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THE COVERING NUMBER AND THE TRANSITIVE
COVERING NUMBER MAY BE TOTALLY DIFFERENT

JAN KRASZEWSKI

Abstract. We construct a translation invariant σ− ideal T (κ) (where κ is
an infinite cardinal number) such that covt(T (κ)) = 2κ while cov(T (κ)) =
cof(T (κ)) = ω1. The constructions can be carried out in R as well.

0. Introduction

In 1938 Rothberger in [2] proved that there is a family of meagre subsets of the
real line of size less or equal than the least cardinality of a Lebesgue nonmeasurable
set such that its sum is the whole real line (and the same when we replace meagre
sets by Lebesgue null sets and a Lebesgue nonmeasurable set by a set without the
Baire property). In other words, he showed that cov(Meagre) ≤ non(Null) and
cov(Null) ≤ non(Meagre), where cov and non stand for a covering number and a
uniformity of a given ideal. As a matter of fact, Rothberger proved more.

Theorem 0.1. Let J and I be translation invariant ideals of subsets of a group G,
orthogonal to each other (that is there exist A ∈ J and B ∈ I such that A∪B = G).
Then

covt(J ) ≤ non(I).

where non(I) is the minimal cardinality of the subset of G that does not belong to
I. ¤

In this theorem covt(J ) denotes a transitive covering number of an ideal J . The
natural question to ask is what in general is a possible difference between a covering
number and a transitive covering number of a given ideal. In this paper we show
that these two cardinal invariants may be totally different.

1. Definitions and basic properties

We use standard set-theoretical notation and terminology from [1]. In particular,
the cardinality of the set of all real numbers is denoted by c. The cardinality of
a set X is denoted by |X|. A power set of a set X is denoted by P(X). If κ is a
cardinal number then cf(κ) denotes its cofinality.

Let (G, +) be an infinite abelian group. We consider a σ− ideal J of subsets
of G which is proper and contains all singletons. Moreover, we assume that J is
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translation invariant (i.e. (∀A ∈ J )(∀g ∈ G)A + g = {a + g : a ∈ A} ∈ J ) and
symmetric (i.e. (∀A ∈ J )−A = {−a : a ∈ A} ∈ J ).

We say that a family B ⊆ J is cofinal with J if for each A ∈ J there exists
such B ∈ B that A ⊆ B. We also call such a family B a base of J .

For an ideal J we consider the following cardinal numbers

cov(J ) = min{|A| : A ⊆ J &
⋃
A = G},

covt(J ) = min{|T | : T ⊆ G & (∃A ∈ J ) A + T = G},
cof(J ) = min{|B| : B ⊆ J & B is a base of J }.

They are called the covering number, the transitive covering number and the
cofinality of J , respectively. Note that the following relations hold:

cov(J ) ≤ covt(J ) and cov(J ) ≤ cof(J ).

For more information about cardinal invariants of ideals on abelian groups and
relations between them – see [1].

A set H ⊆ R is called a Hamel basis if it is a basis of (R, +) treated as a linear
space over a field Q of rational numbers.

2. Cofinality versus transitive covering

In this section we show that transitive covering of an ideal may be totally different
from its cofinality.

Theorem 2.1. Let λ be a cardinal number of uncountable cofinality and let 〈Gα :
α < λ〉 be a strictly increasing sequence of subgroups of a group G such that G =⋃

α<λ Gα. If J is a σ−ideal of subsets of G generated by the family {Gα : α < λ}
then cof(J ) = cf(λ) and

covt(J ) = inf{| G/Gα
| : α < λ}.

Proof. Straight from the fact, that the sequence 〈Gα : α < λ〉 is increasing and
cf(λ) is uncountable we can deduce that

J = {A ⊆ G : (∃ξ < λ)A ⊆ Gξ}.

It is a simple observation that J is a translation invariant, symmetric σ−ideal con-
taining singletons. It is also proper because of strict monotonicity of the sequence
〈Gα : α < λ〉.

Let us fix a given sequence of ordinal numbers 〈ξα : α < cf(λ)〉, cofinal in λ.
Then the family {Gξα

: α < cf(λ)} is a base for J . Moreover, no family of elements
of J of cardinality strictly less than cf(λ) can be a base of J as all elements of
such a family are contained in Gξ for some ξ < λ. Hence cof(J ) = cf(λ).

