1 is also thin. Similarly as before, we
have that that &, contains or is contained in o, and we want to prove that
Or+1 contains or is contained in oyy;. This follows from Lemma 2.10 and
Lemma 10.4.

Thus we have exhausted all the possibilities for case (3) and completed
the induction step. 0

11 Euclidean geodesics between simplices of
Euclidean geodesics

In this section we complete the proof of Theorem 10.1. Its first ingredient
is Proposition 10.2, proved in Section 10. The second ingredient is easy 2—
dimensional Euclidean geometry, which we present as a series of lemmas in
this section. Throughout the section, we will be treating characteristic discs
simultaneously as simplicial complexes and C'AT(0) metric spaces.

We start with extending in various ways the notion of a characteristic
disc and surface.

Definition 11.1. A generalized characteristic disc A for an interval (i, j),
where i < j, is a closed CAT(0) (i.e. simply connected) subspace of E? with
the following properties. Its boundary is a piecewise linear loop with vertices
Viy .o, U, W), ..., w;,v; (possibly vy = wy) , such that for i« < k < j the
straight line segments (or points) vywy are contained in consecutive parallel
lines at distance \/75 We also require, if E? is oriented so that vywy are
horizontal, that v lies to the left of wy, or v, = wy.

A restriction of a generalized characteristic disc to the interval (I,m),
where ¢+ < [ < m < j, is the generalized characteristic disc enclosed by the
loop v; ... VpWy, . .. wyv;. We denote it by A", If a generalized characteristic
disc comes from equipping a systolic 2-complex with the standard piecewise
Euclidean metric, then we call it a simplicial generalized characteristic disc.
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Remark 11.2. Characteristic discs (resp. modified characteristic discs, c.f.
Definition 9.10) with the standard piecewise Euclidean metric are simplicial
generalized characteristic discs (resp. generalized characteristic discs).

Definition 11.3. Suppose that we have simplices (o), (7%) in the layer k
between o, 7 (not necessarily the simplices of the directed geodesics) defined
(only) for 0 <i < k < j <mn, where i < j, such that for i < k < j we have
that o, o1 span a simplex and 74, 7,11 span a simplex. Suppose that for
1 < k < j the maximal distance between vertices in o5 and in 7, is at least
2. Then we define a partial characteristic disc and a partial characteristic
surface in the following way.

We extend (o), (1) to all 0 < k < n so that oy, 01 and 7%, 7,11 span
simplices for 0 < k < n, and 0¢, 790 C 0, 0,7, C 7. (This is possible, since,
for example, we may issue directed geodesics from o;, 7; to o and from o, 7;
to 7.) Obviously, o, 7% lie in the layer k between o, 7 for all 0 < k < n. Let
(Zext, jext) be the thick interval for extended (oy), (7) containing (i, 7). Let
S: A — X be a characteristic surface for (7ez¢, jest). Then we call A,..s = AH
a partial characteristic disc (which is a simplicial generalized characteristic
disc) and Syes = S|a,.. a partial characteristic surface.

res

Caution. A characteristic surface S: A — X, where A is a characteristic
disc for a thick interval (4, j) for (o%)}_y, (7k)r— (as in Definition 9.4) is not
a partial characteristic surface for (ak)i:i, (Tk)i:,b This is because the layers
i,7 are thin. But if i + 1 < j — 1, then already S restricted to A]f;ll is a
partial characteristic surface.

Next we show that partial characteristic surfaces satisfy most of the
properties of characteristic surfaces. Fix an interval (i,j) and simplices
(0k)7—s» (Tk)7—; as in Definition 11.3. Let Syes: Alyes — X be a partial char-
acteristic surface, as above.

Lemma 11.4.
(i) Aves (and thus S,es) is flat.

(ii) If we embed A,., C B4, then v;w; and vjw; are parallel and the consec-
utive layers between them are contained in consecutive straight lines parallel
to vyw; and vjw;.

(117) Syes is an isometric embedding on 1-skeleton of a subcomplex spanned
by any pair of consecutive layers between v;w; and vjw; in Ayes.

(iv) Aes C EX does not depend on the choice of oy, Ty, for k < i and k > j,
the choice of sy, ty for 0 < k < n, and the choice of S.
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If we have two partial characteristic surfaces Si: Ay — X, S55: Ay — X,
then after identifying partial characteristic discs Ay = Ay (which is possible
by (ii)) we have that

(v) for any vertices x,y € Ay = Ay at distance 1, Si(x) and Sa(y) are also
at distance 1,

(vi) for any vertex x € Ay = ANy, Si(x) and Sa(x) are at distance at most 1.

(vii) S(viwy) lies in the layer k between o and T.

Proof. Assertions (i) and (ii) follow immediately from Lemma 9.6(i,ii). As-
sertion (iii) follows from Lemma 9.8(i). To prove (iv) notice that A,., = A}’
is determined by the distances |siti| for i < k < j and |sgtgy1] for i < k < j,
by (iii). Hence, if we fix s and t for i < k < j, then A,.s does not depend
on the extension of (0})]_;, (7%)7_,. On the other hand, if we fix such an ex-
tension, then |syty|, |Sktx+1| do not depend on the choice of sy, tx, by Lemma
9.8(ii).

It is a bit awkward to try to obtain assertion (v) as a consequence of
Lemma 9.8(iii). Let us say, instead, that assertion (v) follows immediately
from the proof of Lemma 9.8(iii). Similarly, assertion (vi) follows from the
proof of Lemma 9.8(iv).

Assertion (vii) follows directly from Remark 9.7. O

Definition 11.5. We define the partial characteristic image S(p) of a sim-
plex p in the partial characteristic disc as the span of S(p) over all partial
characteristic surfaces S. By Lemma 11.4(v,vi), S(p) is a simplex. We call
this assignment the partial characteristic mapping. Like in Definition 9.9 we
can consider also the assignment S

Definition 11.6. Let A be a generalized characteristic disc and v, 7' be two
paths connecting some points on v;w; to points on vjw; such that intersections
of v, v/ with vywy, are unique for each ¢ < k < j. We say that v, are d—close
if they intersect vpwy in points at distance at most d for each i < k < j.

The following lemma describes the possible displacements of C'AT(0)
geodesics in characteristic discs when perturbing the boundary and the end-
points.

Lemma 11.7. Let A’ C A be two generalized characteristic discs for (i, )
such that for each i < k < j we have vjw), C wvywy (and the order is
vpvwwyg) and lvgvy| < d, |wwy| < d. Then for any points © € viw;, y €
vjwj, = € viw;, ¥ € vjwj such that |vx'| < d, |yy'| < d, the CAT(0)
geodesics from x to y in A and from x’ to y' in A’ are d—close in A.
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Proof. Denote by 7,7’ the geodesics from x to y in A and from 2’ to 3 in
A’ respectively. Denote by Ny(7y) the set of points in A at distance < d from
7 in the direction parallel to vgwy (i.e. the intersection with A of the union
of translates of v by a distance at most d in the direction parallel to viwy),
and by N/(v) the intersection Ny(v) N A"

Observe that N/() is connected, since for each k the set vjw) N N/(7)
is nonempty and the intersection of N)(7) with each of the parallelograms
VwLW, 1V, 1S an intersection of two parallelograms, hence convex and
connected. We claim that Ny(7) is convex in A. To establish this, we need to
study the interior angle at vertices of ONy(7y) outside OA. The only possibility
for angle greater than 180° is at the horizontal translates of break points of
7. But since v is a CAT(0) geodesic, then each of its break points lies on
the boundary of A, and the translate, for which possibly the angle is greater
than 180°, lies outside A. Thus the claim follows. Hence (by connectedness)
N/() is convex in A’. Thus 7' C N)(v) and we are done. O

Let us prepare the setting for the next lemma. It will help us deal with the
data given by Proposition 10.2, which is, roughly speaking, a pair of surfaces
spanned on nearby pairs of geodesics. To be more precise, let oy, 7%, Ok, Tk
be simplices in the layers ¢+ < k < j between o, 7 satisfying conditions of
Definition 11.3. Moreover, assume that for each ¢ < k < j we have that
0, C 0 or 0, C 0, and 7, C T or 7, C 73. Let A, A be associated partial
characteristic discs, unique by Lemma 11.4(iv). Denote the boundary vertices
of A (resp. A) by Oy, Wy, (vesp. Ty, W), its characteristic mapping by S (resp.
S).

Lemma 11.8. There exists a simplicial generalized characteristic disc /A for
(i,7) and embeddings (thought of as inclusions, for simplicity) A ¢ A, A c A
such that the distances [Tx0r|, |[Wiiby| in A and the distances |vkvk\, |0 |
in A are all <1 fori < k < j. Moreover, [Opwg| > 1 fori <k <j.

Proof. For each @ < k < 7, let 07" be the greater among 0y, 0y and let
o™ be the smaller, let 77" be the greater among 7%, 71, and let 7" be the
smaller. Pick vertices z;, € o', yx € 77" so that the distance |rpyg| is
maximal. If possible, choose them from "™ /™" (if it is possible for zy, yx
independently, then it is possible for both of them at the same time, by
Lemma 9.5). Pick a 1-skeleton geodesic ¢, connecting x to yi intersecting
o rmin (this is possible by Corollary 8.7). If zx € o, then put S = xy,
otherw1se let 5 be the neighbor of z; on ¢;. Analogously, if y, € 7™,
then put ¢, = y, otherwise let ¢, be the neighbor vertex of y; on ¢;. Thus
3k € o™ T, € 7. Let A be the partial characteristic disc for (5), (£) for
1 < k < j. Denote its boundary vertices by vy, wy.
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The embedding, say A C A, is defined as follows. By Proposition 7.6
there exists a characteristic surface S: A — X such that S(v,W;) = 5t C
¢r. Moreover, again by Proposition 7.6, the sub-geodesic Sity of Pk hes in
S (A) Hence we can define the desired mapping as the composition S 1o5.
To check that this is an embedding it is enough to check that it preserves the
layers (Lemma 11.4(vii)) and is isometric on the layers (Lemma 11.4(iii)).

To prove the last assertion fix k and assume w.l.o.g. that o™ = 6y.
Then [Uxwk| > |Opy| — 1 > 1, as desired. O

Now we prepare the statement of our final lemma. One can view it as a
simple case of Theorem 10.1, case of X being flat.

