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Abstract. We introduce new classes of small subsets of the reals, having
natural combinatorial definitions, namely everywhere meagre and everywhere
null sets. We investigate properties of these sets, in particular we show that
these classes are closed under taking products and projections. We also prove
several relations between these classes and other well-known classes of small
subsets of the reals.

1. Introduction and definitions

In 1990 RosÃlanowski introduced in [15] a new σ-ideal of subsets of the Cantor
space 2ω (closely connected with Mycielski ideals – cf. [11]):

B2 = {A ⊆ 2ω : (∀T ∈ [ω]ω)A¹T 6= 2T },
which was later thoroughly investigated by many people (see e.g. [4] or [14]). As
any set A ∈ B2 has the property that its section on every infinite set T ⊆ ω is not
the whole 2T , we can call sets from B2 everywhere not everything sets. It is natural
to ask what sets we will obtain if we expect them to be everywhere smaller then
just ”not everything”.

It is an easy observation, that a set is everywhere countable if and only if it is
countable. However, we can modify slightly a definition of everywhere countable
sets to obtain a reasonable σ-ideal I0. It was done by Repický in [14]:

I0 = {A ⊆ 2ω : (∀T ∈ [ω]ω)(∃S ∈ [T ]ω) |A¹S| ≤ ω}.
In this paper we consider another notion of smallness. Namely, we focus our

attention on everywhere meagre and everywhere null sets.

Definition. A set A ⊆ 2ω is called everywhere meagre (resp. everywhere null) if
for every infinite set T ⊆ ω the set A¹T = {x¹T : x ∈ A} is meagre (resp. null) in
2T . We denote the families of everywhere meagre and everywhere null sets by EM
and EN , respectively.

Straight from the definitions we get I0 ⊆ EM ⊆ B2∩M and I0 ⊆ EN ⊆ B2∩N ,
where M and N stand for σ-ideals of meagre sets and null sets, respectively. Fur-
ther on, we will show another characterization of everywhere meagre and everywhere
null sets and prove their several interesting properties. We will also investigate what
relations there are between these sets and other kinds of small subsets of the Cantor
space.

In our considerations we use standard set-theoretical notation and terminology
from [1]. Recall that the cardinality a set X is denoted by |X|. The power set
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of a set X is denoted by P(X). If ϕ : X → Y is a function and A ⊆ X, B ⊆ Y
then ϕ[A] denotes the image of A and ϕ−1[B] denotes the pre-image of B. By
π1 : X × Y → X and π2 : X × Y → Y we denote projections on first and second
coordinate, respectively. The set of all infinite subsets of ω we denote by [ω]ω. The
σ-ideal generated by closed null sets is denoted by E .

Let INJ denote the set of all injections from ω into ω. For ϕ ∈ INJ we define a
corresponding surjection Φ : 2ω → 2ω by Φ(x) = x ◦ ϕ.

Let J be a σ-ideal of subsets of 2ω. We say that J is productive if J if and
only if for every A ⊆ 2ω and ϕ ∈ INJ if A ∈ J then so is Φ−1[A]. We say that J
has WFP (Weak Fubini Property) if for every A ⊆ 2ω and ϕ ∈ INJ if Φ−1[A] is in
J then so is A (for more details – see [8]).

We can intuitively interpret these definitions in such a way that justifies their
names. Namely, we can say that J is productive if for every T ∈ [ω]ω and every
set A ⊆ 2T if A is in J then the cylinder A× 2ω\T is in J . Similarly, J has WFP
if for every T ∈ [ω]ω and every A ⊆ 2T if the cylinder A × 2ω\T is in J then its
projection into 2T , that is A, is also in J .

Let PIF denotes the family of all partial infinite functions from ω into {0, 1}.
For every σ ∈ PIF we put [σ] = {x ∈ 2ω : σ ⊆ x}. Let S2 be the σ-ideal gener-
ated by the family {[σ] : σ ∈ PIF}. This σ-ideal was introduced and thoroughly
investigated in [3]. It is well-known that S2 ⊆ E ⊆M∩N .

Straight from their definitions we obtain that σ-ideals M, N , E and S2 are
productive and have WFP. Moreover, S2 is the least nontrivial productive σ-ideal
of subsets of 2ω.

For a family A ⊆ P(2ω) we define the following cardinal invariants:

add(A) = min{|B| : B ⊆ A &
⋃
B 6∈ A},

cov(A) = min{|B| : B ⊆ A &
⋃
B = 2ω},

non(A) = min{|B| : B ⊆ 2ω & B 6∈ A}.
Observe that if A ⊆ A′ then cov(A) ≥ cov(A′) and non(A) ≤ non(A′).

