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Abstract. We construct a σ-ideal of subsets of the Cantor space which is
productive but does not have the Weak Fubini Property. In the construction
we use a combinatorial lemma which is of its own interest.

1. Introduction

In 2001 Kraszewski in [4] defined a class of productive σ-ideals of subsets of the
Cantor space 2ω and observed that both σ-ideals of meagre sets M and of null
sets N are in this class. Next, from every productive σ-ideal J one can produce
a σ-ideal Jκ of subsets of the generalized Cantor space 2κ. In particular, starting
from meagre sets and null sets in 2ω we obtain meagre sets and null sets in 2κ, re-
spectively. This description gives us a powerful tool for investigating combinatorial
properties of ideals on 2κ, which was done in [4].

However, some theorems needed an additional assumption that a σ-ideal of
subsets of 2ω we started from had the Weak Fubini Property. The natural question
posed in [4] was whether this extra assumption could be omitted.

The weaker version of this question is whether every productive σ-ideal of subsets
of 2ω has the Weak Fubini Property. In this paper we answer it negatively. In the
construction we make use of an interesting combinatorial lemma on existence of
some special family of subsets of ω.

2. Preliminaries

In this paper we deal with the Cantor space 2ω interpreted as the set of all
functions from ω into the set {0, 1}, endowed with the standard product topology.

We use standard set-theoretical notation from [1] and [3]. In particular, if X is a
set and κ is a cardinal then [X]κ and [X]<κ stand for the families of subsets of X of
cardinality κ and smaller then κ, respectively. The set of natural numbers is denoted
by ω. As we identify this set with the cardinal number associated with countable
infinite sets, we denote this cardinal with the same symbol. The cardinal number
continuum, i.e. the cardinality of P(ω), is denoted by c. We identify P(ω) with 2ω

in the natural way using characteristic functions. We also very often identify 2ω

with 2T × 2ω\T for T ⊆ ω. If f : X → Y is a function, A ⊆ X and B ⊆ Y , then
f [A] and f−1[B] denote the image of A and pre-image of B, respectively.

For an ideal J of subsets of a space X, by J ∗ we denote its dual filter, i.e.
J ∗ = {X \A : A ∈ J }.

For a Polish space X, we denote by K(X) the space of all compact subsets of X
with Vietoris topology (see [3]). Recall that for a Polish space X the space K(X)
is also Polish and the space K(2ω) is homeomorphic to 2ω.
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Let INJ denote the set of all injections from ω into ω and let CIR denote the
set of all injections from ω to ω with co-infinite range. For ϕ ∈ INJ we define a
corresponding surjection Φ : 2ω → 2ω by Φ(x) = x ◦ϕ (therefore Φi corresponds to
ϕi, Ψ to ψ etc.).

Let A be a family of subsets of 2ω. We define

ω(A) = {A ⊆ 2ω : (∃ϕ ∈ INJ) Φ[A] ∈ A}.
If A ∈ ω(A) then any ϕ ∈ INJ such that Φ[A] ∈ A is called a witness for A. We
have always A ⊆ ω(A) as an identity is a witness. By σ(A) we denote the σ-ideal
generated by A.

Let J be a σ-ideal of subsets of 2ω. We say that J is productive if ω(J ) ⊆ J .
One can show that J is productive if and only if for every A ⊆ 2ω and ϕ ∈ INJ if
A ∈ J then so is Φ−1[A]. We say that J has WFP (Weak Fubini Property) if for
every A ⊆ 2ω and ϕ ∈ INJ if Φ−1[A] is in J then so is A.

We can intuitively interpret these definitions in such a way that justifies their
names. Namely, we can say that J is productive if for every T ∈ [ω]ω and every
set A ⊆ 2T if A is in J then the cylinder A× 2ω\T is in J . Similarly, J has WFP
if for every T ∈ [ω]ω and every A ⊆ 2T if the cylinder A × 2ω\T is in J then its
projection into 2T , that is A, is also in J .

Straight from their definitions we obtain that σ-ideals of meagre and null sets
are productive and have WFP, as well as the σ-ideal generated by closed null sets.

