On fields and groups

Jakub Gismatullin (Wrocław)
Model Theory Conference in celebration of Ludomir Newelski's 60th birthday

December 23, 2022

The talk is based on

(1) join work with Katarzyna Tarasek ${ }^{1}$ about some elementary aspects of algebraic closure of pseudofinite fields,
(2) join work with Karol Kuczmarz ${ }^{2}$ on metric groups and Gromov-Hausdorff distance, (3) join work with Krzysztof Majcher and Martin Ziegler ${ }^{3}$ on metric ultraproducts.

[^0]A bit of memories: 2008, 2009

Figure: Barcelona 2008

Figure: Banff (Canada) 2009

Year 2012

Figure: Banff \& hard work in Wrocław

What is a binomial? When a binomial is irreducible?

A bit of reminder:

Definition

A binomial over a field K is a polynomial of the form $x^{n}-g$, where $n \in \mathbb{N}$ and $g \in K$.

Lemma

$x^{n}-g$ is irreducible over K if and only if ${ }^{a}$:
(1) $g \notin K^{p}=\left\{x^{p}: x \in K\right\}$, for each prime p, which divides n and
(2) if $4 \mid n$, then $g \notin-4 K^{4}=\left\{-4 x^{4}: x \in K\right\}$.
${ }^{a}$ G. Karpilovsky, Topics in field theory, '89

Lemma

Let \mathbb{F}_{q} be a finite field of cardinality $q=p^{m}, p$-prime. Then $x^{n}-g$, for $g \in \mathbb{F}_{q}$ is irreducible over \mathbb{F}_{q} if and only if ${ }^{a}$:

1) $\operatorname{GCD}((q-1) / e, n)=1$ and every prime divisor of n divides e,
2) if $4 \mid n$, then also $4 \mid q-1$,
where e is the order of g in the multiplicative group $\mathbb{F}_{q}^{\times}=\mathbb{F}_{q} \backslash\{0\}$.
[^1]
Finite fields

\mathbb{F}_{q} - finite field of cardinality $q=p^{m}, p$-prime
$\mathbb{F}_{q}^{\times}=\left\langle g_{q}\right\rangle$ is a cyclic group, generated by g_{q}

Lemma

$x^{n}-g_{q}$ is irreducible over \mathbb{F}_{q} if and only if

$$
\text { every prime divisor of } n \text { divides } q-1 \text { and if } 4 \mid n \text {, then } 4 \mid q-1
$$

Example

For $q=13$ take generator $g_{13}=2$. Then
$x^{n}-2$ is irreducible over $\mathbb{F}_{13} \Leftrightarrow$ each prime divisor of n must divide $q-1=12=2^{2} \cdot 3$, so n must be of the form $2^{m} \cdot 3^{k}, m, k \in \mathbb{N}$. Therefore each binomial

$$
x^{2^{m} \cdot 3^{k}}-2
$$

is irreducible over \mathbb{F}_{13}.

Pseudofinite fields

A straightforward application of the Łoś ultraproduct theorem gives:

Theorem

Let $\mathbb{F}_{\bar{q}}=\prod_{k \in \mathbb{N}} \mathbb{F}_{q_{k}} / \mathcal{U}$ be an ultraproduct of $\left\{\mathbb{F}_{q_{k}}\right\}_{k \in \mathbb{N}} \lim _{k \rightarrow \infty} q_{k}=\infty$ and let

$$
g=\left(\left[g_{k}\right]_{k \in \mathbb{N}}\right)_{\mathcal{U}} \in \mathbb{F}_{\bar{q}}, \text { where each } g_{k} \text { is a generator of } \mathbb{F}_{q_{k}}^{\times}
$$

Fix $n \in \mathbb{N}$ and let $\{$ prime divisors of $n\}=\left\{p_{1}, \ldots, p_{r}\right\}$.
The following conditions are equivalent:
(1) $x^{n}-g$ is irreducible over $\mathbb{F}_{\bar{q}}$,
(2) there exists $h \in \mathbb{F}_{\bar{q}}$ such that $x^{n}-h$ is irreducible over $\mathbb{F}_{\bar{q}}$,
(3) for \mathcal{U}-almost all $k \in \mathbb{N}$:

$$
p_{1}, p_{2}, \ldots, p_{r} \text { divide } q_{k}-1 \text { and if } 4 \mid n \text { then } 4 \mid q_{k}-1
$$

