Mariusz Mirek

University of Wrocław
Mathematical Institute
Plac Grunwaldzki 2/4
50-384 Wrocław
POLAND

Contact:

Office: 10.3
Phone: +48 71 375 7093
E-mail: mirek[at]math.uni.wroc.pl

My current address:

Institute for Advanced Study
School of Mathematics
Einstein Drive 1
Princeton
08540 USA



Office: A 106
Phone: +1 609 951-4530
E-mail: mirek[at]math.ias.edu

About me:

I am a member of the School of Mathematics at the Institute for Advanced Study in Princeton
and I am an assistant professor in the Mathematical Institute at the University of Wrocław.
I completed my PhD in Mathematics at the University of Wrocław in June 2011. My research
interests are concentrated in the field of harmonic analysis and its applications to ergodic theory
and probability theory.

Education and employment:




Papers and preprints:

  1. M. Mirek. Square function estimates for discrete Radon transforms.
    Submitted.

  2. M. Mirek, E. M. Stein and B. Trojan. $\ell^p(\mathbb Z^d)$-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates.
    Submitted.

  3. B. Krause, M. Mirek and B. Trojan. Two-parameter version of Bourgain's inequality I: Rational frequencies.
    Submitted.

  4. M. Mirek, E. M. Stein and B. Trojan. $\ell^p(\mathbb Z^d)$-estimates for discrete operators of Radon type: Variational estimates.
    To appear in the Inventiones Mathematicae.

  5. M. Mirek, B. Trojan and P. Zorin-Kranich. Variational estimates for averages and truncated singular integrals along the prime numbers.
    To appear in the Transactions of the American Mathematical Society.

  6. M. Mirek and C. Thiele. A local $T(b)$ theorem for perfect Calderón-Zygmund operators.
    Proceedings of the London Mathematical Society. 114, (2017), no. 3, 35-59.

  7. B. Krause, M. Mirek and B. Trojan. On the Hardy-Littlewood majorant problem for arithmetic sets.
    Journal of Functional Analysis 271, (2016), no. 1, 164-181.

  8. M. Mirek and B. Trojan. Discrete maximal functions in higher dimensions and applications to ergodic theory.
    American Journal of Mathematics 138, (2016), no. 6, 1495-1532.

  9. M. Mirek and B. Trojan. Cotlar's ergodic theorem along the prime numbers.
    Journal of Fourier Analysis and Applications 21, (2015), no. 4, 822-848.

  10. M. Mirek. Weak type $(1,1)$ inequalities for discrete rough maximal functions.
    Journal d'Analyse Mathematique 127, (2015), no. 1, 247-281.

  11. M. Mirek. Roth's Theorem in the Piatetski-Shapiro primes.
    Revista Matemática Iberoamericana 31, (2015), no. 2, 617-656.

  12. M. Mirek. $\ell^p(\mathbb Z)$-boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems.
    Mathematische Zeitschrift 279, (2015), no. 1-2, 27-59.

  13. M. Mirek. Discrete analogues in harmonic analysis: maximal functions and singular integral operators.
    Mathematisches Forschungsinstitut Oberwolfach: Real Analysis, Harmonic Analysis and Applications, 20-26 July 2014.
    DOI: 10.4171/OWR/2014/34, Rep. no. 34, (2014), 1893-1896.

  14. D. Buraczewski, E. Damek, S. Mentemeier and M. Mirek. Heavy tailed solutions of multivariate smoothing transforms.
    Stochastic Processes and their Applications 123, (2013), 1947-1986.

  15. M. Mirek. On fixed points of a generalized multidimensional affine recursion.
    Probability Theory and Related Fields (2013), 156, no. 3-4, 665-705.

  16. E. Damek, S. Mentemeier, M. Mirek and J. Zienkiewicz. Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices.
    Potential Analysis (2013), 38 no. 3, 683-697.

  17. D. Buraczewski, E. Damek and M. Mirek. Asymptotics of stationary solutions of multivariate stochastic recursions with heavy tailed inputs and related limit theorems.
    Stochastic Processes and their Applications 122, (2012), 42-67.

  18. M. Mirek. Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps.
    Probability Theory and Related Fields 151, (2011), no. 3, 705-734.

  19. M. Mirek. Convergence to stable laws and a local limit theorem for stochastic recursions.
    Colloquium Mathematicum 118, (2010), 705-720.


Updated: 03.01.2017