TRANSITIVE PROPERTIES OF IDEALS ON GENERALIZED CANTOR SPACES

JAN KRASZEWSKI

ABSTRACT. In this paper we compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we observe that there exists a null set $A \subseteq 2^{\omega_1}$ such that for every null set $B \subseteq 2^{\omega_1}$ we can find $x \in 2^{\omega_1}$ such that the set $A \cup (A + x)$ cannot be covered by any translation of the set B.

1. INTRODUCTION, DEFINITIONS AND BASIC PROPERTIES

In 2001 Kraszewski in [5] defined a class of *productive* σ -ideals of subsets of the Cantor space 2^{ω} and observed that both σ -ideals of meagre sets and of null sets are in this class. Next, from every productive σ -ideal \mathcal{J} one can produce a σ -ideal \mathcal{J}_{κ} of subsets of the generalized Cantor space 2^{κ} . In particular, starting from meagre sets and null sets in 2^{ω} we obtain meagre sets and null sets in 2^{κ} , respectively. This description gives us a powerful tool for investigating combinatorial properties of ideals on 2^{κ} , which was done in [5]. In this paper we continue our research, focusing on transitive cardinal coefficients of ideals of subsets of 2^{κ} .

We use standard set-theoretical notation and terminology from [2]. Let (G, +) be an infinite abelian group. We consider a σ -ideal \mathcal{J} of subsets of G which is proper, contains all singletons and is invariant (under group operations).

For an ideal \mathcal{J} we consider the following transitive cardinal numbers

$$\begin{aligned} \operatorname{add}_t(\mathcal{J}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{J} \land \neg (\exists B \in \mathcal{J}) (\forall A \in \mathcal{A}) (\exists g \in G) A \subseteq B + g\}, \\ \operatorname{add}_t^*(\mathcal{J}) &= \min\{|T| : T \subseteq G \land (\exists A \in \mathcal{J}) A + T \notin \mathcal{J}\}, \\ \operatorname{cov}_t(\mathcal{J}) &= \min\{|T| : T \subseteq G \land (\exists A \in \mathcal{J}) A + T = G\}, \\ \operatorname{cof}_t(\mathcal{J}) &= \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{J} \land (\forall A \in \mathcal{J}) (\exists B \in \mathcal{B}) (\exists g \in G) A \subseteq B + g\}. \end{aligned}$$

First two ones are both called *a transitive additivity*. The remaining two ones are called *a transitive covering number* and *a transitive cofinality*, respectively.

We say that an ideal \mathcal{J} is κ -translatable if

$$(\forall A \in \mathcal{J})(\exists B_A \in \mathcal{J})(\forall S \in [G]^{\kappa})(\exists t_S \in G) A + S \subseteq B_A + t_S.$$

We define a *translatability number* of \mathcal{J} as follows

$$\tau(\mathcal{J}) = \min\{\kappa : \mathcal{J} \text{ is not } \kappa - translatable\}.$$

2000 Mathematics Subject Classification. 03E05, 03E17.

Key words and phrases. generalized Cantor spaces, transitive cardinal coefficients.

JAN KRASZEWSKI

For more information about relations between classical and transitive cardinal coefficients of ideals – see [2]. For more about translatability – see [1], [3] and [6].

From now on we deal with the generalized Cantor space 2^{κ} interpreted as the set of all functions from an infinite cardinal number κ into the set $\{0, 1\}$. This space is endowed with the standard product topology. Moreover, we consider the standard product measure and the standard product group structure on 2^{κ} .

We introduce some extra notation in order to simplify further considerations. Let κ be an infinite cardinal number. We put $Inj(\omega, \kappa) = \{\varphi \in \kappa^{\omega} : \varphi \text{ is an injection}\}$. For $A \subseteq 2^{\kappa}$, $B \subseteq 2^{\omega}$ and $\varphi \in Inj(\omega, \kappa)$ we put $\varphi * A = \{x \circ \varphi : x \in A\}$ and $B_{\varphi} = \{x \in 2^{\kappa} : x \circ \varphi \in B\}$.

Obviously, $\varphi * A \subseteq 2^{\omega}$ and $B_{\varphi} \subseteq 2^{\kappa}$. Another simple observation is that for $A \subseteq 2^{\kappa}$, $B \subseteq 2^{\omega}$ and $\varphi \in Inj(\omega, \kappa)$ we have $A \subseteq (\varphi * A)_{\varphi}$ and $\varphi * B_{\varphi} = B$.