We will investigate relations between classes EM and EN and other classes
of small subsets of the reals: strongly meagre sets SM, strongly null sets SN ,
universally meagre sets UM and universally null sets UN . We will also consider
Marczewski null sets s0. For their definitions and properties we refer the reader to
[1], [17] and [2].

2. Operation p

In [9] the following operation on families of subsets of 2ω was introduced:

p(A) = {A ⊆ 2ω : (∀ϕ ∈ INJ)Φ[A] ∈ A}.
One can show that p is a topological interior operator. We will need the following
basic properties of this operation.

Theorem 2.1. Let A ⊆ P(2ω). Then
(a) p(A) ⊆ A;
(b) if A is a σ-ideal , then so is p(A);
(c) add(p(A)) ≥ add(A);
(d) cov(p(A)) ≥ cov(A);
(e) non(p(A)) = non(A).
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Proof. We obtain (a) straight from the definition and (d) straight from (a). To get
(b) we observe that Φ[

⋃
n<ω An] =

⋃
n<ω Φ[An].

To prove (c), fix κ < add(A) and consider a family {Aα : α < κ} ⊆ p(A). As for
any ϕ ∈ INJ and α < κ we have Φ[Aα] ∈ A, so Φ[

⋃
α<κ Aα] =

⋃
α<κ Φ[Aα] ∈ A.

Hence
⋃

α<κ Aα ∈ p(A), and, consequently, κ < add(p(A)) which ends the proof.
Finally, to prove (e) it is enough to show that non(p(A)) ≥ non(A). But if

A 6∈ p(A), then Φ[A] 6∈ A for some ϕ ∈ INJ. As |Φ[A]| ≤ |A|, we are done. ¤
The next theorem justifies the introduction of this operation.

Theorem 2.2. EM = p(M), EN = p(N ).

Proof. To prove EM ⊆ p(M) let us fix A ∈ EM and ϕ ∈ INJ. Let T = range(ϕ).
Then the set A ¹ T is meagre, so A =

⋃
n<ω Dn for some nowhere dense sets

Dn ⊆ 2T . For every n < ω we put D′
n = {x ∈ 2ω : x¹T ∈ Dn}. Then the set Φ[D′

n]
is nowhere dense in 2ω and Φ[A] ⊆ ⋃

n<ω Φ[D′
n]. Hence the set Φ[A] is meagre and

we are done.
To get the other inclusion, let us fix A ∈ p(M) and T ∈ [ω]ω. Let ϕ : ω → T

be any bijection. Then ϕ ∈ INJ, so the set Φ[A] is meagre and we have Φ[A] =⋃
n<ω Dn for some nowhere dense sets Dn ⊆ 2ω. As the sets Φ−1[Dn] ¹ T are

nowhere dense in 2T and A ¹ T ⊆ ⋃
n<ω(Φ−1[Dn] ¹ T ), we obtain that A ¹ T is

meagre in 2T , which ends the first part of the proof.
In a similar way we can also show that EN = p(N ). ¤
As an immediate consequence of Theorems 2.1 and 2.2 we obtain that everywhere

meagre sets and everywhere null sets form σ-ideals . Moreover, we have the following
corollary.

Corollary 2.3.

add(EM) ≥ add(M), add(EN ) ≥ add(N ),

cov(EM) ≥ cov(M), cov(EN ) ≥ cov(N ),

non(EM) = non(M), non(EN ) = non(N ).

Remark 2.4. Following Theorem 2.2, it seems reasonably to define a family of
everywhere J sets for any σ-ideal J of subsets of 2ω as follows: EJ = p(J ).
For example, one can show that I0 ⊆ ES2. As A ⊆ A′ implies p(A) ⊆ p(A′), it
strengthens our observation from the introduction that I0 ⊆ EM∩ EN .

3. Products of EM and EN sets

In this section we show that the property of being everywhere meagre and ev-
erywhere null is preserved under taking products.

To begin with, we need a suitable definition.

Definition. Let h : 2ω × 2ω → 2ω be a standard homeomorphism, given by con-
ditions h(x, y)(2n) = x(n), h(x, y)(2n + 1) = y(n) for n ∈ ω. We say that a set
A ⊆ 2ω×2ω is everywhere meagre (resp. everywhere null) if h[A] ⊆ 2ω is everywhere
meagre (resp. everywhere null).