Let A be a characteristic disc for a thick interval (i,j) for the directed
geodesics (0y), (75) between o, 7 and let 4" be its CAT'(0) diagonal, c.f. Def-
inition 9.10. Let (pk)i;i ,1 be the simplices of the Euclidean diagonal in
A (Definition 9.10). Fix i <l <m < j. If i <1 < m < j then let
()™, (Br)L_,, be directed geodesics in A from p; to p,, and from p,, to p;
respectively. If [ = ¢ then put p; = v; in the definition of (ay)j-, and p; = w;
in the definition of (8¢)._,,. If m = j then put p; = w; in the definition of
(Br)i_,, and p; = v; in the definition of (aj)f,. For all other purposes we
will put p; = vw;, p; = vjw;.

Let |JA be the subcomplex of A which is the span of the union of
conv{ay, B} over all I < k < m. Note that UA is a simplicial general-
ized characteristic disc. Denote the vertices of its boundary loop by (9x) and
(10y,). Denote by 4 the CAT(0) geodesic joining in | J A the barycenters of p,
and py, (which lie in in |JA).

Lemma 11.9. o/ restricted to Al and 4 are 5—close in Al

Proof. We denote by | J A the generalized characteristic disc obtained from
U A by removing the following triangles: For any boundary vertex of defect 1
in the layers # [, m, say 0, we cut off a triangle along the segment 0510y 1.
For any boundary vertex of defect 2 (which is possible in the layers [, m), say
Uy, we cut off a triangle along the segment joining v;,1 to the barycenter of
gy

We claim that |JA, is convex in A (treated as CAT(0) spaces). This
means that at all vertices of @) A, outside A, the interior angle of | J A
is at most 180°. We skip the proof, which is an easy consequence of Lemma
10.6.

Let 4 be the CAT(0) geodesic in |J A, joining the barycenter & of py
with the barycenter §j of p,, (observe that &4 € JA). Since [JAq C A is
convex, 7o agrees with the CAT(0) geodesic in A joining z, 9.
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Now we apply Lemma 11.7 to A'|]* C A|™ (c.f. Definition 9.10 for the
definition of A’), and geodesics 4y in A[* and ' restricted to A’|*. Observe
that endpoints z, ¢y of 4y are at distance at most % from v Nvwy, v N VW,
by the definition of p;, p,,. Hence, by Lemma 11.7, we have that 4 is %fclose
to 7' restricted to A[".

Now observe that since | J A, is also convex in |J A, we have 4y = 4 and
we are done. 0J

Finally, we can proceed with the following.

Proof of Theorem 10.1. First suppose that the layer k for (oy), (1) is
thin. Then, by Proposition 10.2(i), 6% contains or is contained in o and 7%
contains or is contained in 7. Hence the thickness of the layer k for (6;), (7;)
is at most 3 and thus o5, C Bl(gk) or 7, C Bl(gk), hence \Sk,5k| < 1.

Now suppose that the layer k for (o;),(7) is thick and suppose it is
contained in a thick interval (i, j) with a characteristic disc A. Put p; = v;w;
it | <14 and p,, = vjw; if m > 5. We will use the notation introduced before
Lemma 11.9. First suppose that the layer k for (), (7) is thin. Then, by
Proposition 10.2(ii), the maximal distance between vertices in S(aj) and
S(Bk), hence (Lemma 9.8(iii)) in oy and [ is at most 3. Since 4 N v wy, lies
in conv{ay, B}, Lemma 11.9 implies that «' N viwy is at distance at most %
from conv{ag, Ox}. Hence ay, C Bi(px) or B C Bi(pg). Thus 5k,5k are at
distance at most 1.

Now suppose that the layer k for (&), () is thick. Let A be the charac-
teristic disc for the thick interval (z, ;) containing k for (&), (). If the layer
k for (ay), (6:) (between py, py, in A) is thin, then the thickness of the layer
k for (&), (%) is at most 3, by Proposition 10.2(ii). Hence &, C By (0y) or
T C Bl(gk). By Lemma 11.9 we have |pg, o | < 1 and |pg, Bk| < 1, hence
altogether |0y, 0| < 2.

So suppose that the layer k for (a;),(3;) in A is thick, let i,j be the
thick interval for (ay), (5;) containing k and let A be the corresponding char-

A~

acteristic disc. Observe that A = UAB . Let 4,40 be the maximum of 7,17

and 7., be the minimum of j,} Obviously tmaee < k < Jmin. Assume
tmaz + 1 < Jmin — 1, in the case of equality the argument is similar and we
omit it.

By Proposition 10.2(ii) we can apply Lemma 11.8 to A and A restricted
t0 (4maz + 1, Jmin — 1). Denote by A the simplicial generalized characteristic
disc for (4maz + 1, jmin — 1) guaranteed by Lemma 11.8. Denote by A the
generalized characteristic disc obtained from A by removing horizontal (the
direction of v,w;) %fneighborhood of the boundary, which is allowed since
[ow| > 1 by Lemma 11.8. Let A’ be the modified characteristic in A and 3/
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the CAT(0) diagonal of A (c.f. Definition 9.10). Define a generalized charac-
teristic disc A/ C U A and a CAT (0) geodesic 4’ in A’ in the following way.
For each [ <t < m denote by v, w, points on 0w, at distance % from vy, wy,
respectively, if 0, # w;. Otherwise, put 0; = 0, w; = w;. Let A’ be the gener-
alized characteristic disc enclosed by the loop v;...0,,w;, ... w;0;. Let 4" be
the C'AT(0) geodesic in A’ joining 9] = ] and ¢/, = 1/, . By Lemma 11.8 (ap-
o A
with distances |,0]|, [@,w;| in A’, and distances |5}, [@,@}] in A’ all at most
1 fOT immar + 1 <t < Jonin — 1.
=/

: : L,
Now we will choose a special point z € v; . w; ;. W.lLo.g. assume

. _ ~ ~ ~ o — . — —
that i,q, = 4, hence |0;,,,,+1Wi,uo+1| = 2. Choose any T in o) w, .,
. ) e : . - iy
at/dlstanc/e < 1 from %/, Wth}} is poslmble, since [7; 07 4| < 1 and
w; ;| < 1. Since [o; Wi | = 1, T is also at distance at
most 1 from 4’. Choose 7 in 7/, _, in an analogous way.
Jm 1

—/
zn_lemin

By this construction the endpoints of 4" and 4 restricted to (tmaz +
1, jmin — 1) are at distance at most 1 from Z,7 in A’ f:’u’;j&, ! Zr’za’;ﬂ, re-
spectively. Thus, using twice Lemma 11.7, we get that 4’ and 4’ restricted

t0 (imaz + 1, min — 1) are 1-close to the C'AT(0) geodesic Zy in A (in
AfJmin A i;’;a’;ﬂ respectively).
By Lemma 11.9, 4" and 4 are %fclose in A|*. By Lemma 11.7, 4" and ¥

are %fclose in AH . Putting those four estimates together we get that dy,

are at distance at most 3, as desired. 0

plied to restricted A and A) we have inclusions of A into A’ \Z:

We end this section by indicating, how Theorem 10.1 can be promoted
to Theorem B, with a reasonable constant C'. The difference in statements
comes from substituting d;, d,, with = € ¢;, y € §,, such that |zy| = m—1. As
a first step, we check that Proposition 10.2 implies that the directed geodesics
between x and y lie near the union of characteristic images of characteristic
discs for (o%), (7). This follows from the fact that directed geodesics in
systolic complexes satisfy the so called fellow traveler property with a good
constant, see JanuszkiewiczSwiatkowski [19, Sections 11,12]. The second
step is to reprove Lemma 11.8 allowing ; and &) (and similarly 73 and 7)
to be farther apart, at distance bounded by the above fellow traveler constant.
Then some minor changes in the proof of Theorem 10.1 yield Theorem B.

We will give a different complete proof of Theorem B (though with a
worse constant) in the next section.
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12 Characteristic discs spanned on Euclidean
geodesics

In this section we prove the following crucial proposition, which, roughly
speaking, says that in a characteristic disc spanned on a Euclidean geodesic
and an arbitrary other geodesic, the boundary segment corresponding to the
Euclidean geodesic is coarsely a C AT'(0) geodesic. We introduce the following
notation, which will be fixed for the whole section.

Let 0,7 be simplices in a systolic complex X satisfying as before o C
Sn(7), T C Sp(0) and suppose that (pi)i_o, (rr)i_, are 1-skeleton geodesics
with endpoints in ¢ and 7 such that r € d, where (0x)7_, is the Euclidean
geodesic between o and 7. Let 0 < 7, < j, < m be a thick interval for
(pr), (rg) and let A, S, be the corresponding characteristic disc and map-
ping. Let v,, be the CAT(0) geodesic in A, joining the barycenters of the
unique edges in the layers i,,, jpr-

Proposition 12.1. v, is 97-close to the boundary path Sp_rl((rk)).

This proposition has fundamental consequences. One of them is Theorem
C, which says roughly this: in a ”Euclidean geodesic triangle”, the distance
between the midpoints of two sides is, up to an additive constant, smaller
than half of the length of the third side. We study this in the next section.

The second consequence of Proposition 12.1 is an alternative proof of the
following.

Theorem 12.2 (Theorem B). Let 0,7 be simplices of a systolic complex
X, such that for some natural n we have o C S, (1), 7 C Sy(0). Let (0)}_,
be the Euclidean geodesic between o and 7. Take some 0 < | < m < n and let
(rk)ie, be a 1-skeleton geodesic such that v, € & for 1 < k < m. Consider
the simplices 51 = rl,5~1+1,...,5~m = 1y of the Fuclidean geodesic between
vertices r; and r,,. Then for each | < k < m we have |5k,5k| < C, where C
18 a universal constant.

Proof. Extend (ry)}", to a 1-skeleton geodesic (ry)}_, between o, T so that
T, € O (this is possible by Lemma 9.15(i)). Let (7)}~, be any 1-skeleton
geodesic between r; and r,, such that r, € Sk Put additionally 7, = ry
for 0 < k <!l and for m < kK < n. Let A,z be the characteristic disc for
some thick interval for (74)7_g, (1)}, and let v,z be the CAT(0) geodesic
joining the barycenters of its outermost edges. Let S, be the corresponding
characteristic mapping.

