# On fields and groups

## Jakub Gismatullin (Wrocław)

Model Theory Conference in celebration of Ludomir Newelski's 60th birthday

December 23, 2022

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

- join work with Katarzyna Tarasek<sup>1</sup> about some elementary aspects of algebraic closure of pseudofinite fields,
- join work with Karol Kuczmarz<sup>2</sup> on metric groups and Gromov-Hausdorff distance,
- **(a)** join work with Krzysztof Majcher and Martin Ziegler<sup>3</sup> on metric ultraproducts.

<sup>1</sup>arXiv:2109.10130 J. Gismatullin & K. Tarasek, On binomials and algebraic closure of some pseudofinite fields, Communications in Algebra, 2023, VOL. 51, NO. 1, 95–97, DOI: 10.1080/00927872.2022.2088778 <sup>2</sup>http://www.math.uni.wroc.pl/~gismat/gh.pdf <sup>3</sup>arXiv:2010.03394

# A bit of memories: 2008, 2009



Figure: Barcelona 2008



#### Figure: Banff (Canada) 2009

3

3/21

ヘロト ヘロト ヘヨト ヘヨト

# Year 2012



# 

2

# What is a binomial? When a binomial is irreducible?

A bit of reminder:

## Definition

A binomial over a field K is a polynomial of the form  $x^n - g$ , where  $n \in \mathbb{N}$  and  $g \in K$ .

## Lemma

 $x^n - g$  is irreducible over K if and only if <sup>a</sup>:

- $g \notin K^p = \{x^p : x \in K\}$ , for each prime p, which divides n and
- ② if 4|n, then  $g \notin -4K^4 = \{-4x^4 : x \in K\}$ .

<sup>a</sup>G. Karpilovsky, Topics in field theory, '89

#### Lemma

Let  $\mathbb{F}_q$  be a finite field of cardinality  $q = p^m$ , p-prime. Then  $x^n - g$ , for  $g \in \mathbb{F}_q$  is irreducible over  $\mathbb{F}_q$  if and only if <sup>a</sup>:

- 1) GCD((q-1)/e, n) = 1 and every prime divisor of n divides e,
- 2) if 4|n, then also 4|q 1,

where e is the order of g in the multiplicative group  $\mathbb{F}_q^{\times} = \mathbb{F}_q \setminus \{0\}$ .

<sup>&</sup>lt;sup>a</sup>R. Lidl, H. Niederreiter. Finite fields, '97

# Finite fields

 $\mathbb{F}_q$  - finite field of cardinality  $q = p^m$ , *p*-prime  $\mathbb{F}_q^{\times} = \langle g_q \rangle$  is a cyclic group, generated by  $g_q$ 

#### Lemma

 $x^n - g_q$  is irreducible over  $\mathbb{F}_q$  if and only if

every prime divisor of n divides q - 1 and if 4|n, then 4|q - 1.

## Example

For q = 13 take generator  $g_{13} = 2$ . Then

 $x^n - 2$  is irreducible over  $\mathbb{F}_{13} \Leftrightarrow$  each prime divisor of *n* must divide  $q - 1 = 12 = 2^2 \cdot 3$ , so *n* must be of the form  $2^m \cdot 3^k$ ,  $m, k \in \mathbb{N}$ . Therefore each binomial

$$x^{2^{m}\cdot 3^{k}} - 2$$

is irreducible over  $\mathbb{F}_{13}$ .

# Pseudofinite fields

A straightforward application of the Łoś ultraproduct theorem gives:

#### Theorem

Let  $\mathbb{F}_{\bar{q}} = \prod_{k \in \mathbb{N}} \mathbb{F}_{q_k} / \mathcal{U}$  be an ultraproduct of  $\{\mathbb{F}_{q_k}\}_{k \in \mathbb{N}} \lim_{k \to \infty} q_k = \infty$  and let  $g = ([g_k]_{k \in \mathbb{N}})_{\mathcal{U}} \in \mathbb{F}_{\bar{q}}$ , where each  $g_k$  is a generator of  $\mathbb{F}_{q_k}^{\times}$ . Fix  $n \in \mathbb{N}$  and let {prime divisors of n} = { $p_1, \ldots, p_r$ }. The following conditions are equivalent: (1)  $x^n - g$  is irreducible over  $\mathbb{F}_{\bar{q}}$ , (2) the prime divisor of  $\mathbb{F}_{\bar{q}}$  is the following conditions are equivalent:

(2) there exists  $h \in \mathbb{F}_{\bar{q}}$  such that  $x^n - h$  is irreducible over  $\mathbb{F}_{\bar{q}}$ ,

(3) for  $\mathcal{U}$ -almost all  $k \in \mathbb{N}$ :

 $p_1, p_2, \ldots, p_r$  divide  $q_k - 1$  and if 4|n then  $4|q_k - 1$ .

