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Abstract

In this paper we compute transitive cardinal coefficients of the σ-ideal S2, the
least nontrivial productive σ-ideal of subsets of the Cantor space 2ω. We also apply
transitive operations to S2. In particular, we show that σ-ideal of strongly S2 sets
is equal to B2, one of Mycielski ideals.

0. Introduction. In this paper we investigate transitive properties of the σ-ideal
S2. This ideal appeared for the first time in [10], but only incidentally. It was thoroughly
investigated by Cichoń and Kraszewski in [5]. It turned out that cardinal characteristics
of S2 are strongly connected with some intensively studied combinatorial properties of
subsets of natural numbers (the splitting and reaping numbers). Namely,

add(S2) = ω1, cov(S2) = r, non(S2) = ℵ0-s, cof(S2) = c.

Moreover, S2 is the least nontrivial productive σ-ideal of subsets of the Cantor space
2ω. The notion of productivity is a powerful tool for investigating properties of ideals on
generalized Cantor spaces 2κ. For more details see [9].

In the first part of this paper we completely describe all well-known transitive cardinal
characteristics of S2. In the second part we apply transitive operations to S2. In par-
ticular, we show that the σ-ideal of strongly S2 sets is exactly B2, one of Mycielski ideals.

1. Definitions and basic properties. We use standard set-theoretical notation
and terminology from [2]. Recall that the cardinality of the set of all real numbers is
denoted by c. The cardinality of a set X is denoted by |X|. The power set of a set X is
denoted by P(X). If κ is a cardinal number then [X]κ denotes the family of all subsets
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of the set X of cardinality κ. If ϕ : X → Y is a function then rng(ϕ) denotes the range
of ϕ. If A ⊆ Y then ϕ−1[A] denotes the pre-image of A.

Let J be an ideal of subsets of an abelian group G. We say that J is translation
invariant if A + g = {x + g : x ∈ A} ∈ J for each A ∈ J and g ∈ G and that J is
symmetric if −A = {−x : x ∈ A} ∈ J for each A ∈ J .

For an ideal J we consider the following cardinal numbers

addt(J ) = min{|A| : A ⊆ J ∧ ¬(∃B ∈ J )(∀A ∈ A)(∃g ∈ G) A ⊆ B + g},
add∗t (J ) = min{|T | : T ⊆ G ∧ (∃A ∈ J ) A + T 6∈ J },
covt(J ) = min{|T | : T ⊆ G ∧ (∃A ∈ J ) A + T = G},
coft(J ) = min{|B| : B ⊆ J ∧ B is a transitive base of J },

where a family B ⊆ J is called a transitive base if for each A ∈ J there exists B ∈ B and
g ∈ G such that A ⊆ B+g. The first two of these are both called transitive additivity and
the last two are called transitive covering number and transitive cofinality, respectively.
Let us notice that all definitions of cardinal coefficients mentioned above are valid also
for an arbitrary family A ⊆ P(G).

Let us also recall that by the uniformity of J we mean the following cardinal number

non(J ) = min{|A| : A ⊆ G ∧ A 6∈ J }.

We say that an ideal J is κ-translatable if

(∀A ∈ J )(∃B ∈ J )(∀T ∈ [G]κ)(∃g ∈ G) A + T ⊆ B + g.

We define a translatability number of J as follows

τ(J ) = min{κ : J is not κ-translatable}.

In this paper we deal with the Cantor space 2ω interpreted as the set of all functions
from ω into the set {0, 1}. This space is endowed with the standard product topology.
Moreover, we consider the standard product group structure on 2ω.

We define

Pif = {f : t is a function ∧ dom(f) ∈ [ω]ω ∧ rng(f) ⊆ 2}.

If f ∈ Pif then we put
[f ] = {x ∈ 2ω : f ⊆ x}.

Let S2 denote the σ-ideal of subsets of 2ω, which is generated by the family {[f ] : f ∈
Pif}. We recall some properties of S2, which were proved in [5].

Fact 1.1 (a) S2 is a proper σ-ideal, containing singletons, with a base consisting of
Borel sets. Every A ∈ S2 is both meagre and null.
(b) S2 is translation invariant.
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(c) There exists a family of size c of pairwise disjoint Borel subsets of 2ω that do not
belong to S2. ¤

We call a family F ⊆ Pif normal if for each two different f1, f2 ∈ F we have
dom(f1) ∩ dom(f2) = ∅. Directly from the definition of S2 we can deduce that

A ∈ S2 ⇐⇒ A ⊆
⋃

f∈F
[f ],

for some countable normal family F ⊆ Pif . In [5] the following useful lemma was
proved.