Notice that A, is also a characteristic disc for (rg)7,, (7x)}, between r,
and r,,. Applying twice Proposition 12.1 we obtain that v, is 97—close to
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both S;:'((r)) and S;;'((7)). This proves that for all I < k < m we have

|ref| < 194, hence [0y, 0| < 194. Thus any C' > 194 satisfies the assertion
of the theorem. O

The proof of Proposition 12.1 is rather technical. This is the reason
we decided to present the straightforward proof of Theorem 10.1 (the weak
version of Theorem B) via Proposition 10.2. Before we get into technical
details of the proof, split into various lemmas, we present an outline, which
hopefully helps to keep track of the main ideas.

Outline of the proof of Proposition 12.1. We are dealing with configu-
rations of four geodesics between o and 7: the directed geodesics, which we
denote by (ok)}_q, (Tk)7—y, @s in the previous sections, (r)i_,, which goes
along the Euclidean geodesic 0, and the fourth arbitrary 1-skeleton geodesic
(pr)i_o- For the layer k thick (for (oy), (7)) we have that d; = S(px), where
pr is the simplex of the Fuclidean diagonal in appropriate characteristic disc
A for (o), (7). Hence we need to find out, what is the possible position
of (pr) wr.t. S(A). It turns out that in each layer there are 1-skeleton
geodesics between simplices oy, 7, and pg, which form a very thin triangle
(Lemma 12.3). The intersection with S(A) of the center simplex of this
triangle will be later denoted by .

In Lemma 12.4 we study, how do X, vary with k. Assume for simplicity
that py stay away from S(A). Then it turns out that first (i.e. for small k)
X, follow S(wg), next the barycenters of X, lie in the characteristic image
of a vertical line in A and last Y, follow S(v;). The CAT(0) diagonal 4" of
A crosses this line at most once. Thus we can divide each ”thick” interval
(an interval with all layers thick, in opposition to the thick interval with
thin endpoint layers) for (o} ), (75) into three subintervals: the ”initial” one,
for which x, = S7!(x;) is far to the right from p; or near w;, € 9A, the
"middle” one, for which yj is near pg, and the "final” one, for which y
is far to the left from p; or near vy € JA, see Lemma 12.8. Moreover, in
the "initial” (resp. "final”) interval we can distinguish a ”pre-initial” (resp.
"post-final”) interval in which +/ stays away from wj, € OA’ (resp. v}, € OA'),
where A’ is the modified characteristic disc. This distinction is done in the
main body of the proof of Proposition 12.1. The vertices Spj,l (ri) in A,
for k£ in one of these intervals, are positioned as follows. The vertices of
the "middle” interval together with the vertices of the other ones outside
the ”pre-initial” and ”post-final” intervals form a coarse vertical line (this
is a consequence of Lemma 12.9), while the vertices of the ”pre-initial” and
" post-final” intervals form also coarse C AT (0) geodesics, fortunately forming
with the coarse vertical line angles > 180° at the endpoints. This proves
Proposition 12.1 in the simple case of a single ”thick” interval for (o), (7%)-
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In the complex case, the question is, how may the various ”thick” inter-
vals and thin layers for (o), (1) alternate. We define roughly the following
notions. A ”thin” interval is an interval of not very thick layers. A ”proper
thin” interval is a "thin” interval with thin layers at the beginning and at
the end. A ”very thick” interval is an interval containing a layer that is very
thick. In Lemma 12.11 we prove that the vertices S, (ry), for k in a ”thin”
interval, form a coarse vertical line. In Corollary 12.10 we prove that if at
the beginning of a thin layer there is an adjoined ”thick” interval, then this
"thick” interval has the "final” subinterval constructed above ”thin”. Simi-
larly, if at the end of a thin layer there is an adjoined ”thick” interval, then
this thick interval has the ”initial” subinterval ”thin”. The last piece of the
puzzle is an assertion in Lemma 12.8, that for a ”very thick” interval, either
its "initial” or "final” subinterval is non-"thin”.

The way to put these pieces together is the following. We take a max-
imal ”"proper thin” interval. The "very thick” interval adjoined at the be-
ginning of this "proper thin” interval must have either the ”initial” or the
"final” subinterval non-"thin” (Lemma 12.8), but the possibility of the ”fi-
nal” subinterval non-"thin” is excluded (Corollary 12.10). Thus its ”initial”
subinterval is non-"thin” and this excludes the possibility that some thin
layer (hence any layer) is adjoined at the beginning of this ”very thick” in-
terval (Corollary 12.10). We can apply analogous considerations to the ”very
thick” interval adjoined at the end of the ”proper thin” interval. Altogether,
we have the following configuration: the ”proper thin” interval, with a ”very
thick” interval with "thin” ”final” subinterval adjoined at the beginning, and
with a ”very thick” interval with ”thin” ”initial” subinterval adjoined at the
end. Moreover, in the first of the "very thick” intervals we distinguish the
”pre-initial” interval and in the second one we distinguish the ”post-final”
interval. The vertices 81;1 (rg), for k outside the ”pre-initial” and ”post-final”
intervals, form a coarse vertical line (Lemma 12.9 and Lemma 12.11), and
the ones for k£ in the ”pre-initial” and ”post-final” intervals form also coarse
CAT(0) geodesics forming with the coarse vertical line angles > 180° at the
endpoints. This ends the outline of the proof of Proposition 12.1.

The following lemma treats configurations of three vertices in a layer.
Denote the layers between o, 7 by Ly.

Lemma 12.3. Suppose p, s,t are three vertices in L. Then either there ex-
1sts a vertex such that there are 1-skeleton geodesics ps, pt, st passing through
this vertex or there exists a triangle (i.e. a 2-simplex) such that there are
1—skeleton geodesics ps, pt, st passing through the edges of this triangle.

Proof. Let p' be a vertex farthest from p lying both on some 1-skeleton
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geodesic ps and some 1-skeleton geodesic pt. Let s’ be a vertex farthest from
s lying both on some 1-skeleton geodesic sp’ and some 1-skeleton geodesic
st. Finally let ¢’ be a vertex farthest from ¢ lying both on some 1-skeleton
geodesic tp’ and some 1-skeleton geodesic ts’. If two of the vertices p', s', ¢
coincide, then all three coincide and the lemma follows immediately. Suppose
now that those three vertices are distinct.

From the choice of p’, ¢, ¢’ it follows that any loop I' obtained by concate-
nating some 1-skeleton geodesics p's’, s't’,t'p’ is embedded in L. Since Ly
is convex (Remark 8.2), it is contractible (see remarks after Definition 2.4),
hence I' is contractible in Lj (we could also invoke Lemma 8.4). Consider
a surface T: D — Lj of minimal area spanned on such a geodesic triangle
[' (we allow the geodesics to vary). By minimality of area the defects at
interior vertices of D and at interior vertices of the boundary geodesics are
non-positive. Since by Gauss-Bonnet Lemma 7.2 the total sum of defects
equals 6, we get that all mentioned vertices have defects 0 and the vertices
of the geodesic triangle D have defect 2. Hence D is a subcomplex of E4
which is a Euclidean equilateral triangle. Denote the length of the side of
this triangle by d > 0. If d > 2 then let u be the vertex in D such that
T(u) = p', let uy,us be its neighbors in D, let uz be the common neighbor
of uy,us in D different from u and let uy be the neighbor of w; different
from previously mentioned vertices. By Lemma 8.6 applied to the trapezoid
T(uw)T (u1)T (ug)T (us)T (uy) either we have an edge T'(u)T (ug) or T'(u2)T (uy).
In the first case the vertex T'(u3) turns out to lie on some 1-skeleton geodesics
sp, tp contradicting the choice of p’. In the second case the vertex T'(uy) turns
out to lie some 1-skeleton geodesics sp, tp, also giving a contradiction. Hence
d =1 and the lemma follows. U

In the next lemma we analyze the possible position of (py) w.r.t. the
partial characteristic image S(A) of a partial characteristic disc A for (i, j)
for (o1), (7). This means that we assume that the layers i < k < j are thick,
c.f. Definition 11.3. In the language of the outline of the proof of Proposition
12.1 this is the ”thick” interval. The boundary vertices of A are, as always,
denoted by (vg), (wg).

For each i < k < jlet sp € oy, € T be chosen as in the previous sections
to maximize the distance |syti|. Moreover, among those, choose sy, t; to
maximize the distances |pgsg|, |prtr| (it is possible to do this independently
by Lemma 9.5). For each k perform in Lj the construction of s}, t,,p) asin
the proof of Lemma 12.3 and denote X, = s}t;,, which is an edge or a vertex
in some 1-skeleton geodesic sity. Denote xp = S7'(X;). Observe that xj
does not depend on the choice of si, tx, s, ), D), since it is determined by
the distances [sktr|, |skpkl, [tepr|.- Lemmas 12.4-12.8 are devoted to studying
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the position of y, w.r.t. py (the simplices of the Euclidean diagonal).

The paths (vg), (wg) are the boundary components of A.

Finally, note that in the lemma below we actually do not have to assume
that (oy), (1) are directed geodesics.

Lemma 12.4. In the above setting, assume that for all i < k < j we have
Dk 7# P, (this does not depend on the choice of p.). Then for i <k < j,

(1) if Xk, Xk+1 are both edges, then they both intersect the same boundary
component,

(i) if one of Xk, Xk+1, Say Xk, s an edge, and the second is a vertex, then
either X, Xk+1 span a simplex, or they intersect the same boundary compo-
nent,

(1) if Xk, Xx+1 are both wvertices, then they both lie on the same boundary
component.

If we remove the assumption that py # pj, then in case (i) we only have that
Xk C S1(Xk+1) and xr1 C S1(xk), case (ii) remains unchanged, and in case
(14i) we only have that xy, Xxk+1 Span an edge.

Proof. We first prove the last assertion. We need to prove (up to interchang-
ing k with k£ + 1) that for a vertex uy € xj either there exists a neighbor
of up in xgy1, OF Xk, Xx+1 intersect the same boundary component. Suppose
the first part of this alternative does not hold. Then, up to interchanging vy
with wg, we have the following configuration (which it will take some time
to describe, since we need to name all the vertices that come into play):

We have ug # wg, and we denote by wu; the vertex following uy on 1—
skeleton geodesic in A from ug to wg, and by us the vertex following u; if
uy # wg. In the layer k£ + 1 we denote by z; # w1 the vertex in the residue
of upu; and by 29 the vertex following z; on 1-skeleton geodesic zwy.1. The
configuration is the following: Y11 lies on the 1-skeleton geodesic zowygq.