## A construction

Let us construct a pseudofinite field  $\mathbb{F}_{\bar{q}}$  of characteristic zero and  $g \in \mathbb{F}_{\bar{q}}$ , such that

 $x^n - g$  is irreducible for every  $n \in \mathbb{N}$ .

## Example

 $\{2 = p_1, p_2, \ldots\}$  - all prime numbers. Define a sequence  $\{q_k : k \in \mathbb{N}\}$  of prime powers, such that

$$4,p_1,p_2,\ldots,p_k$$
 divide  $q_k-1$  for all natural  $k\in\mathbb{N}.$ 

For example one can take

$$q_k = p_{k+1}^{(p_1-1)(p_2-1)\cdots(p_k-1)},$$

as then  $p_i|q_k - 1 = r_k^{p_i - 1} - 1$  by the Fermat's little theorem. Take  $\mathbb{F}_{\bar{q}} = \prod_{k \in \mathbb{N}} \mathbb{F}_{q_k} / \mathcal{U}$ . Then by the Theorem:  $x^n - g$  is irreducible over  $\mathbb{F}_{\bar{q}}$ , for all  $n \in \mathbb{N}$ .

э

イロト イボト イヨト イヨト

# Application

Application of Theorem and Example: handy description of algebraic closure of  $\mathbb{F}_{\bar{q}}$ 

#### Theorem

If for some  $g \in \mathbb{F}_{\bar{q}}$ , for all  $n \in \mathbb{N}$ ,  $x^n - g$  is irreducible over  $\mathbb{F}_{\bar{q}}$ , then its algebraic closure  $\widehat{\mathbb{F}_{\bar{q}}}$  is generated by  $\{\sqrt[n]{g} : n \in \mathbb{N}\}$  over  $\mathbb{F}_{\bar{q}}$ :

$$\widehat{\mathbb{F}_{\bar{q}}} = \mathbb{F}_{\bar{q}}\left(\sqrt[n]{g} : n \in \mathbb{N}\right) = \mathbb{F}_{\bar{q}}\left(g^{\mathbb{Q}}\right).$$

Compactness theorem implies:

## Corollary

If  $\mathbb{F}$  is a pseudofinite field which is  $\omega$ -saturated and contains all roots of unity, then there is  $g \in \mathbb{F}$  such that

$$\widehat{\mathbb{F}} = \mathbb{F}\left(g^{\mathbb{Q}}\right).$$

イロト イヨト イヨト イヨト

Metric group: bi-invariant norm and invariant metric on a group

Suppose G is a group.

 $d\colon G imes G o \mathbb{R}_{\geq 0}$  is an *invariant metric* on *G*, if

$$d(gx,gy) = d(x,y) = d(xg,yg)$$

for all  $g, x, y \in G$ 

Each such invariant metric comes from a *bi-invariant (i.e. conjugacy invariant) norm (lenght)*  $\|\cdot\|$ :  $G \to \mathbb{R}_{\geq 0}$  (another notation  $\ell$ :  $G \to \mathbb{R}_{\geq 0}$ ) satisfying

- $||gh|| \le ||g|| + ||h||$
- $||g^{-1}|| = ||g|| = ||hgh^{-1}||$
- ||g|| = 0 if and only if g = e (pseudonorm, when only ||e|| = 0)

$$\|\cdot\| \quad \rightsquigarrow \quad d(x,y) = \left\|xy^{-1}\right\|$$

$$d(\cdot, \cdot) \quad \rightsquigarrow \quad \|g\| = d(g, e)$$

(日)

## Examples of norms and lengths

Examples of bounded and unbounded norms

• Discrete norm: 
$$||g|| := \begin{cases} 1 & : g \neq e \\ 0 & : g = e \end{cases}$$

