On invariant CCC σ -ideals.

Jan Kraszewski Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland (e-mail: kraszew@math.uni.wroc.pl)

Abstract

We re-read Recław's proof from [6] on invariant CCC σ -ideals of subsets of reals and obtain a reasonably stronger corollary for such ideals on the Cantor space.

1. Preliminaries. In 1998 Recław in [6] investigated cardinal invariants of CCC σ -ideals of subsets of reals. In particular, he showed that if such a σ -ideal \mathcal{J} is invariant, then $\mathfrak{p} \leq \operatorname{non}(\mathcal{J})$, where \mathfrak{p} is a pseudointersection number (cf. [8] for more details). In this paper we analyze his proof and get an apparently stronger result for σ -ideals of subsets of the Cantor space 2^{ω} .

We use standard set-theoretical notation and terminology derived from [1]. Let us remind that the cardinality of the set of all real numbers is denoted by \mathfrak{c} . The cardinality of a set X is denoted by |X|. By $[\omega]^{\omega}$ we denote the family of all infinite subsets of ω . If $\varphi: X \to Y$ is a function then $\operatorname{rng}(\varphi)$ denotes the range of φ .

Let (G, +) be an abelian Polish (i.e. separable, completely metrizable, without isolated points) group and let \mathcal{J} be a σ -ideal of subsets of G (we assume from now on that \mathcal{J} is proper and contains all singletons). We will consider that \mathcal{J} is invariant, that is for every $A \subseteq G$ and $g \in G$ we have $A + g = \{a + g : a \in A\} \in \mathcal{J}$ and $-A = \{-a : a \in A\} \in \mathcal{J}$). Moreover, we will assume that the σ -ideal \mathcal{J} has a Borel basis i.e. every set from \mathcal{J} is contained in a certain Borel set from the ideal.

We say that \mathcal{J} is CCC (countable chain condition) if the quotient Boolean algebra $\mathcal{B}(G)/\mathcal{J}$ is CCC, where $\mathcal{B}(G)$ is the σ -algebra of all Borel subsets of G.

We define the following cardinal invariants of \mathcal{J} .

$$\operatorname{non}(\mathcal{J}) = \min\{|B| : B \subseteq G \land B \notin \mathcal{J}\},\\ \operatorname{cov}_t(\mathcal{J}) = \min\{|T| : T \subseteq G \land (\exists A \in \mathcal{J}) A + T = G\},\$$

2000 Mathematics Subject Classification: 03E05, 03E17.

Key words and phrases: invariant σ -ideal, CCC, cardinal invariant.

We define also an operation on the σ -ideal \mathcal{J} (it was introduced by Seredyński in [7], who denoted it by \mathcal{J}^*)

$$s(\mathcal{J}) = \{ A \subseteq G : (\forall B \in \mathcal{J}) (\exists g \in G) (A + g) \cap B = \emptyset \}.$$

If we apply these operations to the σ -ideals of meagre sets \mathcal{M} and of null sets \mathcal{N} we obtain strongly null sets $s(\mathcal{M})$ and strongly meager sets $s(\mathcal{N})$. The following is well-known

$$\operatorname{non}(s(\mathcal{J})) = \operatorname{cov}_t(\mathcal{J})$$

We define

$$Pif = \{f : f \text{ is a function} \land \operatorname{dom}(f) \in [\omega]^{\omega} \land \operatorname{rng}(f) \subseteq 2\}$$

If $f \in Pif$ then we put

$$[f] = \{ x \in 2^{\omega} : f \subseteq x \}.$$

Let \mathbb{S}_2 denotes the σ -ideal of subsets of the Cantor space 2^{ω} , which is generated by the family $\{[f] : f \in Pif\}$. It was thoroughly investigated in [2] and [4]. We recall some properties of \mathbb{S}_2 , which were proved in [2].

Fact 1.1 \mathbb{S}_2 is a proper, invariant σ -ideal which contains all singletons and has a Borel basis. Every $A \in \mathbb{S}_2$ is both meager and null. Moreover, there exists a family of size \mathfrak{c} of pairwise disjoint Borel subsets of 2^{ω} that do not belong to \mathbb{S}_2 . Hence \mathbb{S}_2 is not CCC. \Box

Let A, S be two infinite subsets of ω . We say that S splits A if $|A \cap S| = |A \setminus S| = \omega$. Let us recall a cardinal number related with a notion of splitting, introduced by Malychin in [5], namely

$$\aleph_0 \cdot \mathfrak{s} = \min\{|\mathcal{S}| : \mathcal{S} \subseteq [\omega]^{\omega} \land (\forall \mathcal{A} \in [[\omega]^{\omega}]^{\omega}) (\exists S \in \mathcal{S}) (\forall A \in \mathcal{A}) \ S \ splits \ A\}.$$

More about cardinal numbers connected with the relation of splitting can be found in [3].