Fix some 1-skeleton geodesics s; ... s;, ¢ ... ¢, p;...p; forl =k, k+1. Con-
sider a partial characteristic surface S: A — X such that for [ = k. k+ 1 we
have that S(v;w;) (where vw; is the 1-skeleton geodesic in A) contains s; . . . s}
and t; ...t (this is possible by Proposition 7.6). Then S(z3) € sp11 ... 5,41 C
Skl - - - Sp1Phsn - - - D1 (Where possibly s, = pj. ;). By Proposition 7.6
applied to the partial characteristic surface for pg, pri1, Sk, Skr1 containing
Sk ...sy, there is a neighbor of S(z2) on si...s.pk...pr (where possibly
s, = p,). Denote this neighbor by Z. Since S(up) € X, we have that
T # S(u1), T # S(uz). Moreover, since the vertices in the 1-skeleton geodesic
vkuo are not neighbors of zy, we have by Lemma 11.4(iii) that T ¢ s¢. .. s).
So T € pj...pr. But by Lemma 2.8 the vertices T, S(uy), together with
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S(ug), if defined, span a simplex. On the other hand, S(u;), and S(us) if de-
fined, lie on the 1-skeleton geodesic py, ... p}t) . . . tx passing through Z. Since
T, S(uy), and S(usg), if defined, are different vertices, this is only possible if
T =, S(ug) = sy, S(uy) =t and u; = wy, i.e. ug is not defined. Then x4 is
an edge, xr+1 is a vertex, and they intersect the same boundary component,
which is the second possibility of the alternative. Thus we have proved the
last assertion of the lemma. In particular, we have proved assertion (ii).

Now we will be proving assertions (i,iii) and we may already assume that
pr # pj for i <k < j.

First we prove (i), by contradiction. Suppose that x, xx+1 are both edges,
and w.l.o.g. suppose that x; does not intersect the boundary. This implies
that s}, # sg, 1), # ti. Let Z be a vertex in the projection (c.f. Definition 2.9)
of the triangle st;p) onto the layer Lj,;. By Lemma 10.5 applied thrice
we get that Z lies on 1-skeleton geodesics between all pairs of vertices from
{Sk+1:tkt1, Dr+1}, thus X, is a vertex. Contradiction.

Now we prove (iii), by contradiction. Suppose that x, xx+1 are both
vertices and one of them is non-boundary. Then in the layers k, k + 1 of A
there are vertices, which are common neighbors of i, X1, denote them by
u (in the layer k) and by z (in the layer k + 1). Moreover, either y, # vg
and Xgi1 # Ugt1, OF Xg # Wi and Xge1 7 Wiy1. Assume w.lo.g that the
latter holds. Consider the partial characteristic disc A, for pg, pr+1, te, tes1
(we are allowed to do this, since |prti| = |peXi| + [Xite| > 2 and similarly
|Pr+1tr+1| > 2) and the corresponding partial characteristic mapping S Let
 be the common neighbor of S,;" (X;), Sy (Xes1) in Ay lying on Sy;' (piXs)
or 8y (Prs1Xpy1). Assume, w.lo.g., that Sy(zr) C Ly. Since vertices in
Spi(x),S(u) C Ly, are neighbors of X € Li11, we have by Lemma 2.8 that
Spi(z) and S(u) span a simplex. On the other hand, X, lies by definition on
some 1-skeleton geodesic ppsi. By Proposition 7.6, its segments px;, and
XSk intersect Sp(x) and S(u), respectively (outside ). Hence X, separates
vertices from Sy (x) and S(u) on a 1-skeleton geodesic pys;. Contradiction.
Thus we have proved assertion (iii) and hence the whole lemma. O

Let us introduce the following language.

Definition 12.5. We will refer to the horizontal coordinates of points in var-
ious characteristic discs. Namely, we view a characteristic disc as a CAT(0)
subspace of E2. There we consider cartesian coordinates such that the layers
are contained in horizontal lines. We also specify that the horizontal coordi-
nate increases (from the left to the right) in the direction from vy to wy. We
denote the horizontal coordinate of a point z by 2*. If A is a vertical line in
A, then its horizontal coordinate is denoted by A*.
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We will need the following technical lemma, which helps to compare the
horizontal coordinates of the preimages of vertices of X in various character-
istic discs.

Lemma 12.6. Suppose that A', A? are partial characteristic discs (and S*, S?
resp. characteristic mappings) for the interval (i,j) for some sequences of
simplices (o}.), (1), (0%), (7) in the layers Ly between o, 7. Suppose (pi)h—_;» (Pk)ae;
are 1-skeleton geodesics such that fori < k < j we have that py, pr € Li and,

for 1 =1,2, we have py, pr, € S (AY) but (§)"H(pr) # (SH)"1(pr). Then, if we
vary i < k < j, the differences within ((S*)™ (px))* and within ((S%)~!(pr))®
agree.

Proof. Apply Lemma 11.4(iii). O
The following notions will help us formulate neatly the upcoming lemma.
Definition 12.7. Let A be a simplicial generalized characteristic disc for

(i,7) such that |vpwg| > 2 for i < k < j. Let x, p be some simplices in the
layer k of A, and ¢ € Z,. We say that y is

O-left if either v, € x or x is a neighbor vertex of vg, which has defect 1 in
case k # i, or defect 2 in case k =1 or k = j,

0-right if either wy € x or x is a neighbor vertex of wy, which has defect 1
in case k # 1, j or defect 2 in case k =17 or k = j,

c—left from p if |x, p| > ¢ and x lies on vyp,
c—right from p if |x, p| > ¢ and x lies on pwy.

In all that follows, ¢ is a positive integer. When all the pieces of the
proof of Proposition 12.1 are put together, we assign ¢ = 5. But before this

happens, we use the variable ¢, in order to help keeping track of the role of
the constant in the various lemmas.

Lemma 12.8. Assume that for some i < j and each i < k < j the layer k
is thick for (o), (1), and |pg,0x| > ¢+ 4. Then there exist i <1 <m < j
such that

(i) for i < k <l we have that xy is O-right or c—right from py,
(i1) among | < k < m the differences within (S, (r))* are < c+1,
(i1i) for m < k < j we have that xy is 0-left or c—left from py.

Moreover, if the maximal thickness of the layers (for (ox), (1)) from i to j
15 at least 2c + 4 and the layers v — 1,7 + 1 are thin, then there are [,m as
above such that either m < j and v§,, — vy, ., > ¢ (in the characteristic disc
for the thick interval (i — 1,5+ 1)) orl > i and wf | —w?_ | > c.

56



The ranges for & in (i),(ii),(iii), define the "initial” subinterval, the ”mid-
dle” subinterval and the ”final” subinterval of a "thick” interval discussed in
the outline of the proof of Proposition 12.1. The last assertion, in the lan-
guage of the outline, states that a ”very thick” interval has either its ”initial”
or "final” subinterval non-"thin”.

Proof. First we give the proof of (i)—(iii) under an additional assumption
that for all ¢ < k < j we have py, # p) (recall that this does not depend on
the choice of p)). The outline of the proof with this assumption was already
given at the beginning of the section.

To start, observe that from Lemma 12.4 and Lemma 9.16(i,ii) we get
immediately the following.

Corollary. There exist ¢ <" < m’ < j such that
(1) for i < k < I’ the simplex xj is 0-right,
(2) for I < k < m/ the simplices x; are alternatingly edges and vertices
and their barycenters lie on a straight vertical line A in A; moreover for
I < k < m' the simplices x, do not meet vy, wy,
(3) for m’ < k < j the simplex xy, is 0-left.

Recall that the restriction to A (the partial characteristic disc for (i, j)
for (oy), (7)) of the CAT(0) diagonal ' (c.f. Definition 9.10) in the charac-
teristic disc (Definition 9.4) containing A crosses transversally each vertical
line in A, by Lemma 9.17 (since (j +1) — (i — 1) > 2). Let I’ <1 < m/ be
maximal satisfying (7 N vpwg)® < A — ¢ — % for I' < k < [. Similarly, let
I < m < m' be minimal satisfying (7 Nvgwg)* > A* +c+% form < k <m'.

We prove that assertion (i) is satisfied with [ as above. First consider
i < k < !'. Then assertion (i) follows from assertion (1) of the corollary.
Now suppose that I’ < k < [. Then, by the definitions of [ and py, if ps
is a vertex, then py < \* —c — %, and if p, is an edge then the horizontal
coordinates of its vertices are at most \* — ¢. Moreover, in case the latter
inequality is an equality, we have that yj is a vertex. In all cases xy lies
to the right of p, and the distance between them is at least ¢, as desired.
Analogously, assertion (iii) holds with m as above.

Now we prove assertion (ii). Consider [ < k < m. Ifl = m =1 or
[ = m = m/, then (ii) follows immediately. Otherwise, by the definition of
m, [ we have (7 Now;)* > A — ¢ — 3 and (v Nvpwy,)* < A" + ¢+ 3, hence
A —c— 1 < (v Nugwy)™ < A" 4 ¢+ 5. By the definition of py, via similar
considerations as in the previous paragraph, we have that diam(p, U xx) <
¢+ 1 and |pg, x| < ¢. By the former inequality we have that pj are at
distance at most ¢ + 1 from 7. (Record the latter one, i.e. |pg, x| < ¢,
which we will need later in the proof.)
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We would like to compute the differences within (S, (p},))*, when we vary
I <k < m. These differences are equal to the differences within (S,;'(p},))”
in Ay, where S, (resp. A,) is the partial characteristic mapping (resp.
partial characteristic disc) for (pg)i,, (sk)i,. To see this, it is enough to
apply Lemma 12.6 with (p}), (px) in place of (px), (px), where we use our
additional assumption py # pj.