- Hamming norm  $S_n$ :  $\sigma \in S_n$ ,  $\|\sigma\|_H := \|\{i \in \{1, \ldots, n\} : \sigma(i) \neq i\}\|$
- Rank norm on  $GL_n(F)$  (F: field)  $||g||_r := rank(g I) (= dim(Im(g I)))$
- Conjugacy length (pseudonorm) on a finite group G:

$$\ell_c(g) := \frac{\log |g^G|}{\log |G|}$$

it is a norm when  $Z(G) = \{e\}$ 

< □ > < 同 > < 回 > < 回 >

# Motivating question

How close to each other are two metric groups?

Let  $(G_m, \|\cdot\|_m)_{m\in\mathbb{N}}$  be a family of metric groups. Metric ultraproduct  $\prod_{m\in\mathbb{N}}{}^{met}G_m$  is  $G_{fin}/N_{\mathcal{U}}$  where

$$G_{\mathsf{fin}} = \left\{ (g_m) \in \prod_{m \in \mathbb{N}} G_m : \sup_{m \in \mathbb{N}} \|g_m\|_m < \infty \right\} \text{ oraz } N_{\mathcal{U}} = \left\{ (g_m) : \lim_{m \to \mathcal{U}} \|g_m\|_m = 0 \right\}$$

Consider metric ultraproducts:

• 
$$S_1 = \prod_{m \in \mathbb{N}} {}^{\text{met}}(S_{\infty}, \frac{1}{m} \| \cdot \|_{\mathcal{H}}),$$
  
•  $S_2 = \prod_{m \in \mathbb{N}} {}^{\text{met}}(S_{\infty}, \frac{1}{m^2} \| \cdot \|_{\mathcal{H}}),$ 

where  $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$ . Both  $S_1$  and  $S_2$  are simple metric groups<sup>4</sup>.

#### Question

What is  $d_{GH}(\mathcal{S}_1, \mathcal{S}_2) = ?$ 

<sup>&</sup>lt;sup>4</sup>arXiv:2010.03394, JG, KM, MZ

JG (Ludomir Newelski's 60th birthday)

## Hausdorff and Gromov-Hausdorff distances

The Hausdorff distance  $d_H(A, B)$  measures the distance of two sets A, B in a given metric space (X, d), and is defined as:

$$d_H(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(b,A)\right\}.$$

The Gromov-Hausdorff distance  $d_{GH}(X, Y)$  goes a step further and tries to give the distance of two metric spaces X and Y.  $d_{GH}(X, Y) = 0$  iff X and Y are isometric.

Gromov-Hausdorff distance  $d_{GH}(X, Y)$  of two metric spaces  $(X, d^X)$  i  $(Y, d^Y)$  is defined via  $d_H$  between isometric embeddings of X and Y into an arbitrary metric space  $(Z, d^Z)$ :

$$d_{GH}(X,Y) = \inf \left\{ d_H \Big( \phi_X[X], \phi_Y[Y] \Big) : \phi_X : X o Z, \ \phi_Y : Y o Z \ ext{are isometries} 
ight\}.$$

This definition is very abstract. Let us use another equivalent definition.

13/21

## Gromov-Hausdorff distance via distortion of correspondence

- A correspondence  $R \subseteq X \times Y$  between two sets X i Y is a subset of  $X \times Y$  with full projections on X and Y:  $\pi_1(R) = X$  and  $\pi_2(R) = Y$
- **2**  $\mathcal{R}(X, Y)$  = the family of *all* correspondences between X i Y
- A distortion dis(R) of  $R \in \mathcal{R}(X, Y)$  is:

$$\operatorname{dis}(R) = \sup_{(x,y),(x',y')\in R} \left| d^X(x,x') - d^Y(y,y') \right|.$$

The Gromov-Hausdorff distance  $d_{GH}(X, Y)$  can be determined via distortions<sup>5</sup>:

$$d_{GH}(X,Y) = rac{1}{2} \inf \left\{ \operatorname{dis}(R) : R \in \mathcal{R}(X,Y) 
ight\}.$$

#### Example

Let 
$$G = (\mathbb{Z}, d_{\mathbb{Z}})$$
, where  $d_{\mathbb{Z}}(n, m) = |n - m|$ . Consider  $H = 2\mathbb{Z} < G$ . Then

$$d_H(\mathbb{Z}, 2\mathbb{Z}) = 1$$
 and  $d_{GH}(\mathbb{Z}, 2\mathbb{Z}) = \frac{1}{2}$ .