Let \mathcal{J} be a σ -ideal of subsets of 2^{ω} . We say that \mathcal{J} is *productive* if

$$(\forall A \subseteq 2^{\omega})(\forall \varphi \in Inj(\omega, \omega))(\varphi * A \in \mathcal{J} \Rightarrow A \in \mathcal{J}).$$

It is easy to show that \mathcal{J} is productive if and only if for every $A \subseteq 2^{\omega}$ and $\varphi \in Inj(\omega, \omega)$ if $A \in \mathcal{J}$ then $A_{\varphi} \in \mathcal{J}$.

Directly from their definitions we deduce that the σ -ideals of meagre subsets and of null subsets of 2^{ω} are productive. Also the σ -ideal generated by closed null subsets of 2^{ω} is productive. Moreover, the ideal \mathbb{S}_2 investigated in [4] is the least non-trivial productive σ -ideal of subsets of the Cantor space.

For any productive σ -ideal \mathcal{J} we define

$$\mathcal{J}_{\kappa} = \{ A \subseteq 2^{\kappa} : (\exists \varphi \in Inj(\omega, \kappa)) \, \varphi * A \in \mathcal{J} \}.$$

A standard consideration shows that \mathcal{J}_{κ} is a σ -ideal of subsets of 2^{κ} . If \mathcal{J} is invariant then so is \mathcal{J}_{κ} . If $A \in \mathcal{J}_{\kappa}$ then any $\varphi \in Inj(\omega, \kappa)$ such that $\varphi * A \in \mathcal{J}$ is called *a witness* for A.

Let us also recall one useful definition used in [5]. We say that an ideal \mathcal{J} of subsets of 2^{ω} has WFP (Weak Fubini Property) if for every $\varphi \in Inj(\omega, \omega)$ and every $A \subseteq 2^{\omega}$ if A_{φ} is in \mathcal{J} then so is A.

The σ -ideals of subsets of 2^{ω} mentioned above obviously have WFP. We will need the following technical lemma proved in [5].

Lemma 1.1. If \mathcal{J} is a productive ideal of subsets of 2^{ω} having WFP then for every $\varphi \in Inj(\omega, \kappa)$ and every $A \subseteq 2^{\omega}$ if $A_{\varphi} \in \mathcal{J}_{\kappa}$ then $A \in \mathcal{J}$.

2. Transitive cardinal coefficients of ideals on 2^{κ}

From now on we assume that \mathcal{J} is a proper, invariant and productive σ -ideal of subsets of 2^{ω} containing all singletons and that $\kappa \geq \omega_1$. We investigate relations between transitive cardinal coefficients of \mathcal{J} and those of \mathcal{J}_{κ} . Some of them are similar to relations between standard cardinal coefficients of \mathcal{J} and \mathcal{J}_{κ} proved in [5]. We omit the proofs, as they are also analogous.

 $\mathbf{2}$

Theorem 2.1. $\operatorname{add}_t(\mathcal{J}_{\kappa}) = \omega_1$.

Theorem 2.2. $\operatorname{cof}_t(\mathcal{J}_{\kappa}) \leq \max\{\operatorname{cof}([\kappa]^{\leq \omega}), \operatorname{cof}_t(\mathcal{J})\}$. Moreover, if \mathcal{J} has WFP then $\operatorname{cof}_t(\mathcal{J}_{\kappa}) \geq \operatorname{cof}_t(\mathcal{J})$.

However, other transitive cardinal coefficients behave in a radically different way.

Theorem 2.3. If \mathcal{J} has WFP then $\operatorname{add}_t^*(\mathcal{J}_\kappa) = \operatorname{add}_t^*(\mathcal{J})$.

Proof. Let $T \subseteq 2^{\kappa}$ be such that $A + T \notin \mathcal{J}_{\kappa}$ for some $A \in \mathcal{J}_{\kappa}$ and let φ be a witness for A. Then $\varphi * A \in \mathcal{J}$ and $\varphi * A + \varphi * T = \varphi * (A + T) \notin \mathcal{J}$. Hence $\operatorname{add}_t^*(\mathcal{J}_{\kappa}) \geq \operatorname{add}_t^*(\mathcal{J})$.

To show the other inequality, let us fix $T \subseteq 2^{\omega}$ such that $A + T \notin \mathcal{J}$ for some $A \in \mathcal{J}$. We have $A_{id_{\omega}} \in \mathcal{J}_{\kappa}$ (because $id_{\omega} \in Inj(\omega, \kappa)$ and \mathcal{J} is productive). We define $T' = \{t \in 2^{\kappa} : t \upharpoonright \omega \in T \land t \upharpoonright (\kappa \setminus \omega) \equiv 0\}$. Then $A_{id_{\omega}} + T' = (A + T)_{id_{\omega}}$ and from Lemma 1.1 we get $(A + T)_{id_{\omega}} \notin \mathcal{J}_{\kappa}$, which ends the proof.