The following fact shows that every σ-ideal has its productive closure.

Fact 2.1. For any σ- ideal J of subsets of 2ω the σ- ideal σ(ω(J )) is productive.

Proof. It is enough to prove that ω(σ(ω(J ))) ⊆ σ(ω(J )). Let A ⊆ 2ω be a member
of ω(σ(ω(J ))) and let ϕ ∈ INJ be its witness. It means that Φ[A] ∈ σ(ω(J )) which
implies Φ[A] ⊆ ⋃

i<ω Ai for some family {Ai : i < ω} ⊆ ω(J ). Thus

A ⊆ Φ−1[Φ[A]] ⊆
⋃

i<ω

Φ−1[Ai].

Let ϕi ∈ INJ be a witness for Ai. For each i < ω we have (Φi ◦ Φ)[Φ−1[Ai]] =
Φi[Ai] ∈ J , so Φ−1[Ai] is a member of ω(J ) and ϕ◦ϕi is its witness. Consequently,⋃

i<ω Φ−1[Ai] is a member of σ(ω(J )) and so is A. ¤

Let PIF denotes the family of all partial infinite functions from ω into {0, 1}.
For every σ ∈ PIF we put [σ] = {x ∈ 2ω : σ ⊆ x}. Let S2 be the σ-ideal generated
by the family {[σ] : σ ∈ PIF}. This σ-ideal was introduced and thoroughly inves-
tigated in [2]. The more important property for us is that S2 is the least nontrivial
productive σ-ideal of subsets of 2ω (as S2 = σ(ω([2ω]≤ω))). Obviously, S2 has WFP
as well.

3. Main lemma

In this section we prove a combinatorial lemma which will be essential in our
construction.

We begin with an observation concerning the hyperspace of compact subsets of
the Cantor space which we will be useful in the proof of the main lemma. This
lemma was communicated to us by PaweÃl Milewski, but he claims that it is a part
of topological folklore. We would like to thank him for permission to include the
proof in our paper.
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Lemma 3.1. Let X,Y be perfect compact Polish spaces. Then the family of all
perfect sets P ⊆ X × Y which are graphs of partial 1–1 functions from X to Y is
co-meager in K(X × Y ).

Proof. Consider the space K(X × Y ) × X × Y . It is known (see [3]) that the
membership relation is a closed subset of this space, i.e. the set {〈P, x, y〉 : 〈x, y〉 ∈
P} is closed in K(X × Y )×X × Y . Also it is easy to check that the family of all
perfect sets is co-meager in K(X × Y ). Thus we may restrict our scope to perfect
sets only.

We need the following fact

Lemma 3.2. Suppose that F ⊆ X × Y is closed. Then the set {x ∈ X : |Fx| > 1}
is Fσ.

Proof. Observe that |Fx| > 1 if and only if there exist disjoint basic open sets U, V
in Y such that Fx ∩ U 6= ∅ 6= Fx ∩ V . Thus

{x ∈ X : |Fx| > 1} =
⋃

U∩V =∅
projX [F ∩ (X × U)] ∩ projX [F ∩ (X × V )].

As X × Y is compact, this set is Fσ. ¤

Applying this fact to F = {〈P, x, y〉 : 〈x, y〉 ∈ P} we get that the set

{〈P, x〉 : ∃y1, y2 ∈ Y y1 6= y2 ∧ 〈x, y1〉 ∈ P ∧ 〈x, y2〉 ∈ P}
is Fσ. Projecting this set on K(X × Y ) we get that the set

{P ∈ K(X × Y ) : ∃x ∃y1, y2 y1 6= y2 ∧ 〈x, y1〉 ∈ P ∧ 〈x, y2〉 ∈ P}
is Fσ.

It follows that the family of all compact sets which are graphs of partial functions
from X and Y is Gδ. To check that it is co-meager it is sufficient to check that it
is dense, which is left to the reader. ¤

The following fact is well known.