Consider a correspondence  $\mathfrak{R} \in \mathcal{R}(\mathbb{Z}, 2\mathbb{Z})$ :

$$\mathfrak{R} = \{(2n, 2n), (2n+1, 2n) : n \in \mathbb{Z}\}.$$

Then dis  $\mathfrak{R} = 1$ , so  $d_{GH}(\mathbb{Z}, 2\mathbb{Z}) = \frac{1}{2}$ .

<sup>5</sup>D. Burago, Y. Burago, S. Ivanov. A course in metric geometry, '01 <  $\square$  > <  $\square$  > <  $\blacksquare$  > <

14/21

# Hausdorff distance between permutation groups

#### Lemma

(G, d) - metric group, d- bi-invariant and H < G. Then

 $d_H(G, H) = \sup \{ d(g, H) : g \in G \} = \sup \{ d(g_i, H) : i \in I \},\$ 

where  $\{g_i : i \in I\}$  is a set of representatives of all left cosets H in G.

#### Corollary

The Hausdorff distance between  $S_n$  and  $S_m$  with the Hamming metric is

$$d_{H}(S_{n},S_{m}) = \begin{cases} 2(n-m) & : m \geq \frac{1}{2}n \\ n & : m < \frac{1}{2}n \end{cases}.$$

э

# Hausdorff distance between some linear groups

## Definition

Let  $\mathbb{F}$  be a field, fix  $n \in \mathbb{N}$ ,  $n \ge 2$  and define:

$$\begin{aligned} \mathsf{GL}_n(\mathbb{F}) &= \{ M \in M_{n \times n}(\mathbb{F}) : \det(M) \neq 0 \}, \\ \mathsf{SL}_n(\mathbb{F}) &= \{ M \in \mathsf{GL}_n(\mathbb{F}) : \det(M) = 1 \}, \\ \mathsf{T}_n(\mathbb{F}) &= \{ M \in \mathsf{GL}_n(\mathbb{F}) : M \text{ is upper triangular } \}, \\ \mathsf{UT}_n(\mathbb{F}) &= \{ M \in \mathsf{T}_n(\mathbb{F}) : M \text{ has } 1 \text{ on the diagonal } \}, \\ \mathsf{Diag}_n(\mathbb{F}) &= \{ M \in \mathsf{T}_n(\mathbb{F}) : M \text{ is diagonal matrix } \}, \\ \mathsf{Sc}_n(\mathbb{F}) &= \{ M \in \mathsf{Diag}_n(\mathbb{F}) : M = \lambda \cdot I \text{ for some } \lambda \in \mathbb{F} \setminus \{0\} \}. \end{aligned}$$

## Theorem

Let  $n \ge m \ge 2 \in \mathbb{N}$ . Then

$$d_{H}(\mathsf{UT}_{n}(\mathbb{F}),\mathsf{UT}_{m}(\mathbb{F})) = d_{H}(\mathsf{T}_{n}(\mathbb{F}),\mathsf{T}_{m}(\mathbb{F})) = n - m,$$
  

$$d_{H}(\mathsf{Diag}_{n}(\mathbb{F}),\mathsf{Diag}_{m}(\mathbb{F})) = n - m, \text{ if } \mathbb{F} \neq \mathbb{F}_{2},$$
  

$$d_{H}(\mathsf{T}_{n}(\mathbb{F}),\mathsf{UT}_{n}(\mathbb{F})) = n, \text{ if } \mathbb{F} \neq \mathbb{F}_{2},$$
  

$$d_{H}(\mathsf{T}_{n}(\mathbb{F}),\mathsf{T}_{n}(\mathbb{F}) \cap \mathsf{SL}_{n}(\mathbb{F})) = 1, \text{ if } \mathbb{F} \neq \mathbb{F}_{2}.$$

イロン イヨン イヨン イヨン

2

# Hausdorff distance - conjecture

Conjecture below is suggested by doing computations in GAP for small finite fields.