Let Even and Odd be the sets of even and odd natural numbers, respectively.
Now we can formulate and prove the following theorem.

Theorem 3.1. For every everywhere meagre (resp. everywhere null) sets A,B ⊆
2ω, the set A×B ⊆ 2ω × 2ω is everywhere meagre (resp. everywhere null).
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Proof. Let us fix sets A,B ⊆ 2ω, which are everywhere meagre (the proof for
everywhere null sets goes identically) and consider the set h[A × B]. Let us fix
T ∈ [ω]ω. If T ⊆ Even then the set h[A × B] ¹ T is homeomorphic to the set
A ¹ {n

2 : n ∈ T}, which is meagre in 2{
n
2 :n∈T}. The case T ⊆ Odd is analogous.

Suppose now that T ∩ Even 6= ∅ 6= T ∩ Odd. Without loss of generality we can
assume that the set T∩Even is infinite. Then the set h[A×B]¹(T∩Even) is meagre.
But this implies that the set h[A × B] ¹ (T ∩ Even) × h[A × B] ¹ (T ∩ Odd), which
is homeomorphic to the set h[A × B] ¹ T , is also meagre. Hence h[A × B] ∈ EM,
which ends the proof. ¤

To sum up this section, we prove that classes EM and EN are closed under
projections.

Theorem 3.2. For every everywhere meagre (resp. everywhere null) set A ⊆
2ω × 2ω the set π1[A] ⊆ 2ω is everywhere meagre (resp. everywhere null).

Proof. We will prove only the ’meagre’ case (the ’null’ case could be proved iden-
tically).

Let us fix a set A ⊆ 2ω×2ω, which is everywhere meagre. Then h[A] ∈ EM. But
for every T ∈ [ω]ω the set π1[A] ¹T is homeomorphic to the set h[A] ¹{2t : t ∈ T},
which is meagre. ¤

4. Relations with other small sets

In this section we prove several relations between classes EM and EN and other
well-known classes of small subsets of the reals.

Repický in [14] proved that there exist perfect sets which are in I0. Therefore
they are also in EM and EN , which implies that both these σ-ideals are not
included in s0. As universally meagre and universally null sets are Marczewski
null, we get that EM is not included in UM and EN is not included in UN .

On the other hand, we will show that not every universally meagre set is every-
where meagre. The proof is a modification of the consideration for very meagre
sets, presented in [10].

Theorem 4.1. There exists a set A ⊆ 2ω, which is universally meagre, but not
everywhere meagre.

Proof. We will construct a set F ⊆ 2ω × 2ω such that F ∈ UM \ EM. Then the
set A = h[F ], when h : 2ω × 2ω → 2ω is the standard homeomorphism mentioned
in Section 3, will be the set we are looking for.

Grzegorek proved (cf. [6],[7]) that there exists a bijection F : S → T for some
S 6∈ M and T ∈ UM. We treat this bijection as a subset of 2ω × 2ω. As π1[F ] =
S 6∈ M, then according to Theorem 3.2 we obtain that F is not everywhere meagre.

Suppose now that F is not universally meagre. Thus there exist a non-meagre
subset B of a certain perfect Polish space Y and a Borel one-to-one function f :
B → F (cf. [17]). But then the set B and a function π2 ◦ f : B → T contradict the
fact that T ∈ UM. Hence we obtain F ∈ UM, which ends the proof. ¤

The same proof works for the ’null’ case (using the fact from [5] on the existence
of a universally null set A such that |A| = non(N )).

Theorem 4.2. There exists a set A ⊆ 2ω, which is universally null, but not every-
where null.
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From now on, we will treat the space 2ω as a group (identifying it with Zω
2 with

the standard product group structure). To present our further results, we will need
another definition, introduced in [16]. Let us recall, that a family A ⊆ P(2ω) is
translation invariant if for every A ∈ A and x ∈ 2ω we have x + A ∈ A.

Definition. For any translation invariant families A,B ⊆ P(2ω) we put

Gt(B,A) = {B ⊆ 2ω : (∀A ∈ A)A + B ∈ B},
where A + B = {a + b : a ∈ A, b ∈ B}.
In applications we will usually assume that A ⊆ B.

Straight from this definition we obtain the following proposition.

Proposition 4.3. (a) A ⊆ A′ ⇒ Gt(B,A′) ⊆ Gt(B,A),
(b) B ⊆ B′ ⇒ Gt(B,A) ⊆ Gt(B′,A).