Lemma 3.3. For every G ∈ M∗ the set {P ∈ K(2ω) : P ⊆ G} is co-meager in
K(2ω). ¤

For an infinite and co-infinite set T ⊆ 2ω and W ∈ [2T ]<c let

[W ] = {x ∈ 2ω : x ¹ T ∈ W}.
Observe that if we identify 2ω with 2T×2ω\T then we can think of [W ] as W×2ω\T .
Let W<c be the σ-ideal generated by all sets of the form [W ], for all possible W as
above. One can easily check that in fact W<c = σ(ω([2ω]<c)).

Lemma 3.4. For every set G ∈ M∗ and W ∈ W<c there exists a perfect set
P ⊆ G \W .

Proof. Let G ∈ M∗ and W ∈ W<c be given. Then W =
⋃

n∈ω[Wn], where Wn ∈
[2Tn ]<c. We will construct a Cantor scheme 〈Ps : s ∈ 2<ω〉 consisting of nonempty
perfect sets, with P〈〉 ⊆ G, such that Ps ∩ [W|s|] = ∅ and put P =

⋂
n

⋃
|s|=n Ps.

Using Lemmas 3.1 and 3.3 we find a perfect set Q ⊆ G such that for every n
(under the natural identification) Q ⊆ 2Tn×2ω\Tn is the graph of a partial function.
Observe that |Q∩ [W0]| < c, so we can find a perfect set P〈〉 ⊆ Q disjoint with [W0].
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Now suppose that Ps have been constructed for |s| ≤ n. For every Ps such
that |s| = n we find its two disjoint perfect subsets Qs_0 and Qs_1. As Qs_i

(for i ∈ {0, 1}) is a subset of Q, it is the graph of a partial function from 2Tn+1

to 2ω\Tn+1 . Thus |Qs_i ∩ [Wn+1]| < c for i ∈ {0, 1} so we may find perfect sets
Ps_i ⊆ Qs_i (i ∈ {0, 1}) disjoint with [Wn+1]. ¤

The following lemma is the main result of this section which will be used in the
construction of our ideal.

Lemma 3.5. There exists a family A ⊆ P(ω) such that ∅, ω ∈ A and for every
F ∈ [CIR]ω

∃A ∈ A ∀f ∈ F f−1[A] 6∈ A.

Proof. Let {Fα : 1 < α < c} be an enumeration of [CIR]ω. We will inductively
construct a family A = {Aα : α < c} which satisfies the following conditions for
α > 1

(1) f−1[Aα] 6∈ {Aξ : ξ < α} for f ∈ Fα,
(2) f−1[Aα] 6= Aα for f ∈ Fα,
(3) Aα 6= f−1[Aξ] for ξ < α and f ∈ Fξ.

Observe that Aα (for α > 1) witnesses that Fα does not contradict the desired
property of A, i.e. we have ∀f ∈ Fα f−1[Aα] 6∈ A. More precisely, condition (1)
guarantees that f−1[Aα] is not in the part of A constructed so far, condition (2)
guarantees that it is not added in the step α and condition (3) that it will not be
added in the following steps of our construction.

To guarantee that ∅, ω ∈ A let us define A0 = ∅ and A1 = ω. Now, suppose that
Aξ have been already constructed for ξ < α. First we check that there are a lot of
sets which satisfy condition (2).

We will show that for a fixed f ∈ CIR the set {A ∈ 2ω : f−1[A] = A} is meager
in 2ω. Indeed, observe that f−1[A] = A if, and only if, ∀n ∈ ω n ∈ A ⇔ f(n) ∈ A.
For f ∈ ωω and n ∈ ω define orbf (n) = {n, f(n), f(f(n)), . . .}. It follows that
f [A] = A if, and only if, for every n ∈ ω either orbf (n) ⊆ A or orbf (n) ∩A = ∅, in
other words χA is constant on every set orbf (n).

Observe that for f ∈ CIR there exists n ∈ ω such that orbf (n) is infinite,
otherwise f would be onto ω. But the set of all A which are constant on a given
infinite set is meager in 2ω, which ends the proof of the claim.

As we have only countably many functions in Fα we see that the set G of those
A which satisfy condition (2) is co-meager.