## Conjecture

Let  $\mathbb{F}$  be a field and  $n, k \in \mathbb{N}_{>1}$ . For n > k consider  $SL_k(\mathbb{F})$  as diagonally embedded into  $SL_n(\mathbb{F})$ . Then the following hold for any  $n \in \mathbb{N}_{>1}$ 

- $d_{H}(\mathsf{SL}_{n+2}(\mathbb{F}),\mathsf{SL}_{n}(\mathbb{F})) = d_{H}(\mathsf{GL}_{n+2}(\mathbb{F}),\mathsf{GL}_{n}(\mathbb{F})) = 4,$

We could not compute  $d_H(SL_6(\mathbb{F}_2), SL_2(\mathbb{F}_2))$  (computationally intractable problem), so we have no reasonable conjecture about this quantity.

# Gromov-Hausdorff distance for permutation groups

General known results on Gromov-Hausdorff distance give us the following bounds:

$$rac{1}{2}(n-m) \leq d_{GH}(S_n,S_m) \leq rac{1}{2}n ext{ for } 1 < m < n.$$

We proved that:

#### Theorem

For 
$$1 < m < n$$
:  
a)  $d_{GH}(S_n, S_m) \le \frac{3}{2}(n-m)$ , for  $n \le \frac{3}{2}m$ ,  
a)  $d_{GH}(S_n, S_m) = \frac{1}{2}n$ , for  $n > m!$ ,  
b)  $d_{GH}(S_n, S_m) \le \frac{1}{2}(n-1)$ , for  $n \le m!$ ,  $n \ge 4$ ,  $m \ge 3$ ,  
c)  $d_{GH}(S_n, S_m) \le \frac{1}{2}(n-2)$ , for  $n \le \frac{1}{2}(1 + \sqrt{4m! + 1})$ ,  $n \ge 5$ ,  $m \ge 4$ ,  
c)  $d_{GH}(S_n, S_{n-1}) = \frac{3}{2}$ , for all  $n \ge 3$ .

The exact value of  $d_{GH}(S_n, S_m)$  is unknown, in the general case.

< □ > < □ > < □ > < □ > < □ >

# Gromov-Hausdorff distance for linear groups

#### Theorem

Suppose  $\mathbb{F} \neq \mathbb{F}_2$ . Then

$$d_H(\operatorname{GL}_n(\mathbb{F}),\operatorname{SL}_n(\mathbb{F}))=1, \quad d_{GH}(\operatorname{GL}_n(\mathbb{F}),\operatorname{SL}_n(\mathbb{F}))=\frac{1}{2}.$$

#### Theorem

Let  $G := \operatorname{GL}_n(\mathbb{F})$ ,  $H := \operatorname{SL}_n(\mathbb{F})$  and  $\mathbb{F} \neq \mathbb{F}_2$ .

• Let U be a group such that H < U < G. Then we have that:

$$d_H(G, U) = d_H(U, H) = 1, \ \ d_{GH}(G, U) = d_{GH}(U, H) = \frac{1}{2}.$$

**2** Let U be a group such that  $\text{Diag}_n(\mathbb{F}) < U < G$ . Then we have that:

$$d_H(U, U \cap \operatorname{SL}_n(\mathbb{F})) = 1, \ \ d_{GH}(U, U \cap \operatorname{SL}_n(\mathbb{F})) = \frac{1}{2}.$$

イロト イポト イヨト イヨト

Conjecture below is suggested by doing intensive computational experiments.

#### Conjecture

- $d_{GH}(\operatorname{GL}_n(\mathbb{F}), \operatorname{T}_n(\mathbb{F})) = d_{GH}(\operatorname{GL}_n(\mathbb{F}), \operatorname{UT}_n(\mathbb{F})) = \frac{n}{2}$
- If  $\mathbb{F} \neq \mathbb{F}_2$ , then  $d_{GH}(\mathsf{T}_n(\mathbb{F}), \mathsf{UT}_n(\mathbb{F})) = \frac{n}{2}$ .
- $d_{GH}(\mathsf{T}_n(\mathbb{F}), \mathrm{Diag}_n(\mathbb{F})) = \frac{n-1}{2}$

イロト イポト イヨト イヨト

Thank you!

| JG (Ludo | omir Newe | lski's 60th | birthday) |
|----------|-----------|-------------|-----------|
|----------|-----------|-------------|-----------|

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