We claim that (S,,'(p,))* vary at most by & for I < k < m. Indeed,
by our additional assumption and assertion (2) of the corollary we have, for
[ < k < m, that py # p}, Sk # S}, tr # t. Thus we can apply Lemma
12.4 with (sg), (px), (tx) in place of (ok), (7k), (px) to obtain, for I < k < m,
that the barycenters of S;.!(p}s}) lie on a common vertical line in Ap,. This
justifies the claim.

Thus (S, (p))" vary at most by 3, for I <k < m. Let u be the greater
among (at most two) values attained by (S,,'(p},))*. By the previous esti-
mates we have that (S,,"(r))* < g+ ¢+ 1. On the other hand, we have
1 < (S, (r))*. Hence we obtain that the differences within (S,,!(ry))* are

< c+ 1, as desired.

Now we must remove the additional assumption that for all ¢ < k < j
we have py # p,.. We have now only the last assertion of Lemma 12.4 at our
disposal.

Let i <3 < j1 <ig < Jo < ... <ig < jg <J, where j, < ipyq — 1 for
1 < h < q, be such that exactly for 7, < k < j,, our additional assumption is
satisfied. For all other ¢ < k < j, in particular, for k = i, — 1, j, + 1 (where
1 < h < q), except possibly for i; — 1 if it equals ¢ — 1, and j, + 1 if it equals
j + 1, we have |xg, pr| > |pr,0x] — 1 > ¢+ 3. Thus for k = iy, ji, except
possibly for 4 if it equals ¢ and for j, if it equals j, we have, by Lemma 9.11
and by the last assertion of Lemma 12.4, that |xx, px| > ¢+ 1. So for all k
not contained in the (open) intervals (ip, j5) we have |xx, pr| > ¢+ 1.

Put for a moment j, = 4, 4,41 = j. By the previous paragraph, by
Lemma 9.11 and by the last assertion of Lemma 12.4, for any 0 < h < ¢ and
all j, < k <y, either pg lies always between y; and v, or pg lies always
between x, and wy.

Now let us analyze what happens for a fixed 1 < h < q for i, < k < jp.
Apply our argument under the additional assumption py = pj, to i =iy, j =
Jn. Observe that if |x;,,pi,| > ¢+ 1 (which holds unless possibly h = 1
and ¢; = ¢) and y;, lies between p;, and v;,, then we have that | = m = i,
(otherwise we have recorded that |pg, xx| < ¢ for I < k < m). Similarly,
if |xj,,pjn] = ¢+ 1 (which holds unless possibly h = ¢ and j, = j) and
X;, lies between p;, and wj,, then [ = m = j,. In particular, those two
situations cannot happen simultaneously, and if any of them happens, then
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either assertion (i) or assertion (iii) is valid for all i), < k < jp,.

Summarizing, there can be at most one h such that [ # j, and m # i,.
If there is no such h, then either assertion (i) or assertion (iii) holds for all
1t < k < 7 and we are done. If not, define [,m as in the previous argument
for i =i, 7 = jn. They satisfy assertions (i,ii,iii), as required.

Finally, we prove the last assertion. Pick A, [, m as above. Let 4’ be the
CAT(0) diagonal of the characteristic disc A for (i — 1,7 + 1). Since the
maximal thickness for (oy), (74) of the layers from i to j is > 2c¢+ 4, then by
Lemma 9.16(i,ii), we have that v7,; —wf ; > 2c¢ + 1. Thus we can assume
w.lo.g. that A" —w? ; > ¢+ 3. Thus A" — (v Nvw;)” > ¢+ 5 and [ > i.

1

Observe that A goes through the barycenter of x;, hence wf ; > A* — 5 so

wi_, —wi_; > ¢, as desired. O

The next lemma in particular guarantees that in a ”"thick” interval, the
vertices ;' (ry) for k in the ”final” subinterval outside the ” post-final” subin-
terval form a coarse vertical line. We consider it, together with the previous
lemma, the heart of the proof of Proposition 12.1. Below we put A to be
the characteristic disc for the thick interval containing i, j for (o), (7%). Let
Uk, W be its boundary vertices, etc.

Lemma 12.9. Suppose that for some i < j and for all i < k < j the layer
k is thick for (ok), (Tx), [Pk, 0k| > c+2 > 7 and xi is either O-left or c—left
from pp. If (' Nvjpw;a)" = vf,, + %, then vl —vf <c.

Proof. By contradiction. Roughly, the idea is the following. If v7, is
relatively large w.r.t. o7, this means that the directed geodesic (oy) performs
in the layers 4,...,7 an unexpected turn towards (7;). On the other hand,
there is plenty of room in the partial characteristic disc A, for (pg), (7%), since
pi are far away from Jy, hence (as we will see) away from o;. By assumption
on xy the corresponding characteristic image Sp:(A,:) almost passes through
or. We can then see through A, that (o3) actually goes vertically for all
consecutive ¢ < k < j. This yields a contradiction.

Formally, suppose v ; — vf > c¢. By increasing i, if necessary, we may
assume that ¢ is maximal < j satisfying v, ; — vi > ¢. Hence vj , —vf = c.

We claim that for all ¢ < k < j we have that x; is 0-left. Indeed, by
maximality of ¢ we have (7' Nvj41w;j41)" —vf < ¢+3. By Lemma 9.17 we have
that (v Nvgwi)® — (v Nvjwjg)® < 0. Putting these inequalities together
implies that |vg, px| < ¢. Hence if xy is c-left from py, then it equals vy,
thus it is also 0-left, as required. Thus we have proved the claim. Moreover,
vk, p| < ¢ together with |pg,dx| > ¢+ 2 gives also that |py,ox] > 2 and

pr # ), for i <k <j.
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Denote hy, = S7'(t}) € x&. By the claim we have |vihi| < 1. Let A, be
the characteristic disc for the thick interval (i, jp) for (px), (tx) containing
i <k < jand let S, be the corresponding characteristic mapping (we have
\prte| = |prty| + |thte] = 2, since xj is O-left). Denote 0 = Sz:tl(pk),ﬁ)k =
Sy (tr). Let hy, = S (t,,). Since for i < k < j we have |t4t},| > 1, by Lemma
12.6 the differences within h? (coordinates in A) and within A (coordinates
in A,;) agree.

Now observe that ¢ spans a simplex with o, by the claim, Lemma 10.3
and Lemma 9.8(iii,iv), for all i < k < j. Denote ¢ = span{t}, ;}. Denote by
®i = ¢, Pi11, ... the simplices of the directed geodesic from ¢ to 7. Denote
by Bk the simplices of the directed geodesic from t; to 7. By Lemma 2.10 we
have By, C ¢ D oy for k — i even, and Fy D ¢ C o for k — i odd. Denote
by oy the simplices of the directed geodesic in A, from h; to Vjp Wiy, -

First we prove that for all i < k < j we have 0y ¢ . For k = i this
follows from p; # t.. For k > i we argue by contradiction. Let i < ko < j
be minimal such that oy, € oy,. Observe that A, is actually a partial
characteristic disc for (py), (1) and (7%) is the directed geodesic from 7 to
0. Hence, similarly as in Lemma 10.6, for i < k < kg the simplices oy are
alternatingly vertices and edges, with barycenters on a common vertical line.
Moreover, by minimality of &y, we have that oy, is an edge. By Lemma 10.5
and Lemma 2.10 (applied alternatingly for consecutive layers exactly as in
the proof of Proposition 10.2), we have that (5, C Sy(ay) for k — i even and
Spt(ag) C B for k —i odd, for all i < k < k. In particular, since «; is a
vertex and oy, is an edge, we have that py, € Spr(ar,) C Bry D Py C Ok
But this contradicts |py,, ox,| > 2. Hence we proved that for all : < k < j
we have Uy ¢ ay.

From the above proof we also get that for all i < k < 5 we have B, C
Spi(ay) for k—i even and Sp(aw) C fy for k—i odd, and the simplices «ay, are
alternatingly vertices and edges, with barycenters on a common vertical line.
Since t), and oy, span a simplex, this implies that ¢} € By(Sy(ay)), hence
izk € By(ag), for i < k < j. Since the barycenters of oy lie on a common
vertical line through h;, we conclude that \ﬁf — Bi | < 2% fori <k <j,in
particular for £k = 5. But iLf — iLf = h}” —h? > c— 1%. This contradicts ¢ > 5.

O

We immediately get the following corollary, which excludes the possibility
of adjoining a non-"thin” "final” subinterval of a "thick” interval to the
beginning of a thin layer for (o), (7).

Corollary 12.10. Suppose that for some ¢ < j the layer j + 1 is thin for
(ok), (1), and for all i < k < j the layer k is thick for (o), (1), |pk, k| >
c+22>7 and xy is either O-left or c-left from py. Then vy, — v} <c.
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The next preparatory lemma takes care of the ”thin” intervals for (oy.), (7%).
Let d be a positive integer.

Lemma 12.11. Suppose that for some i < j the layers i,j for (ox), (Tx)
have thickness at most d and for all i < k < j the layer k for (oy), (1) has
thickness at most 2c + 3 and |pg, 0| > 2c + 4. Then the differences within
(S, (1)) are at most ¢+ 2d + 2.

We can also obtain an estimate independent of ¢ on the differences within
S 1(ry))*. However, we will not need it.
pr

Proof. We can define p) as usual (even for thin layers). Observe that we
have pp # P}, |pk,0k] > 2, and |pg, 76| > 2, for ¢ < k < j. Let § €
o, tr € T, realize maximal distances from pj to oy, Ty, respectively. Let
Aps, Apt, Sps, Spr denote the characteristic discs and mappings for (py), (o%)
and (pg), (Tk), respectively, for the thick intervals containing all i < k < j.
Since px # py, we have by Lemma 12.6 that the differences within (S,."(px))*,
within (S, (px))*, and within (S,* (px)) agree, if we vary k among i < k < j.

For i < k < j denote §; = 81;91(§k),tk = Sp_tl(tk). Let i < ki1 < kg < j.
By Lemma 9.16(i,ii) we have that sf — 7, > —3 and if —{f, < 5. In

particular, Sk, — sf > —% and s7 — $, 2 —%, for i < k1 < ko < j. Hence

Sky — Sk, =85 — 8 — 1215 =1 —1—2d2—2d—1§.