2. Recław's proof revisited. In [6] Recław proved a theorem, which can be generalized as follows.

Theorem 2.1 Let \mathcal{I} and \mathcal{J} be two σ -ideals of subsets of an abelian Polish group G, which are invariant and have Borel bases. If \mathcal{I} is CCC then

$$\mathcal{J} \cap s(\mathcal{J}) \subseteq \mathcal{I}$$

Proof. (Reclaw) Let $X \in \mathcal{J} \cap s(\mathcal{J})$. Assume that $X \notin \mathcal{I}$. We construct a sequence $\{F_{\alpha} : \alpha < \omega_1\}$ of Borel sets from \mathcal{J} and a sequence $\{t_{\alpha} : \alpha < \omega_1\}$ of elements of G. Let $t_0 = 0$ and F_0 be any Borel set from \mathcal{J} containing X. Suppose that we have constructed F_{β} and t_{β} for $\beta < \alpha$. Then from the definition of $s(\mathcal{J})$ there exists $t_{\alpha} \in G$ such that

$$(X+t_{\alpha})\cap \bigcup_{\beta<\alpha}F_{\beta}=\emptyset.$$

As F_{α} we take any Borel set from \mathcal{J} containing $\bigcup_{\beta < \alpha} F_{\beta} \cup (X + t_{\alpha})$.

Let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\beta < \alpha} F_{\beta}$. Thus $\{G_{\alpha} : \alpha < \omega_1\}$ is a family of pairwise disjoint Borel sets such that none of them belongs to \mathcal{I} , as $G_{\alpha} \supseteq X + t_{\alpha}$ and \mathcal{I} is invariant. Hence \mathcal{I} is not CCC, a contradiction.

Corollary 2.2 Let \mathcal{I} and \mathcal{J} be as above. If \mathcal{I} is CCC then

 $\min\{\operatorname{non}(\mathcal{J}), \operatorname{cov}_t(\mathcal{J})\} \le \operatorname{non}(\mathcal{I}).$

Proof. It is enough to observe that $\mathcal{J} \subseteq \mathcal{I}$ implies $\operatorname{non}(\mathcal{J}) \leq \operatorname{non}(\mathcal{I})$.

Corollary 2.3 Let \mathcal{I} be a σ -ideal of subsets of the Cantor space 2^{ω} (endowed with a standard group structure), which is invariant and has a Borel basis. If \mathcal{I} is CCC then

$$\aleph_0 - \mathfrak{s} \leq \operatorname{non}(\mathcal{I}).$$

Proof. In [2] it was proved that $\operatorname{non}(\mathbb{S}_2) = \aleph_0 - \mathfrak{s}$ and in [4] it was proved that $\operatorname{cov}_t(\mathbb{S}_2) = \mathfrak{c}$. So it is enough to apply Corollary 2.2 for $G = 2^{\omega}$ and $\mathcal{J} = \mathbb{S}_2$.

Question. Let \mathcal{I} be an invariant CCC σ -ideal of subsets of the real line \mathbb{R} . Is the inequality $\aleph_0 - \mathfrak{s} \leq \operatorname{non}(\mathcal{I})$ still true?

References

- T. Bartoszyński, H. Judah, Set Theory: On the structure of the real line, A. K. Peters, Wellesley, Massachusetts 1995.
- J. Cichoń, J. Kraszewski, On some new ideals on the Cantor and Baire spaces, Proc. Am. Math. Soc., 126 (1998) 1549–1555.
- [3] A. Kamburelis, B. Węglorz, *Splittings*, Arch. Math. Logic, **35** (1996) 263–277.
- [4] J. Kraszewski, Transitive properties of the ideal S_2 , Real Anal. Ex., 29(2) (2003/2004), 629–638.
- [5] V.I. Malychin, Topological properties of Cohen generic extension, Trans. Mosc. Math. Soc., 52 (1990) 1–32.
- [6] I. Recław, On cardinal invariants for CCC σ -ideals, Proc. Am. Math. Soc., **126** (1998) 1173–1175.
- [7] W. Seredyński, Some operations related with translation, Colloq. Math., 57 (1989) 203–219.
- [8] J. E. Vaughan, Small uncountable cardinals and Topology, in: Open Problems in Topology, North-Holland, Amsterdam etc., (1990), 195–218