Now we check that the set of those A which do not satisfy condition (1) is in
W<c. Indeed, f−1[A] = Aξ if, and only if, A ∩ rg(f) = f [Aξ]. But this means that
A ∈ [Xf ] for Xf = {f [Aξ] : ξ < α}. So the set of all “inappropriate” A is covered
by

⋃
f∈Fα

[Xf ] ∈ W<c.
Lemma 3.4 gives us a perfect set of A satisfying conditions (1) and (2). Finally,

observe that condition (3) states that Aα must be different from < c points, so
obviously we may find such a set Aα in P . This Aα satisfies conditions (1)–(3). ¤

In the proof we used some specific relationship between the ideals M and W<c,
namely Lemma 3.4. It is not clear whether an analogous assertion holds, if replace
the ideal M with the ideal N of null subsets of the Cantor space.

Question 1. Is is true that for every G ∈ N ∗ we have G 6∈ W<c?
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Question 2. Is it true that for every G ∈ N ∗ and W ∈ W<c there exists a perfect
set P ⊆ G \W?

Clearly, the answer to both questions is positive under some additional set-
theoretic assumptions, e.g. if every set of cardinality smaller than c is null.

4. Construction

Now we are ready to prove that productivity does not imply the Weak Fubini
Property.

Theorem 4.1. There exists a productive σ- ideal of subsets of the Cantor space
2ω that does not have WFP.

Proof. Let A ⊆ P(ω) be a family from Lemma 3.5. Let

C = {χA : A ∈ A} ⊆ 2ω.

Let ϕ0 : ω → ω, ϕ0(n) = 2n. Obviously, ϕ0 ∈ CIR. We define

J = σ(ω(σ(S2 ∪ {Φ−1
0 [C]}))).

We prove that J is a σ-ideal we are looking for. From Fact 2.1 we obtain that
J is productive as a productive closure of the σ-ideal σ(S2 ∪ {Φ−1

0 [C]}). So it
is enough to show that C 6∈ J because then Φ−1

0 [C] ∈ J is a counterexample for
having WFP.

Suppose otherwise that C ∈ J . Then C ⊆ ⋃
i<ω Di for some Di ∈ ω(σ(S2 ∪

{Φ−1
0 [C]})). But then for every i < ω there exist ψi ∈ INJ and Si ∈ S2 such that

Di ⊆ Ψ−1
i [Si ∪ Φ−1

0 [C]]. Hence we get

C ⊆
⋃

i<ω

Ψ−1
i [Si] ∪

⋃

i<ω

Ψ−1
i [Φ−1

0 [C]].

But it is easy to check that
⋃

i<ω Ψ−1
i [Si] ∈ S2, so finally

C ⊆
⋃

j<ω

[σj ] ∪
⋃

i<ω

Ψ
−1

i [C],

where σj ∈ PIF and ψi = ψi ◦ ϕ0 ∈ CIR. We can assume (shrinking the domain
of σj if necessary) that dom(σj) is coinfinite and σj is constantly equal to 0 or
constantly equal to 1. For every i < ω we fix any bijection fj : ω → dom(σj).

Let us consider the family F = {ψi : i < ω} ∪ {fj : j < ω} ⊆ CIR. Let A ∈ A
be such that for every x ∈ F we have x−1[A] 6∈ A.

If χA ∈ Ψ
−1

i [C] for some i < ω then χA ◦ ψi ∈ C so (∃B ∈ A)χA ◦ ψi = χB .
Thus B = ψ

−1

i [A] which is impossible.
Similarly, if χA ∈ [σj ] for some j < ω then χA ◦ fj = χ∅ or χA ◦ fj = χω. But

∅, ω ∈ A, a contradiction.
Hence we get χA 6∈ C, which ends the proof. ¤

We have showed that every family A ⊆ P(ω) having the property mentioned
in Lemma 3.5 gives us a productive σ-ideal without WFP. One can prove that
the converse is also true, i.e. from every productive σ-ideal without WFP we can
obtain a family A ⊆ P(ω) such that for every F ∈ [CIR]ω there exists A ∈ A such
that f−1[A] 6∈ A for any f ∈ F .
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