Analogously,
- - 1

It will be convenient for us to assume that the coordinates in Ap, Ay
agree on Sp_s1 (px) and SP’tl(pk), so that we can compare coordinates of points
in Aps and A,.. With this convention, for any i < ky, ko < j we have that
§ — i > $7 — i;? —1> —d—1. Analogously sf —¢f, < d+1. So altogether
the differences within all the 7,7, where ¢ < k < j, are at most 2d + 13.
In particular, if we denote by a the minimum over k of s7,t7 and by b the
maximum over k of s, , we get b—a < 2d + 15.

For a fixed k, since the thickness of the layer £ is at most 2c¢ + 3, we have
that |5,r%] < c+ 1 or [tpri| < ¢+ 1, hence

min{|p3r, [petel} < [prr] +c+1,

thus 7{ > a — (¢ + 1). On the other hand, by convexity of balls we have
[Pl < max{|prel, [pitel},
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hence 7§ < b. Altogether, this implies that the differences within (S, (rx))*
are

1 1
<(c+1)+ (2d+1§> +1=c+2d+2;.

O

Finally, we prove the following easy lemma, which is needed both here
and later in Section 13.

Lemma 12.12. Let A be a generalized characteristic disc for (i,7). Let ~y be
a CAT(0) geodesic in A connecting some points in v;w;, vjw;. Fori <k < j
let hy, € vpwy be some points at distance < % from v N vpwyg. Let Agpye C A
be the generalized characteristic disc for (i,j) with wy substituted with hy.
Then the CAT(0) geodesic hih; in Agyi is 1-close to the piecewise linear
boundary path hihiyy ... h;.

Proof. For i < k < jlet hj, be the points on viywy with (h})* = max{(y N
vpwg)®, b} Let Agy C A be the generalized characteristic disc for (4, j)
with wy, substituted with hj. Then 7 is also a CAT(0) geodesic in A.y. By
Lemma 11.7 applied to Ay, C Ay we have that the CAT(0) geodesic h;h;
in Agpt is %—close to v, hence 1-close to the path hh;y1 ... h;. O

Now we are ready to put together all pieces of the puzzle.

Proof of Proposition 12.1. Put ¢ = 5. For the layers k such that |pgri| <
7c 4 12 there is nothing to prove. Now suppose that for some i" < j’, where
j' =1 > 2, we have |pyry| = |pjry| = Tc+ 12 and for i/ < k < j' we have
|prri| > Te+ 13, hence |pg, 0x| > 7c+ 12. In particular, py are as far from 0y
as required in Lemma 12.9 and Corollary 12.10.

Let A, be the partial characteristic disc for (i, ;') for (pg), (1), and
let S, be the corresponding partial characteristic mapping. Denote uj, =
Sp:} (Tk)

Step 1. There exist i’ <[ < m < j' such that
(1) for i < k < I the layer k is thick for (oy), (1), every l-skeleton geodesic
PrSk intersects O, and (7 Nugwy)* < wi —% (in the appropriate characteristic
disc for (oy), (7¢), with the usual notation vy, wy, etc.),

(2) among | < k < m the differences within u§ are at most 7c + 103,
(3) for 7' > k > m the layer k is thick for (oy), (1;), every 1-skeleton geodesic
pity intersects 0y, and (7' N vgwg)® > vf + %

This is the division into the ” pre-initial” interval, the union of the central
intervals, and the "post-final” interval in the language of the outline of the
proof.
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Let us justify Step 1. First consider the simple case that there are no thin
layers for (o), (1) among the layers i < k < j'. Then Lemma 12.8 applied
to i =1, j = j gives us a pair of numbers [’, m’, which satisfies assertions
(1) and (3) of Step 1 (with I, m in place of I, m), except for the statements
on the position of 4" (we will refer to these as incomplete assertions (1),(3)).

Let [ < I’ be minimal > ¢’ such that (v Nvw;)” = wf — & (if there is no
such [, in particular, if I’ = ¢/, then we put [ = [’). Similarly, let m > m’ be
maximal < j’ such that (v N vpwy,)” = v, 4+ 1 (if there is no such m, in
particular, if m’ = j', then we put m = m’). Obviously, [, m satisfy complete
assertions (1) and (3) of Step 1. To prove that they satisfy assertion (2), we
need the following.

Claim. Among ! < k <!'—1 the differences within u} are at most ¢+ 1.
Analogously, among m’ + 1 < k < m the differences within uf are at most
c+ 1.

To justify the claim, we need to introduce some notation. Up to the
end of the proof of the claim we consider [ < k <[’ — 1. Observe that the
layers k for (py), (sx) are thick, since by incomplete assertion (1) we have
that |pgsk| > |pk,dk|. Denote by A,S (resp. A, S,s) the characteristic
disc and mapping for the thick interval containing k for (oy), (1) (resp. for
(p¢), (s:)). For each k let h;, be the vertex in 0z N psy closest to py (for some
1-skeleton geodesic pys;). By Proposition 7.6 we have that hy, € Sps(Dps).
Denote hy, = S~ (hy), hy = S,;' (7). Since by incomplete assertion (1) we
have sj, # s}, Lemma 12.6 gives that the differences within —hAf and within
iLi agree (the sign changes since (si) plays the role of the left boundary
component in S(A) and the right one in S,5(A,s)). By Lemma 12.6 applied
to Ay, and A,,, and since |ppri| = |pehi| or |prrr] = |prhe| + 1, we have
that the differences within uj, differ at most by 1 from the differences within
hi. Hence the differences within u differ at most by 1 from the differences
within —h7.

Now we can proceed with justifying the claim. By Lemma 12.9 we have
that wji_; —w/ < ¢, hence (v Nwvw;)* > wj_; — c¢. Thus, by Lemma 9.17,
we have (7 Nvpwy)® > wj;_, — ¢ for all k. This implies, by the definition of
Pk, that hf > wf_, —c— 1. On the other hand, by Lemma 9.16 we have that
wi < wj_; + 1, hence we have hf < wj;_; — 1. Thus the differences within A}
are at most ¢, hence the differences within uj are at most ¢+ 1. This justifies
the first assertion of the claim. The second one is proved analogously.

Now we can finish the proof of Step 1 in the simple case that there are
no thin layers for (oy), (1), among the layers i/ < k < j’. To prove assertion
(2), we need to compare uy, and U, for | < k; < ky < m. Assume, which
is the worst possible case, that [ < k; <! —1and m’ +1 < ky < m. By
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Lemma 12.8(ii) and by the claim we have

|U’k1 _qu‘ S |uk1 _ul/71|+§+|ul/_um/|+§+|um/+1_uk2| S
1 1
§(c+1)+§+(c+1)+§+(c+1),

which is even better then the required estimate. This ends the proof of Step
1 in the simple case.

Now consider the complex case that that there is a thin layer among the
layers ' < k < j'. Let (ly,mp) be a maximal (w.r.t. inclusion) interval, with
i" <lyp < my < 7', such that the layers ly, mg are thin for (o), (1) and for
lo < k < my the layer k has thickness at most 2c¢ + 3 (possibly lo = my).
This is the ”proper thin” interval of the outline of the proof.

First we argue that for i/ < k < Iy and mg < k < j' the layer k is
thick. Otherwise, suppose w.l.o.g. that ky is maximal < [y such that the
layer ko is thin. Then, by maximality of (ly, mg), the thick interval (ko,lo)
contains some k such that the layer k has thickness at least 2c¢ + 4. Thus
by the last assertion of Lemma 12.8 applied to ¢ = kg + 1,7 = lp — 1 we get
ko <1 < m <l so that either m <y —1 and vj — vy, > ¢, or [ > ko+1
and wf ; — wy > c. In both cases this contradicts Corollary 12.10 applied
respectively tote =m+ 1,7 =lp—1,ortoi =1—1,5 = kg + 1 with the
roles of v, w interchanged and the order on naturals inversed. Thus we have
proved that for i' < k < [y and my < k < j’ the layer k is thick for (o), (7%).

Now we can apply Lemma 12.8 to ¢ = ¢/, j = [y — 1. Denote by I';m’
the pair of numbers given by its assertion. By Corollary 12.10 we have that
vp —vp < cfor m'+1 < k < lp. Similarly, we apply Lemma 12.8 to
i =mg+ 1, j = j and denote by I”,m” the pair of numbers given by its
assertion. By Corollary 12.10 we have wj — wy, < ¢ for mg < k < [ — 1.
Hence, by Lemma 9.16(i,ii), the thickness of the layer k, for m’+1 < k <l
and for mg < k <[l'— 1, is at most ¢+ 1.

Define, similarly as before, | < I’ to be minimal > i’ such that (7' N
nw)® = wf — % (if there is no such [, in particular, if I’ = ¢’, then we put
[ =1'), in appropriate characteristic disc. Similarly, let m > m” be maximal
< j' such that (7' Nvpw,)" = v¥ + 3 (if there is no such m, in particular, if
m” = j', then we put m = m”).

For [, m as above we have that assertion (1) follows from Lemma 12.8(i)
and assertion (3) follows from Lemma 12.8(iii). As for assertion (2), assume,
which is the worst possible case, that [ < k; <!’ —1and m” +1 < ky < m.
Combining Lemma 12.11 applied tot =m'+1, j =1"—1, d = ¢+ 1 with
Lemma 12.8(ii) and with the claim above (which is also valid in this complex
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case) we get
1 1
|, — Uy | < ug, —up 4| + 2 + u — g + 2 + [y — w4

1 1
+§ + |Uﬁ/ —Uil//| +§+ |ufn//+1 —U,£2| S

1 1 1
§(c+1)+§ (c+1)—|—§+<c+2d+2§>+
1 1 1
+§+(C+1)+§+(C—|—1):7C—|—10§,

as required. Thus we have completed the proof of Step 1.
Step 2. 7, is 97—close to (ug).

For the layers i’ < k < [ define A, S, A, S,s and hy € pp C A, hy €
Ay, by = S(hi) = Sps(hy) like in Step 1 (which is possible by assertion (1)
of Step 1). Recall that the differences within ] differ at most by 1 from
the differences within —hAf. In particular, since for i < k; < ky < [ we
have hf — hi < 3 (by Lemma 9.17 and the definition of py), it follows that
up, — up, < 1%. Analogously we choose vertices hy € pi (in appropriate
characteristic disc) for m < k < j, so that |ppri| = |prhe| or |prri| =
Ipehi| + 1. Hence for m < ky < k; < j' we have ug, —ug, < 1%.