Lemma 1.2 Suppose that {fi : i ∈ I} is a normal family of functions from Pif, f ∈
Pif and [f ] ⊆ ⋃

i∈I [fi]. Then [f ] ⊆ [fi] for some i ∈ I. ¤

Let A, S be two infinite subsets of ω. We say that S splits A if |A∩S| = |A\S| = ω.
Let us recall a cardinal number related with a notion of splitting, introduced by Malychin
in [13], namely

ℵ0-s = min{|S| : S ⊆ [ω]ω ∧ (∀A ∈ [[ω]ω]ω)(∃S ∈ S)(∀A ∈ A)(S splits A)}.

More about cardinal numbers connected with the relation of splitting can be found in
[8]. It was proved in [5] that non(S2) = ℵ0-s.

We will need one more σ-ideal. Let us define

B2 = {A ⊆ 2ω : (∀X ∈ [ω]ω) A¹X 6= 2X},

where A ¹X = {x ¹X : x ∈ A}. This is one of the Mycielski ideals and was intensively
studied by many authors (cf. [7], [15], [17]).

2. Transitive cardinal coefficients of S2. Let J be an ideal of subsets of an
abelian group G. The first cardinal coefficient on the stage was the transitive covering
number of J that appeared implicitly in 1938 in the famous Rothberger theorem, which
was originally formulated for classical ideals of meagre and null subsets of the real line
(cf. [18]). In his general version it says that if J and I are translation invariant ideals
of subsets of G, orthogonal to each other (that is there exist A ∈ J and B ∈ I such that
A ∪ B = G) then covt(J ) ≤ non(I). It is worth observing that the transitive covering
number may be different from the covering number and S2 is an example.

Theorem 2.1 covt(S2) = c

Proof. It is obvious that covt(S2) ≤ c, so it is enough to show the other inequality. Let
T ⊆ 2ω and A ∈ S2. Without loss of generality we can assume that A =

⋃
i<ω[fi], where

the family {fi : i < ω} ⊆ Pif is normal. If |T | < c then for every i < ω there exist a
function gi : dom(fi) → 2 which is different from every function fi + t ¹dom(fi), where
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t ∈ T . Because the family {fi : i < ω} is normal then there exists a function x ∈ 2ω

such that
⋃

i<ω gi ⊆ x and we have x 6∈ (A + T ) which ends the proof. ¤
In 1985 Pawlikowski in [16] introduced the transitive cofinality and gave the complete

description of transitive cofinalities of ideals of meagre and null subsets of the real line.
He also mentioned a dual coefficient to the transitive cofinality. Following the way of
describing cardinal characteristics of the continuum presented by Blass in [3] we will call
it a transitive additivity and denote by addt(J ). Unfortunately, Pawlikowski (and then
Bartoszyński and Judah in [2]) used this name and notation for yet another coefficient,
introduced in [16]. In order not to make a mess we will call the latter coefficient the
starred transitive additivity and denote it by add∗t (J ).

Now we calculate these coefficients for S2. To begin with, we observe the following
general property concerning starred transitive additivity.

Proposition 2.2 Let J be a proper and translation invariant σ-ideal of subsets of a
group G containing all singletons. Then add∗t (J ) ≤ non(J ).

Proof. To prove that add∗t (J ) ≤ non(J ) it is enough to observe that for every set
T ⊆ G such that T 6∈ J we have |T | ≥ add∗t (J ) because {0} + T = T 6∈ J and, of
course, {0} ∈ J . ¤

Theorem 2.3 add∗t (S2) = ℵ0-s.

Proof. As non(S2) = ℵ0-s then thanks to Proposition 2.2 it is enough to show that
add∗t (S2) ≥ non(S2).

Suppose now that T ⊆ 2ω and A ∈ S2. To finish the proof we show that if |T | <
non(S2) then A + T ∈ S2. As in the proof of Theorem 2.1 we can assume that A =⋃

i<ω[fi], where fi ∈ Pif form a normal family. Thus

A + T =
⋃
t∈T

A + t =
⋃
t∈T

⋃
i<ω

([fi] + t) =
⋃
i<ω

⋃
t∈T

[fi + t¹dom(fi)]

Fix i < ω. Let ι : dom(fi) → ω be a bijection. It induces a bijection ι̂ : 2dom(fi) → 2ω.
The image of the set {fi + t ¹ dom(fi) : t ∈ T} ⊆ 2dom(fi) by ι̂ has cardinality strictly
smaller than non(S2). Consequently, it can be covered by a set