Let us observe that a sequence of cardinal numbers 〈| G/Gα
| : α < λ〉 is decreasing

so there exists ζ < λ such that | G/Gα
| = | G/Gζ

| for α ≥ ζ. Let us consider now a
set T ⊆ G such that |T | = covt(J ) and there exists A ∈ J such that A + T = G.
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Without loss of generality we may assume that A = Gξ for some ζ ≤ ξ < λ. Then
we may get T ′ ⊆ T such that (∀t ∈ T ′)T ′ ∩ (Gξ + t) = {t} and Gξ + T ′ = G, that
is, T ′ is a selector of the cosets. Thus covt(J ) = |T ′| = | G/Gξ

| and, consequently,

covt(J ) = | G/Gξ
| = | G/Gζ

| = inf{| G/Gα
| : α < λ},

which ends the proof. ¤
As an application of Theorem 2.1 we construct a σ−ideal, the transitive covering

of which is in general radically bigger than its cofinality and, consequently, its
covering number as well. First, we introduce some necessary notation.

From now on let us fix a Hamel basis H and its enumeration H = {hα : α < c}.
Then every real number x has the unique representation in this basis, i.e.

(∀x ∈ R)(∃! rx∈ Qc)(| supp(rx)| < ω & x =
∑
α<c

rx(α)hα),

where supp(rx) = {α : rx(α) 6= 0}. In order to simplify the notation we replace
supp(rx) by supp(x).

Definition. Let {Pξ : ξ < ω1} be a fixed partition of c into parts of cardinality c.
Let A be any set. We say that a function f ∈ RA is Hamel-bounded if

(∃ξ < ω1)(∀a ∈ A)(supp(f(a)) ⊆
⋃

β<ξ

Pβ).

Then we put HB(A) = {f ∈ RA : f is Hamel − bounded}. One can check that
HB(A) is a subgroup of RA with the standard addition of functions.
For any function f ∈ HB(A) its Hamel-bound hb (f) is defined as follows:

hb (f) = min{ξ < ω1 : (∀a ∈ A)(supp(f(a)) ⊆
⋃

β<ξ

Pβ)}.

Let κ be an infinite cardinal number. Let Bξ = {f ∈ HB(κ) : hb (f) ≤ ξ}. Of
course, 〈Bξ : ξ < ω1〉 is a strictly increasing sequence of subgroups of the group
HB(κ) and HB(κ) =

⋃
ξ<ω1

Bξ. We define T (κ) as a σ− ideal generated by the
family {Bξ : ξ < ω1}.
Lemma 2.2. |HB(κ)/Bξ

| = 2κ for every ξ < ω1.

Proof. Let us fix Bξ for some ξ < ω1. We consider a set T ⊆ HB(κ) such that
(∀t ∈ T )T ∩ (Bξ + t) = {t} and Bξ + T = HB(κ).

Let us fix P ⊆ κ and a real number x such that x ∈ H \ {hα : α ∈ ⋃
β<ξ Pβ}.

We define a function fP ∈ HB(κ) as follows:

fP (α) = χP (α) · x
where χP denotes the characteristic function of a set P . Then there exists tP ∈ T
and g ∈ Bξ such that fP = g + tP . In particular, for each α ∈ P we have

x = fP (α) = g(α) + tP (α).
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But we know from the assumption that supp(x) 6⊆ ⋃
β<ξ Pβ , so we have supp(x) ⊆

supp(tP (α)) for each α ∈ P . On the other hand, if α 6∈ P then fP (α) = 0 and,
consequently, supp(tP (α)) = supp(g(α)) ⊆ ⋃

β<ξ Pβ for such α’s.
Let P1 and P2 be two different subsets of κ and α ∈ P1 4 P2. Suppose that

tP1
= tP2

= t. Then

supp(x) ⊆ supp(t(α)) ⊆
⋃

β<ξ

Pβ ,

which is a contradiction. Hence tP1
6= tP2

and, consequently,

|HB(κ)/Bξ
| = |T | ≥ |P(κ)| = 2κ,

which ends the proof, as |HB(κ)| = 2κ. ¤
Corollary 2.3. For every infinite cardinal number κ we have cof(T (κ)) = ω1 and
covt(T (κ)) = 2κ.

Proof. It is enough to apply Theorem 2.1 for λ = ω1, G = HB(κ), Gξ = Bξ and
J = T (κ). Thanks to Lemma 2.2 we get the result. ¤
Acknowledgements. The author would like to thank Professor Cichoń for many
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