The definition of strongly meagre sets states that SM = Gt(P(2ω)\{2ω},N ) and
it was proved by Galvin, Mycielski and Solovay that SN = Gt(P(2ω) \ {2ω},M).
In 1996 Pawlikowski proved in [13] that SN = Gt(N , E) and SM ⊆ Gt(M, E) (it
is consistent that the latter inclusion is proper). In 2003 Kraszewski proved the
following theorem.

Theorem 4.4 ([9]). Let J be a translation invariant σ- ideal of subsets of 2ω,
which is productive and has WFP. Then

p(J ) = Gt(J , S2).

As an immediate consequence of Theorems 2.2 and 4.4, Proposition 4.3 and
Pawlikowski’s and Repický’s results we obtain the following corollary.

Corollary 4.5. (a) SM ⊆ Gt(M, E) ⊆6 Gt(M, S2) = EM,
(b) SN ⊆6 Gt(N , S2) = EN .

Remark 4.6. The fact that every strongly null set is everywhere null could be proved
straightforwardly. Indeed, the σ-ideal of null subsets of 2ω is closed under taking
uniformly continuous images. Hence, for every A ∈ SN and ϕ ∈ INJ we have
Φ[A] ∈ SN , which means that A ∈ p(SN ) ⊆ p(N ) = EN .

In the introduction we observed that EM, EN ⊆ B2. This result can be strength-
ened. In order to do this, we need two lemmas.

Lemma 4.7. Let A,B, C ⊆ P(2ω) be translation invariant families. Then

Gt(Gt(C,B),A) = Gt(Gt(C,A),B).

Proof. As C ∈ Gt(Gt(C,B),A) if and only if (∀A ∈ A)(∀B ∈ B) (C + A) + B ∈ C
and C ∈ Gt(Gt(C,A),B) if and only if (∀B ∈ B)(∀A ∈ A) (C + B) + A ∈ C, we are
done. ¤

Before we formulate the other lemma, we will simplify notation (cf. [9]). For any
translation invariant family A of subsets of 2ω we put s(A) = Gt(P(2ω) \ {2ω},A).
In [16] Seredyński observed that A ⊆ s(s(A)).

Lemma 4.8. Let A,B ⊆ P(2ω) be translation invariant families. Then

Gt(B,A) ⊆ Gt(s(A), s(B)).
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Proof. Using Proposition 4.3 and Lemma 4.7 we obtain

Gt(B,A) ⊆ Gt(s(s(B)),A) = Gt(s(A), s(B)).

¤
Corollary 4.9. If A ∈ EM and B ∈ SN then A + B ∈ B2.

Proof. From Lemma 4.8 we have EM = Gt(M, S2) ⊆ Gt(s(S2),SN ). But in [9] it
is proved that s(S2) = B2, which ends the proof. ¤

In the same way we can prove the dual result.

Corollary 4.10. If A ∈ EN and B ∈ SM then A + B ∈ B2.

5. Problems

We have proved that SM ⊆ EM and UM 6⊆ EM. In [12] Nowik, Scheepers and
Weiss defined AFC ′ sets – sets which are perfectly meagre in transitive sense. It is
known that SM ⊆ AFC ′ ⊆ UM. So we can pose the following question:

Problem 1. Does there exist a perfectly meagre set in transitive sense which is not
everywhere meagre?

In [14] Repický constructed (in ZFC) a set A ∈ B2 \ I0. The referee pointed
me out that if X and Y are a Sierpiński set and a Luzin set respectively then
X ∈ EM \ EN , Y ∈ EN \ EM and X ∪ Y ∈ B2 \ (EM ∪ EN ). Moreover,
he observed that assuming Continuum Hypothesis we can construct such a scale
{fα : α < ω1} ⊆ ωω that for a set Z ⊆ 2ω of the characteristic functions of the
ranges of the fα we have Z ∈ (EM∩EN ) \ I0. So we can consistently differentiate
these four σ-ideals . The problem is how to construct analogous examples in ZFC.

Problem 2. Construct (in ZFC) sets B,C ⊆ 2ω such that B ∈ EM \ I0 and
C ∈ B2 \ EM (and the same for everywhere null sets).

As we could observe, in this paper there is a full symmetry between the ’meagre’
case and the ’null’ case. It leads us to the third problem.

Problem 3. Find a property that differentiate the ’meagre’ case from the ’null’
case. Construct (in ZFC) sets D,F ⊆ 2ω such that D ∈ EM \ EN and F ∈
EN \ EM.
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