Theorem 2.4. $\operatorname{cov}_t(\mathcal{J}_{\kappa}) = \operatorname{cov}_t(\mathcal{J}).$

Proof. Similar to the proof of Theorem 2.3.

Theorem 2.5. If \mathcal{J} has WFP then $\tau(\mathcal{J}_{\kappa}) = \tau(\mathcal{J})$.

Proof. Suppose that \mathcal{J} is ξ -translatable. We consider any $A \in \mathcal{J}_{\kappa}$ and $\varphi \in Inj(\omega, \kappa)$ being its witness. Then $\varphi * A \in \mathcal{J}$ and we fix $B_{\varphi * A} \in \mathcal{J}$. If $S \in [2^{\kappa}]^{\xi}$ then without loss of generality we can assume that $\varphi * S \in [2^{\omega}]^{\xi}$ and thus there exists $t_{\varphi * S} \in 2^{\omega}$ such that $\varphi * A + \varphi * S \subseteq B_{\varphi * A} + t_{\varphi * S}$. Then

$$A + S \subseteq (\varphi * (A + S))_{\varphi} \subseteq (B_{\varphi * A} + t_{\varphi * S})_{\varphi} = (B_{\varphi * A})_{\varphi} + t_{\varphi * S}$$

for some $t \in 2^{\kappa}$. Hence \mathcal{J}_{κ} is ξ -translatable.

On the other hand, let us assume that \mathcal{J}_{κ} is ξ -translatable and consider any $A \in \mathcal{J}$. Then $A' = A_{id_{\omega}} \in \mathcal{J}_{\kappa}$ and we fix $B_{A'} \in \mathcal{J}_{\kappa}$. If $T \in [2^{\omega}]^{\xi}$ then we define $T' \in [2^{\kappa}]^{\xi}$ like in the proof of Theorem 2.3. There exists an appropriate $t_{T'} \in 2^{\kappa}$ such that $A' + T' \subseteq B_{A'} + t_{T'}$. But $A' + T' = (A + T)_{id_{\omega}}$ and

$$(A+T+t_{T'}\restriction \omega)_{id_{\omega}}=(A+T)_{id_{\omega}}+t_{T'}\subseteq B.$$

Let us define

$$C = \bigcup_{T \in [2^{\omega}]^{\xi}} (A + T + t_{T'} \restriction \omega).$$

Then $C \subseteq 2^{\omega}$ and

$$C_{id_{\omega}} = \bigcup_{T \in [2^{\omega}]^{\xi}} (A + T + t_{T'} \restriction \omega)_{id_{\omega}} \subseteq B \in \mathcal{J}_{\kappa}$$

Thus $C_{id_{\omega}} \in \mathcal{J}_{\kappa}$ and from Lemma 1.1 we know that $C \in \mathcal{J}$.

Let us consider any $S \in [2^{\omega}]^{\xi}$ and put $t_S = t_{T'} \upharpoonright \omega$. Then

$$A + S = A + S + t_S + t_S \subseteq C + t_S$$

and we are done.

As an immediate corollary we obtain the following interesting result.

JAN KRASZEWSKI

Corollary 2.6. There exists a null set $A \subseteq 2^{\omega_1}$ such that for every null set $B \subseteq 2^{\omega_1}$ we can find $x \in 2^{\omega_1}$ such that the set $A \cup (A + x)$ cannot be covered by any translation of the set B.

Proof. From [1] we know that $\tau(\mathcal{N}) = 2$, where \mathcal{N} states for the ideal of null subsets of 2^{ω} . In [5] is shown that \mathcal{N}_{ω_1} is exactly the ideal of null subsets of 2^{ω_1} . But from Theorem 2.5 we know that $\tau(\mathcal{N}_{\omega_1}) = 2$ and this is what we have been supposed to show.

Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-156 Wrocław, Poland kraszew@math.uni.wroc.pl

References

- T. Bartoszyński, A note on duality between measure and category, Proc. Amer. Math. Soc., 128 (2000) 2745–2748.
- [2] T. Bartoszyński, H. Judah, Set Theory: On the structure of the real line, A. K. Peters, Wellesley, Massachusetts 1995.
- [3] T.J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 118 (1993) 577–586.
- [4] J. Cichoń, J. Kraszewski, On some new ideals on the Cantor and Baire spaces, Proc. Amer. Math. Soc., 126 (1998) 1549–1555.
- [5] J. Kraszewski, Properties of ideals on generalized Cantor spaces, J. Symb. Logic, 66 (2001) 1303– 1320.
- [6] M. Kysiak, On Erdős-Sierpiński duality for Lebesgue measure and Baire category, Master's thesis, Warsaw 2000 (in Polish).

4