Let | < ky < m be such that ug, 18 minimal. Let « be a vertical line
segment in A, from the layer max{/—1,i'+1} to the layer min{m+1, j'—1}
at distance 2 to the left from wuy,. By assertion (2) of Step 1 and by the fact
that |pyry| > 7c+ 13 this line segment is really contained in A,,.. Let 51, B2
be CAT(0) geodesics in A, connecting w;, uj to the endpoints of a. Since
up, — uf, < 1% for /¥ < ki < ky <land m < ko < k; < j', we have for
all ¢/ < k < j' that uf > o”. Hence the region in A,, to the right of the
concatenation 313, is convex, and thus contains the C AT(0) geodesic in
A, joining u; with wjr.

We claim that /3 is (7c+ 15)—close to (uy). Indeed, if [ =4 or il —1 =4/,
then this is easy. Otherwise, let i/ < k < [ —1. Let A” C A|é,_1 be the
generalized characteristic disc for (i',{ — 1) obtained from A’|;! (the mod-
ified characteristic disc, in which +' is a CAT(0) geodesic) by substituting
wj, with wy, such that (wy)® = h} + 1. Denote 7/ restricted to the layers
from i’ to [ — 1 by +/[%"*. We have v/|;"' € A” and by assertion (1) of Step
1 we have that 7'|'" does not touch the (wj) boundary component of A’,
hence it is also in A” a CAT(0) geodesic (which does not touch wy). Let
Al C Ayl be the generalized characteristic disc for (i,1 — 1) obtained
from Aps|é,_ ! by deleting ;—horizontal neighborhood of the boundary compo-
nent corresponding to (si). Observe that there is an (orientation reversing)
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embedding €”: A" — A’ and that e”(7') is still a CAT(0) geodesic in AJ .
Moreover, e’ (hy,) = hy, so that |e”(y' N vgwy)he| < 3

Let Ay C Ayl ! be the generalized characteristic disc for (i',1 — 1)
obtained from Al by splitting along Ry, (in fact hy, is a 1-skeleton geodesic
and A, is the partial characteristic disc for (py), (ht), but we do not need
this). By Lemma 12.12 the CAT(0) geodesic hyh;_y in Ay, is 1-close to the
boundary path (izk) Now recall that there is an embedding e: Ay, — A,
such that |e(hy)ux| < 1. Let us compute the distances between the endpoints
of the image under e of the CAT(0) geodesic hihi—1 and the endpoints of 5
in A,.. The distance between e(ﬁi/) and wuy is at most 1, and the distance
between the second pair of endpoints is at most 2+ (7c+ 10%) +% by assertion
(2) of Step 1. Hence, by Lemma 11.7, we have that e(hyh_y) is (7c + 13)-
close to 3;. Recall that e(ﬁi/izl,l) is 1-close to e((izk)), which is 1-close to
(ug). Altogether, By is ((7c+ 13) + 1+ 1)—close to (u), as desired. Thus we
have justified the claim. Analogously, 3 is (7c¢ + 15)—close to (ug).

From the claim and since, by assertion (2) of Step 1, a is (7¢+ 13)—close
to (ug), it follows that the two boundary components of the convex region in
A,, to the right of B1a8;" are (7c + 15)—close. Hence the CAT(0) geodesic
upuy in Ay, is (7c + 15)—close to (u). Now consider the CAT(0) geodesic
Ypr in A, (which appears in the statement of the proposition) restricted
to the layers from ¢ to j’. Since its endpoints are at distance < 7c¢ + 12

from the endpoints of w;u; (this is because |pyry| = Tc + 12 = |p;iry|), we
get (by Lemma 11.7, we do not vary the boundary this time) that ~,, is
(14c¢ + 27)—close to ug, as desired (recall that ¢ = 5). O

13 Contracting

In this section we prove the following consequence of Proposition 12.1, which
summarizes the contracting properties of Euclidean geodesics.

Theorem 13.1 (Theorem C). Let s,s',t be vertices in a systolic complex
X such that |st| = n,|s't| = n'. Let (rp)P_y, (r})i_o be 1-skeleton geodesics
such that ry, € Oy, 1}, € d),, where (0x), (9}.) are Euclidean geodesics fort, s and
fort, s" respectively. Then for all 0 < ¢ <1 we have [r|en|| . | < c|ss'|+C,
where C' is a universal constant.

In the proof we need three easy preparatory lemmas.
Lemma 13.2. Let D be a 2-dimensional systolic complex (in particular

CAT(0) with the standard piecewise Euclidean metric). Let x,y be vertices
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in D. Then there exists a 1-skeleton geodesic w in D joining x,y such that if
Dy is the union with w of a connected component of D\ w, then the CAT(0)
geodesic xy in is 1-close to w in L N Dy, where L is the convex hull in D of
Tz Uuy.

Proof. Let L; be the layers in D between x,y. Then L is the span in D of
the union of L;. Observe that L is convex in C'AT'(0) sense in D. Hence the
CAT(0) geodesic zy in D is contained in L. Now similarly as in Definition
9.10 define vertices w; € L; to be the vertices nearest to xzy N L; (possibly
non-unique). Analogously as in Lemma 9.11 one proves that w;,w;;; are
neighbors, hence (w;) form a path w, which is a 1-skeleton geodesic. By the
construction we have |w;, zy N L;| < 1 (here |-, | denotes the distance along
the straight line). For a fixed Dy the CAT(0) geodesic zy in Dy is contained
in the convex L N Dy, hence it is 1—close to w by Lemma 12.12 applied to L.

O

Lemma 13.3. Let A be a generalized characteristic disc for (i,j). Let
Agpit C A be a generalized characteristic disc for (i,j) with wy, substituted
with Wy for some wy € vywy. Let v,% be CAT(0) geodesics with common
endpoints in the layers i,j in A, Age, respectively. Then vy N vywy is not
farther from vy than v N vpwy.

Proof. Let Ay C A be the characteristic disc for (i, j) with wy substituted
with v N vgwy. Then Ag N Ay is convex in Ay, and we are done. O

Lemma 13.4. Let T be a CAT(0) (i.e. simply connected) subspace of E2,
whose boundary is an embedded loop which consists of three geodesic (in T)
segments o, 3,7, where « is contained in a straight line in E?. Denote x =
BN~. Letn be a geodesic in T contained in a straight line parallel to o with
endpoints on (3,7y. Let ¢ denote the ratio of the distances in E? between x and
the line containing n and between x and the line containing cc. Then % <ec.
Proof. Let 4,y € E? be points on the line containing 7 colinear with z
and the endpoints of a. By the Tales Theorem we have el — ¢ On the

|al

other hand, since (3,7 are geodesics in T', we get that n C y1y». O
We are now ready for the endgame.

Proof of Theorem 13.1 (Theorem C). Let m be maximal satisfying
rm = 7). First assume that [en| < m or |en’| < m, say |en’] < m. Then
[P Len |7 ey | < 194, Indeed, let A be the characteristic disc for (ry), (r7) be-
tween t and r,, = r],, for the thick interval containing |cn'] (if layer |cn/|
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is thin then there is nothing to prove). Then by Proposition 12.1 applied
to (r;)iy and 74, ... 70, Tmi1, ... Tn We get that the CAT(0) geodesic in A
joining the barycenters of the two outermost edges is 97—close to the bound-
ary component corresponding to (r;). Similarly we get that this CAT(0)
geodesic is 97—close to the second boundary component. Altogether we get
that [r|en |7, | < 194, as desired. This yields

7 Len)Tlenty| S 17 1en)Tlen )|+ [T len )Ty | < [Len] = [en']] +194 <
<cln—n'| +195 < ¢|ss’| + 195,

as required. So from now on we assume that [cn| > m and [en'] > m.

Let k& be minimal such that r; lies on some 1-skeleton geodesic ss'.
Now let k' be minimal such that 7, lies on some 1-skeleton geodesic 745’
Consider various 1-skeleton geodesics ¢ connecting 7, with rp.. The loops
TmTPmt1 - - TRUT Ty - - - 71, are embedded by the choice of m, k, k. Consider
a surface S: D — X of minimal area spanned on such a loop (we allow 1
to vary). By minimality of the area D is systolic, hence CAT(0) w.r.t. the
standard piecewise Euclidean metric. Denote the preimages of 7;, 7}, in D
by x;, x;, o respectively. We attach to D at xy, x},, x,, = 2, three simplicial
paths 3, ', of lengths n — k,n’ — k', m respectively and denote obtained
in this way simplical (and CAT(0)) complex by D’. Denote the vertices in
D'\ D by xp, ..., 041, by @, ... 2, and by xg = 20, ..., T = T,
in 3,5, ( respectively.

By minimality of the area of D, the path Ba3' ™! is a CAT(0) geodesic
in D’. Let Dy, Dy be simplicial spans in D’ of the unions of all 1-skeleton
geodesics from xg to x,, and from z{, to 2/, respectively. Observe that Dy, D,
are convex (in CAT(0) sense) in D', hence the CAT(0) geodesics in D’ from
xo to z,, and from z{ to x/, agree with C'AT'(0) geodesics joining those pairs
of points in Dy, Do, respectively. By Proposition 12.1, (z;) is 97—close (in
D) to the CAT(0) geodesic xox, and () is 97—close (in Ds) to the CAT(0)

geodesic z(z!,.

Our goal, which immediately implies Theorem 13.1 (Theorem C), is to
get an estimate |2 |cn) 2,/ | < ¢[z,2;, |+ C with some universal constant C'

We claim that for any three consecutive vertices v, w,u on « we have

that |zow| = |xov| + 1 implies |zou| = |row| + 1. We prove this claim by
contradiction. If |xgu| = |zow| — 1 then, by Lemma 2.8, u,v are neighbors
contradicting the fact that vwu is a 1-skeleton geodesic. If |zou| = |row],

then by Lemma 2.8 there exists a vertex z € D in the projection of the edge
wu onto Bigyy| (7). Again by Lemma 2.8, we have that |zv| < 1. Thus the

68



defect at w is at least 1, contradicting the minimality of the area of D. This
justifies the claim.