A construction

Let us construct a pseudofinite field $\mathbb{F}_{\bar{q}}$ of characteristic zero and $g \in \mathbb{F}_{\bar{q}}$, such that

$$
x^{n}-g \text { is irreducible for every } n \in \mathbb{N} .
$$

Example

$\left\{2=p_{1}, p_{2}, \ldots\right\}$ - all prime numbers. Define a sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$ of prime powers, such that

$$
4, p_{1}, p_{2}, \ldots, p_{k} \text { divide } q_{k}-1 \text { for all natural } k \in \mathbb{N} \text {. }
$$

For example one can take

$$
q_{k}=p_{k+1}^{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdot \ldots \cdot\left(p_{k}-1\right)}
$$

as then $p_{i} \mid q_{k}-1=r_{k}^{p_{i}-1}-1$ by the Fermat's little theorem. Take $\mathbb{F}_{\bar{q}}=\prod_{k \in \mathbb{N}} \mathbb{F}_{q_{k}} / \mathcal{U}$. Then by the Theorem: $x^{n}-g$ is irreducible over $\mathbb{F}_{\bar{q}}$, for all $n \in \mathbb{N}$.

Application

Application of Theorem and Example: handy description of algebraic closure of $\mathbb{F}_{\bar{q}}$

Theorem

If for some $g \in \mathbb{F}_{\bar{q}}$, for all $n \in \mathbb{N}, x^{n}-g$ is irreducible over $\mathbb{F}_{\bar{q}}$, then its algebraic closure $\widehat{\mathbb{F}_{\bar{q}}}$ is generated by $\{\sqrt[n]{g}: n \in \mathbb{N}\}$ over $\mathbb{F}_{\bar{q}}$:

$$
\widehat{\mathbb{F}_{\bar{q}}}=\mathbb{F}_{\bar{q}}(\sqrt[n]{g}: n \in \mathbb{N})=\mathbb{F}_{\bar{q}}\left(g^{\mathbb{Q}}\right) .
$$

Compactness theorem implies:

Corollary

If \mathbb{F} is a pseudofinite field which is ω-saturated and contains all roots of unity, then there is $g \in \mathbb{F}$ such that

$$
\widehat{\mathbb{F}}=\mathbb{F}\left(g^{\mathbb{Q}}\right)
$$

Metric group: bi-invariant norm and invariant metric on a group

Suppose G is a group.
$d: G \times G \rightarrow \mathbb{R}_{\geq 0}$ is an invariant metric on G, if

$$
d(g x, g y)=d(x, y)=d(x g, y g)
$$

for all $g, x, y \in G$
Each such invariant metric comes from a bi-invariant (i.e. conjugacy invariant) norm (lenght) $\|\cdot\|: G \rightarrow \mathbb{R}_{\geq 0}$ (another notation $\ell: G \rightarrow \mathbb{R}_{\geq 0}$) satisfying

- $\|g h\| \leq\|g\|+\|h\|$
- $\left\|g^{-1}\right\|=\|g\|=\left\|h g h^{-1}\right\|$
- $\|g\|=0$ if and only if $g=e$ (pseudonorm, when only $\|e\|=0$)

$$
\begin{aligned}
\|\cdot\| & \rightsquigarrow d(x, y)
\end{aligned}=\left\|x y^{-1}\right\|
$$

Examples of norms and lengths

Examples of bounded and unbounded norms

- Discrete norm: $\|g\|:= \begin{cases}1 & : g \neq e \\ 0 & : g=e\end{cases}$
- Hamming norm $S_{n}: \sigma \in S_{n},\|\sigma\|_{H}:=\|\{i \in\{1, \ldots, n\}: \sigma(i) \neq i\}\|$
- Rank norm on $\mathrm{GL}_{n}(F)(F:$ field $)\|g\|_{r}:=\operatorname{rank}(g-I)(=\operatorname{dim}(\operatorname{lm}(g-I)))$
- Conjugacy length (pseudonorm) on a finite group G :