⋃
j<ω[gj], for some

{gj : j < ω} ⊆ Pif . Hence

⋃
t∈T

[fi + t¹dom(fi)] ⊆
⋃
j<ω

[ι̂−1(gj)] ∈ S2,

which ends the proof. ¤
In order to prove results about addt(S2) and coft(S2) we introduce some extra nota-

tion. For a set X ∈ [ω]ω let (X)ω
ω denote the family of all infinite partitions of X into

infinite parts. For P1, P2 ∈ (ω)ω
ω we put P1 ¹ P2 if for every p1 ∈ P1 there exists p2 ∈ P2

such that p2 ⊆ p1 (we say that P2 dominates P1). It is not difficult to observe that
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¹ is a partial ordering on (ω)ω
ω. Let us notice that if we consider ¹ on the family (ω)

of all partitions of ω (which is more common) then {ω} (one-element partition) is the
smallest element of this ordering while the partition into singletons is the greatest one.
Properties of relations on partitions of ω have been intensively studied lately by Matet,
Majcher-Iwanow and others; for more information cf. [14], [6] or [12].

We define an unboundedness and dominating numbers b¹ and d¹ in a standard way.

b¹ = min{|R| : R ⊆ (ω)ω
ω ∧ (∀P ∈ (ω)ω

ω)(∃R ∈ R)R 6¹ P},
d¹ = min{|R| : R ⊆ (ω)ω

ω ∧ (∀P ∈ (ω)ω
ω)(∃R ∈ R)P ¹ R}.

We have the following well-known lemma.

Lemma 2.4 b¹ = ω1, d¹ = c.

Proof. Inequalities b¹ ≥ ω1 and d¹ ≤ c are obvious. To show the other inequalities
we first construct a family P ⊆ (ω)ω

ω of cardinality c such that for every two partitions
P1, P2 ∈ P if p1 ∈ P1 and p2 ∈ P2 then p1 ∩ p2 is finite.

We deal with partitions of Z × Z instead of partitions of ω. Let pα
i = {(z1, z2) ∈

Z × Z : i ≤ z2 − αz1 < i + 1} for i ∈ Z and α ∈ [0, +∞). Then Pα = {pα
i : i ∈ Z} is a

partition from (Z×Z)ω
ω. It is not difficult to check that a family P = {Pα : α ∈ [0, +∞)}

has a needed property.
Now, if R ⊆ (ω)ω

ω is any subfamily of P of size ω1 then R cannot be dominated by
one partition. Indeed, if there exists a partition P ∈ (ω)ω

ω such that for every R ∈ R and
every r ∈ R we have an element p ∈ P such that p ⊆ r then we get a contradiction as
for different R1, R2 ∈ R and r1 ∈ R1, r2 ∈ R2 there is no p ∈ P which is simultaneously
contained in r1 and r2.

On the other hand, let us consider a family R such that every partition from (ω)ω
ω

is dominated by a partition from R. For a given R ∈ R we define PR = {P ∈ P :
(∀p ∈ P )(∃r ∈ R)r ⊆ p}. Obviously P =

⋃
R∈RPR. Moreover, every family PR is at

most countable because any element of R cannot be contained in elements of different
partitions from PR. Therefore

c ≤ |P| ≤ ω · |R|
and we are done. ¤

Theorem 2.5 addt(S2) = ω1, coft(S2) = c.

Proof. As ω1 ≤ addt(S2) and coft(S2) ≤ c then thanks to Lemma 2.4 we have to prove
only addt(S2) ≤ b¹ and coft(S2) ≥ d¹.

We observe the following useful fact. Let P ⊆ (ω)ω
ω be a family of partitions and

A ⊆ S2. Let us assume that for every partition P ∈ P there exist AP ∈ A and xP ∈ 2ω

such that
⋃

p∈P [0p] ⊆ AP + xP , where 0p denotes a function constantly equal to 0 on
its domain, which is the set p. Then there exists a family R ⊆ (ω)ω

ω of size |A| such
that for every P ∈ P there exists R ∈ R such that P ¹ R. Indeed, without loss
of generality we can assume that AP =

⋃
i<ω[fP

i ], where {fP
i : i < ω} ⊆ Pif and
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{dom(fP
i ) : i < ω} ∈ (ω)ω

ω and by Lemma 1.2 we get that for every p ∈ P there exists
a natural number ip such that [0p] ⊆ [fP

ip + xP ¹ dom(fP
ip )]. Thus dom(fP

ip ) ⊆ p and,

consequently, P ¹ {dom(fP
i ) : i < ω}. Hence R = {{dom(fP

i ) : i < ω} : P ∈ P} is a
family of the sort we are looking for.