The claim implies that « is a concatenation ajagas, where vertices in
o are at constant distance from zy and «q, ag are contained in 1-skeleton
geodesic rays in D’ issuing from zy. We apply Lemma 13.2 to obtain a special
1-skeleton geodesic w in D’ connecting xy to ay Nay. Let Dy be the union of
w and all of the components of D"\ w containing some z; (i.e. on one ”side”
of w). Denote by D¢ the union of w with the other components of D’ \ w.
Denote by w' a 1-skeleton geodesic connecting 7o to apNay given by Lemma
13.2 applied do DC Let Dy be the union of o’ with the components of D¢ S\
containing some x}. Denote the union of w’ with the other components of
Df \ &' by D.

Note that, since D, C Dy, D, C Dy, by Lemma 13.3 we have that (x;)
is 97-close to the C’AT( ) geodesic oz, in Dy and (z}) is 97—close to the
CAT(0) geodesic xyz!, in in D2 Moreover, by Lemma 13.2 and Lemma 13.3,
the CAT(0) geodesics in DO, Dl, Ds joining the endpoints of w,w" are 1-close
(in particular 97—close) to w,w’, respectively. Moreover, vertices in o are at
constant distance from zy in Do, and wao; o 'y are 1-skeleton geodesics in
Dl, Dg, respectively. Thus substituting D' = DO, Dl, D2 we have reduced the
proof of our goal (up to replacing C' with 3C') to the following two special
cases:

(1) vertices in «v are at a constant distance from xy (hence from x,,) or
(ii) n' =k’ and ax}, ... x; is a 1-skeleton geodesic.

Observe that it is now possible that z; = z for ¢ > m. Let m' be
maximal such that x,, = a/ ,. If [en| < m' or |en'] < m/, say the latter,
then, since the CAT'(0) geodesics zox,, z(x,, in D’ coincide on xgz,,, we get
that |2|en| 2], | < 97 4 97 = 194, hence

| en) Tlen || < 1T en) Tlent )| + 1T o) o) | <

<|len) — [en']] + 194 < ¢|n — n'| + 195 < c|z,al, | + 195,

as desired. So from now on we can assume that |en| > m/, [en’| > m/, and
we can replace the component of D'\ x,,,, containing xy with a simplicial path
of length m/. Let D be as before the maximal subcomplex of D’ which is a
topological disc.

First suppose that we are in case (i). Observe that (up to increasing C
by 2) we can assume that n = k and n’ = k&’. This is because once we proved
our estimate for n = k,n’ = k’ we can concatenate an estimate realizing path
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T ck| x’Lck,J with the paths x| ... 2| and SC/Lck,J . x’Lm,J, obtaining a path
from z|c, to x’Lcn, | of length

(Len] — [ek]) + ||| + (len'] = [ck']) <
<(c(n—k)+ 1)+ (clrgew| +C)+ (c(n’ = K)+1) =
= (c(|lzpzk|) + 1) + (clarzw| + O) + (c(|zwaw]) + 1) = clrpzy| + (C +2),

as required.

We claim that D is flat and the interior vertices of a have defect 0.
Indeed, observe that the defects at the interior vertices of a and at the
interior vertices of D are non-positive, whereas the defect at z,, = / , is
at most 2. Hence, by Gauss—Bonnet Lemma 7.2, it is enough to prove that
the sums of the defects at the vertices of each of the paths x,,/ ;... 2 and
Ty, T are at most 2. Suppose otherwise, w.l.o.g., that the sum of the
defects at the vertices of x,,/y1 ... 2 is > 3. Denote the vertex following xy
on a by y. Then |z, y| < |z 112k|, hence |zoy| < |zox|, which contradicts
the hypothesis of case (ii). Thus we have proved the claim. In particular, «
is contained in a straight line in D C EX and k = ¥/.

Define n to be the path in D starting at x| reaching chk | contained (in
D C E3) in a straight line parallel to a. Let &1, & be CAT(0) geodesics in D
joining xj with z,,, and 2} with z! , = x,,, respectively. Let z; = nN¢;, for
i =1,2. We have |z|q)21| < 97 and [222],, | < 97 (again exceptionally |-, -|
denotes the distance along the straight line). Let m” be maximal such that
SNz = ENapna! . Then for all i < m” we have & Nl = &Nl
In particular, if |ck| < m”, then z; = 2z and || < 194, as desired. If
|ck| > m”, then we apply Lemma 13.4 with 7" C D the geodesic triangle with
vertices xy, ), & N Tl = Eo N xpral . We get that |n| < c|lzpa)| + 194,
as desired.

Now suppose that we are in case (ii). Like in case (i) (up to increasing C'
by 1) we can assume that n = k. Since the boundary of D is a union of two
geodesics, by Gauss—Bonnet Lemma 7.2, D is flat. Consider an embedding
D C EZ such that the layers (denoted by Lj) between x,, = 2/, and zj, in
[E% are horizontal and z; are to the left from z/, for i < k’. By minimality
of area, o is contained in a straight line in D C E%. Like in case (i), let
&1,& be CAT(0) geodesics in D joining xy, with x,, and z}, with 2/, = x,,,
respectively. Similarly like in the previous case, let m” be maximal such
that & N Ly = & N Ly Denote uw = & N Ly = & N Ly, By the same
argument as after the choice of m’, we can assume that |[ck’| > m”. Let
21 = &N L), 22 = &N L. Let y1 € L) N D be the vertex with
minimal possible yf but > 2. Similarly, let yo € L) N D be the vertex
with maximal possible y3 but < 25. We claim that |y1y2| = [ck] — |ck'].

70



Before we justify the claim, observe that it already implies the theorem.
Indeed, the claim gives

‘xLCkJm/Lck’j’ < |zer)yi| + [y1ye| + |92$/Lckq’ <
<97+ (|ck] — [cK']) +97 <
<97+ (c(K' — k) + 1)+ 97 = || + 195,

as desired.

Finally, let us justify the claim. We need to show that y5 —y{ < M
By the choice of m” we have that 21, 2, lie in the Euclidean triangle in E4
with vertices xy, x},, u. Denote by wu; (resp. us) the vertex on the edge uxy
(resp. wuwj,) of this triangle in L|g (resp. Liaw)). Assume w.lo.g. that
% > % Denote then by u, the vertex on the edge uzy dividing this edge
in same proportion as the proportion in which uy divides uzj,. By the Tales
Theorem, and since uju, C ux, forms with the vertical direction angle at
most 30°, we have that

1
uy —uy < (uy —ul) 4+ (uf —uj) < c(mi — (m;g,)w) + 5=
ck—ck' 1 |ck|— |cK]
R —_ s 4 - - 1
2 + 2 < 2 t4h
hence

ck| — | ck’'
y%ﬂ—y:fSz%—zi"§7¢L‘2”—u’1‘”<—L J2L J—l—l.

Thus, since y5 — y{ and M differ by an integer (because y;,y, are

vertices in E3), we have y§ — y¥ < M, as desired. This ends the proof
of the claim and of the whole theorem. O]

If we followed the constants carefully, we would get that Theorem 13.1
(Theorem C) is satisfied with any C' > 204.

14 Final remarks

In this section we state some additional results on the compactification X,
for which we do not provide proofs.

EZ—structures explored by Farrell-Lafont [16] in relation to the Novikov
conjecture concern only the torsion-free group case. To get similar results
(Novikov conjecture) for a group G with torsion one needs to construct an
appropriate compactification (which we will also call an FZ-structure) of a
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classifying space for proper G-actions, denoted EG. EG is a contractible
space with a proper G action such that, for every finite subgroup F of GG, the
set EGY C EG of points fixed by F (the fized point set of F') is contractible
(in particular non-empty). For more details on EG see Liick [21].

Relying on the work of Przytycki [23] Chepoi-Osajda [9] proved the fol-
lowing.

Theorem 14.1. Let a group G act geometrically by simplicial automor-
phisms on a systolic complex X. Then X s a finite model for EG.

We claim the following.

Claim 14.2. Let a group G act geometrically by simplicial automorphisms
on a systolic complex X. Let X = X U0X. Then:

1. for every finite subgroup F' of G, the fixed point set X" s contractible,

2. for every finite subgroup F' of G, the fived point set X*' is dense in X"

Assertion 2 is easy to prove, i.e. the only difficulties in proving Claim
14.2 concern assertion 1. To obtain it one has to reprove Lemma 6.2 with
—F . —

X in place of X.

Combining Theorem 14.1, Theorem 6.3 (Theorem A), Claim 14.2, and

Theorem 4.1 of Rosenthal [24], we immediately get the following.

Claim 14.3. The Nowvikov conjecture holds for systolic groups.

Now we turn to the question of determining our boundary in some specific
cases. We have already mentioned the case of hyperbolic systolic groups in
Remark 4.6. Now we consider the CAT'(0) case. After making it through the
second part of the article, the reader should not be surprised by the following.

Claim 14.4. If X is a two-dimensional simplicial complex, which is CAT(0)
(which is equivalent with systolic in dimension two), then its compactification
by the CAT(0) visual boundary is homeomorphic in a natural way with our

X.

For example, this implies that our boundary of a systolic Euclidean plane
is a circle. The argument for Claim 14.4 is that our compactification is
constructed using Euclidean geodesics in systolic complexes, which in this
case are coarsely C'AT'(0) geodesics.

The next claim concerns the following construction, which has not yet
appeared in the literature. Namely Elsner and Przytycki had developed a
way to turn equivariantly any VH-complex (see Bridson-Wise [6]) which is
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CAT(0) into a systolic complex (that is how they observed that the abelian
product of two free groups is systolic). Although the resulting complex is
usually not 2—dimensional, the only higher dimensional simplices that ap-
pear are used to deal with branching at the vertical edges. This is why
we believe that the CAT(0) visual boundary of the original VH-complex is
homeomorphic in a natural way with our boundary of the resulting systolic
complex.

In particular, this would imply that there is a systolic group acting geo-
metrically on two systolic complexes whose (our) boundaries are not homeo-
morphic. Namely, in the family of torus complexes defined by Croke—Kleiner
[10] the complexes with o = 7 and a = % have universal covers with non-
homeomorphic C'AT'(0) visual boundaries. At the same time, there is a torus
complex with a = £, whose universal cover is 2—dimensional systolic while

ER
there also is a torus complex with o = 7, whose universal cover is a VH—

complex, which is CAT(0).
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