$$
\ell_{c}(g):=\frac{\log \left|g^{G}\right|}{\log |G|}
$$

it is a norm when $Z(G)=\{e\}$

Motivating question

How close to each other are two metric groups?
Let $\left(G_{m},\|\cdot\|_{m}\right)_{m \in \mathbb{N}}$ be a family of metric groups.
Metric ultraproduct $\prod_{m \in \mathbb{N}}{ }^{\text {met }} G_{m}$ is $G_{\text {fin }} / N_{\mathcal{U}}$ where

$$
G_{\text {fin }}=\left\{\left(g_{m}\right) \in \prod_{m \in \mathbb{N}} G_{m}: \sup _{m \in \mathbb{N}}\left\|g_{m}\right\|_{m}<\infty\right\} \text { oraz } N_{\mathcal{U}}=\left\{\left(g_{m}\right): \lim _{m \rightarrow \mathcal{U}}\left\|g_{m}\right\|_{m}=0\right\}
$$

Consider metric ultraproducts:
(1) $\mathcal{S}_{1}=\prod_{m \in \mathbb{N}}{ }^{\text {met }}\left(S_{\infty}, \frac{1}{m}\|\cdot\|_{H}\right)$,
(2) $\mathcal{S}_{2}=\prod_{m \in \mathbb{N}}{ }^{\text {met }}\left(S_{\infty}, \frac{1}{m^{2}}\|\cdot\|_{H}\right)$,
where $S_{\infty}=\bigcup_{n \in \mathbb{N}} S_{n}$. Both \mathcal{S}_{1} and \mathcal{S}_{2} are simple metric groups ${ }^{4}$.

Question

What is $d_{G H}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=$?

[^2]
Hausdorff and Gromov-Hausdorff distances

The Hausdorff distance $d_{H}(A, B)$ measures the distance of two sets A, B in a given metric space (X, d), and is defined as:

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

The Gromov-Hausdorff distance $d_{G H}(X, Y)$ goes a step further and tries to give the distance of two metric spaces X and $Y . d_{G H}(X, Y)=0$ iff X and Y are isometric.

Gromov-Hausdorff distance $d_{G H}(X, Y)$ of two metric spaces $\left(X, d^{X}\right)$ i $\left(Y, d^{Y}\right)$ is defined via d_{H} between isometric embeddings of X and Y into an arbitrary metric space $\left(Z, d^{Z}\right)$:

$$
d_{G H}(X, Y)=\inf \left\{d_{H}\left(\phi_{X}[X], \phi_{Y}[Y]\right): \phi_{X}: X \rightarrow Z, \phi_{Y}: Y \rightarrow Z \text { are isometries }\right\}
$$

This definition is very abstract. Let us use another equivalent definition.

Gromov-Hausdorff distance via distortion of correspondence
(1) A correspondence $R \subseteq X \times Y$ between two sets X i Y is a subset of $X \times Y$ with full projections on X and $Y: \pi_{1}(R)=X$ and $\pi_{2}(R)=Y$
(2) $\mathcal{R}(X, Y)=$ the family of all correspondences between X i Y
(3) A distortion $\operatorname{dis}(R)$ of $R \in \mathcal{R}(X, Y)$ is:

$$
\operatorname{dis}(R)=\sup _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d^{x}\left(x, x^{\prime}\right)-d^{y}\left(y, y^{\prime}\right)\right|
$$

The Gromov-Hausdorff distance $d_{G H}(X, Y)$ can be determined via distortions ${ }^{5}$:

$$
d_{G H}(X, Y)=\frac{1}{2} \inf \{\operatorname{dis}(R): R \in \mathcal{R}(X, Y)\}
$$

Example

Let $G=\left(\mathbb{Z}, d_{\mathbb{Z}}\right)$, where $d_{\mathbb{Z}}(n, m)=|n-m|$. Consider $H=2 \mathbb{Z}<G$. Then

$$
d_{H}(\mathbb{Z}, 2 \mathbb{Z})=1 \text { and } d_{G H}(\mathbb{Z}, 2 \mathbb{Z})=\frac{1}{2}
$$

Consider a correspondence $\mathfrak{R} \in \mathcal{R}(\mathbb{Z}, 2 \mathbb{Z})$:

$$
\Re=\{(2 n, 2 n),(2 n+1,2 n): n \in \mathbb{Z}\} .
$$

Then $\operatorname{dis} \Re=1$, so $d_{G H}(\mathbb{Z}, 2 \mathbb{Z})=\frac{1}{2}$.