Now, let P ⊆ (ω)ω
ω be an arbitrary family of partitions of size less than addt(S2).

From the definition of S2 we obtain that our assumption is fulfilled for a family A having
one element. Thus P is bounded by one partition and we get addt(S2) ≤ b¹.

On the other hand, our assumption is fulfilled also for P = (ω)ω
ω and A ⊆ S2 being a

transitive base for S2. In this situation, the family R obtained from the fact mentioned
above is a dominating family of partitions, so we have coft(S2) ≥ d¹, which ends the
proof. ¤

The last transitive property we deal with is translatability. In 1993 Carlson in [4]
introduced the notion of κ–translatability and proved that the σ-ideal of meagre subsets
of the real line and the σ-ideal generated by closed null subsets of the real line are ω–
translatable. Bartoszyński in [1] proved that the σ-ideal of null subsets of the Cantor
space is not 2–translatable. Kysiak in [11] introduced a natural notion of a translatability
number.

As far as S2 is concerned, its translatability number can be computed precisely.

Theorem 2.6 τ(S2) = ω1.

Proof. To begin with, we show that S2 is ω–translatable. Let A ∈ S2 be arbitrary.
As usual, without loss of generality we can assume that A =

⋃
i<ω[fi], where {fi : i <

ω} ⊆ Pif and {dom(fi) : i < ω} ∈ (ω)ω
ω. For every i < ω let us fix a partition

Pi = {pij : j < ω} ∈ (dom(fi))
ω
ω. Then {pij : i, j < ω} ∈ (ω)ω

ω. We define

B =
⋃
i<ω

⋃
j<ω

[0pij
].

Obviously, B ∈ S2. For every T = {tj : j < ω} ∈ [2ω]ω we define g ∈ 2ω as follows:

(∀i, j < ω) g ¹pij = (fi + tj)¹pij.

It is a routine calculation to show that A + T ⊆ B + g.
To show the other inequality, let us consider first a partition P of ω into infinite

parts. We can observe that there exists a set T ∈ [2ω]ω1 such that for every family
{hi : i < ω} ⊆ Pif if {dom(hi) : i < ω} = P then T 6⊆ ⋃

i<ω[hi]. Namely, it is enough
to take T such that (∀p ∈ P )(∀x, y ∈ T )(x 6= y ⇒ x¹p 6= y ¹p).

Let A = {0ω}. We claim that this set witnesses that S2 is not ω1–translatable. So
suppose B =

⋃
i<ω[hi] where {hi : i < ω} ⊆ Pif and {dom(hi) : i < ω} = P ∈ (ω)ω

ω.
Consider the set T defined as above. Then no translation of B covers T = A + T . ¤

3. Transitive operations on S2. In this paragraph we apply transitive operations
to the ideal S2. To begin with, let us recall some definitions.
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Let us assume that J is a σ-ideal of subsets of an abelian group G which is proper,
translation invariant, symmetric and contains all singletons. We define (cf. [19])

s(J ) = {A ⊆ G : (∀B ∈ J ) A + B 6= G},
g(J ) = {A ⊆ G : (∀B ∈ J ) A + B ∈ J }

(Seredyński used J ∗ instead of s(J )). In [19] many basic properties of operations s and
g can be found. If we apply these operations to the σ-ideals of meagre sets M and of null
sets N we obtain strongly null sets s(M), strongly meagre sets s(N ), meagre-additive
sets g(M) and null-additive sets g(N ) (see [2] for more information).

The following are well-known.

Fact 3.1 non(s(J )) = covt(J ), non(g(J )) = add∗t (J ). ¤

We can also observe other basic relations.

Proposition 3.2 covt(s(J )) ≥ non(J ), add∗t (g(J )) = non(g(J )).

Proof. Straightforward from definitions. ¤
We prove now that σ-ideals S2 and B2 are closely related to each other.

Theorem 3.3 s(S2) = B2.

Proof. Let us consider any A ⊆ 2ω. A standard calculation shows that if for some
X ∈ [ω]ω we have A¹X = 2X then A + [0X ] = 2ω. Hence if A 6∈ B2 then A 6∈ s(S2).