Hausdorff distance between permutation groups

Lemma

(G, d) - metric group, d - bi-invariant and $H<G$. Then

$$
d_{H}(G, H)=\sup \{d(g, H): g \in G\}=\sup \left\{d\left(g_{i}, H\right): i \in I\right\},
$$

where $\left\{g_{i}: i \in I\right\}$ is a set of representatives of all left cosets H in G.

Corollary

The Hausdorff distance between S_{n} and S_{m} with the Hamming metric is

$$
d_{H}\left(S_{n}, S_{m}\right)=\left\{\begin{array}{ll}
2(n-m) & : m \geq \frac{1}{2} n \\
n & : m<\frac{1}{2} n
\end{array} .\right.
$$

Hausdorff distance between some linear groups

Definition

Let \mathbb{F} be a field, fix $n \in \mathbb{N}, n \geq 2$ and define:

$$
\begin{aligned}
\mathrm{GL}_{n}(\mathbb{F}) & =\left\{M \in M_{n \times n}(\mathbb{F}): \operatorname{det}(M) \neq 0\right\} \\
\mathrm{SL}_{n}(\mathbb{F}) & =\left\{M \in \mathrm{GL}_{n}(\mathbb{F}): \operatorname{det}(M)=1\right\} \\
\mathrm{T}_{n}(\mathbb{F}) & =\left\{M \in \mathrm{GL}_{n}(\mathbb{F}): M \text { is upper triangular }\right\} \\
\mathrm{UT}_{n}(\mathbb{F}) & =\left\{M \in \mathrm{~T}_{n}(\mathbb{F}): M \text { has } 1 \text { on the diagonal }\right\}, \\
\operatorname{Diag}_{n}(\mathbb{F}) & =\left\{M \in \mathrm{~T}_{n}(\mathbb{F}): M \text { is diagonal matrix }\right\} \\
\mathrm{Sc}_{n}(\mathbb{F}) & =\left\{M \in \operatorname{Diag}_{n}(\mathbb{F}): M=\lambda \cdot I \text { for some } \lambda \in \mathbb{F} \backslash\{0\}\right\} .
\end{aligned}
$$

Theorem

Let $n \geq m \geq 2 \in \mathbb{N}$. Then

$$
\begin{aligned}
d_{H}\left(\mathrm{UT}_{n}(\mathbb{F}), \mathrm{UT}_{m}(\mathbb{F})\right)=d_{H}\left(\mathrm{~T}_{n}(\mathbb{F}), \mathrm{T}_{m}(\mathbb{F})\right) & =n-m, \\
d_{H}\left(\operatorname{Diag}_{n}(\mathbb{F}), \operatorname{Diag}_{m}(\mathbb{F})\right) & =n-m, \text { if } \mathbb{F} \neq \mathbb{F}_{2}, \\
d_{H}\left(\mathrm{~T}_{n}(\mathbb{F}), \mathrm{UT}_{n}(\mathbb{F})\right) & =n, \text { if } \mathbb{F} \neq \mathbb{F}_{2}, \\
d_{H}\left(\mathrm{~T}_{n}(\mathbb{F}), \mathrm{T}_{n}(\mathbb{F}) \cap \mathrm{SL}_{n}(\mathbb{F})\right) & =1, \text { if } \mathbb{F} \neq \mathbb{F}_{2} .
\end{aligned}
$$

Hausdorff distance - conjecture

Conjecture below is suggested by doing computations in GAP for small finite fields.