On the other hand, let us consider any C ⊆ 2ω such that B + C = 2ω for some
B ∈ S2. As in proofs in Paragraph 2, without loss of generality we can assume that
B =

⋃
i<ω[fi], where {fi : i < ω} ⊆ Pif and {dom(fi) : i < ω} ∈ (ω)ω

ω. Then there
exists i < ω such that C ¹ dom(fi) = 2dom(fi). Indeed, if we suppose that for all i < ω
there exists gi ∈ 2dom(fi) \ (C ¹dom(fi)) then we have

⋃
i<ω(fi + gi) ∈ 2ω \ (B +C). Thus

if C 6∈ s(S2) then C 6∈ B2 which completes the proof. ¤
In [7] the authors showed that the covering number of B2 is a weird object and it

is difficult to find reasonable estimations for it. In particular, it is relatively consistent
that Martin’s Axiom holds, c = ω2 and cov(B2) = ω1. The following corollary shows
that the situation for the transitive covering number of B2 is different.

Corollary 3.4 If Martin’s Axiom holds then covt(B2) = c.

Proof. From Theorem 3.3 and Proposition 3.2 we obtain that covt(B2) ≥ non(S2). It
was proved in [5] that non(S2) = ℵ0-s and it is well-known that under Martin’s Axiom
we have ℵ0-s = c. ¤

In order to describe g(S2) we need to introduce more definitions. By Inj we denote the
set of all injections from ω into ω. For A ⊆ 2ω and ϕ ∈ Inj we put ϕ∗A = {x◦ϕ : x ∈ A}
and Aϕ = {x ∈ 2ω : x ◦ ϕ ∈ A}. It is easy to observe that we have ϕ ∗ Aϕ = A and
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A ⊆ (ϕ ∗ A)ϕ. Let J be a σ-ideal of subsets of 2ω. We say that J is productive if for
every A ⊆ 2ω and ϕ ∈ Inj if ϕ ∗A is in J then so is A. We say that J has WFP (Weak
Fubini Property) if for every A ⊆ 2ω and ϕ ∈ Inj if Aϕ is in J then so is A. Straight
from the definitions we obtain that S2, σ-ideals of meagre and null sets are productive
and have WFP. For more discussion on these properties cf. [9].

We put
p(J ) = {A ⊆ 2ω : (∀ϕ ∈ Inj) ϕ ∗ A ∈ J }.

In other words, A ∈ p(J ) if for every T ∈ [ω]ω the set A ¹ T is in J (T ), where J (T )
denotes a version of J defined on 2T instead of 2ω.

Theorem 3.5 g(S2) = p(S2).

Proof. Let us assume that A ∈ g(S2) that is (∀B ∈ S2)A + B ∈ S2. It is not difficult to
observe that this condition is equivalent to (∀T ∈ [ω]ω)[0T ] + A ∈ S2. But we can prove
that if ϕ ∈ Inj then [0rng(ϕ)] + A = (ϕ ∗ A)ϕ. Hence, reformulating our condition we
obtain (∀ϕ ∈ Inj) (ϕ ∗A)ϕ ∈ S2. Thus, as S2 is productive and has WFP, we show that
this fact is equivalent to (∀ϕ ∈ Inj) ϕ ∗ A ∈ S2 and, consequently, to A ∈ p(S2). ¤

Finally, we will show that all operations that appeared in this paragraph are versions
of one operation, defined in [19].

Let A,B be translation invariant families of subsets of a group G. We put

Gt(A,B) = {A ⊆ G : (∀B ∈ B) A + B ∈ A}.
Then we have the following results.

Proposition 3.6 Let J be a translation invariant, symmetric σ-ideal of subsets of a
group G. Then
(a) s(J ) = Gt(P(G) \ {G},J ),
(b) g(J ) = Gt(J ,J ).
If G = 2ω and J is productive and has WFP then
(c) p(J ) = Gt(J , S2).

Proof. (a) and (b) are reformulations of definitions and were observed in [19]. To prove
(c) it is enough to repeat carefully the proof of Theorem 3.5. ¤
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References
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[11] M. Kysiak, On Erdős-Sierpiński duality for Lebesgue measure and Baire category,
Master’s thesis, Warsaw 2000 (in Polish).

[12] B. Majcher–Iwanow, Cardinal invariants of the lattice of partitions, Commentat.
Math. Univ. Carol., 41 (2000) 543-558.

[13] V.I. Malychin, Topological properties of Cohen generic extension, Trans. Mosc.
Math. Soc., 52 (1990) 1–32.

[14] P. Matet, Partitions and filters, J. Symbolic Logic, 51 (1986) 12-21.

[15] J. Mycielski, Some new ideals of subsets on the real line, Colloq. Math., 20 (1969)
71–76.

[16] J. Pawlikowski, Powers of transitive bases of measure and category, Proc. Amer.
Math. Soc., 93 (1985) 719–729.

[17] A. RosÃlanowski, On game ideals, Colloq. Math., 59 (1990) 159–168.
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