Conjecture

Let \mathbb{F} be a field and $n, k \in \mathbb{N}_{>1}$. For $n>k$ consider $\mathrm{SL}_{k}(\mathbb{F})$ as diagonally embedded into $\mathrm{SL}_{n}(\mathbb{F})$. Then the following hold for any $n \in \mathbb{N}_{>1}$
(1) $d_{H}\left(\mathrm{SL}_{n+1}(\mathbb{F}), S \mathrm{SL}_{n}(\mathbb{F})\right)=d_{H}\left(\mathrm{GL}_{n+1}(\mathbb{F}), G \mathrm{~L}_{n}(\mathbb{F})\right)=2$,
(2. $d_{H}\left(\mathrm{SL}_{n+2}(\mathbb{F}), S L_{n}(\mathbb{F})\right)=d_{H}\left(G L_{n+2}(\mathbb{F}), G L_{n}(\mathbb{F})\right)=4$,

- $d_{H}\left(\mathrm{SL}_{n+3}(\mathbb{F}), S L_{n}(\mathbb{F})\right)=d_{H}\left(\mathrm{GL}_{n+3}(\mathbb{F}), \mathrm{GL}_{n}(\mathbb{F})\right)=5$.

We could not compute $d_{H}\left(\mathrm{SL}_{6}\left(\mathbb{F}_{2}\right), \mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)\right)$ (computationally intractable problem), so we have no reasonable conjecture about this quantity.

Gromov-Hausdorff distance for permutation groups

General known results on Gromov-Hausdorff distance give us the following bounds:

$$
\frac{1}{2}(n-m) \leq d_{G H}\left(S_{n}, S_{m}\right) \leq \frac{1}{2} n \text { for } 1<m<n .
$$

We proved that:

Theorem

For $1<m<n$:
(1) $d_{G H}\left(S_{n}, S_{m}\right) \leq \frac{3}{2}(n-m)$, for $n \leq \frac{3}{2} m$,
(2) $d_{G H}\left(S_{n}, S_{m}\right)=\frac{1}{2} n$, for $n>m$!,
(3) $d_{G H}\left(S_{n}, S_{m}\right) \leq \frac{1}{2}(n-1)$, for $n \leq m!, n \geq 4, m \geq 3$,
(9) $d_{G H}\left(S_{n}, S_{m}\right) \leq \frac{1}{2}(n-2)$, for $n \leq \frac{1}{2}(1+\sqrt{4 m!+1}), n \geq 5, m \geq 4$,
(5) $d_{G H}\left(S_{n}, S_{n-1}\right)=3 / 2$, for all $n \geq 3$.

The exact value of $d_{G H}\left(S_{n}, S_{m}\right)$ is unknown, in the general case.

Gromov-Hausdorff distance for linear groups

Theorem

Suppose $\mathbb{F} \neq \mathbb{F}_{2}$. Then

$$
d_{H}\left(\mathrm{GL}_{n}(\mathbb{F}), \mathrm{SL}_{n}(\mathbb{F})\right)=1, \quad d_{G H}\left(\mathrm{GL}_{n}(\mathbb{F}), \mathrm{SL}_{n}(\mathbb{F})\right)=\frac{1}{2}
$$

Theorem

Let $G:=\mathrm{GL}_{n}(\mathbb{F}), H:=\mathrm{SL}_{n}(\mathbb{F})$ and $\mathbb{F} \neq \mathbb{F}_{2}$.
(1) Let U be a group such that $H<U<G$. Then we have that:

$$
d_{H}(G, U)=d_{H}(U, H)=1, \quad d_{G H}(G, U)=d_{G H}(U, H)=\frac{1}{2} .
$$

(2) Let U be a group such that $\operatorname{Diag}_{n}(\mathbb{F})<U<G$. Then we have that:

$$
d_{H}\left(U, U \cap \mathrm{SL}_{n}(\mathbb{F})\right)=1, \quad d_{G H}\left(U, U \cap \mathrm{SL}_{n}(\mathbb{F})\right)=\frac{1}{2}
$$

Gromov-Hausdorff distance - more conjectures

Conjecture below is suggested by doing intensive computational experiments.

Conjecture

(1) $d_{G H}\left(\mathrm{GL}_{n}(\mathbb{F}), \mathrm{T}_{n}(\mathbb{F})\right)=d_{G H}\left(\mathrm{GL}_{n}(\mathbb{F}), \mathrm{UT}_{n}(\mathbb{F})\right)=\frac{n}{2}$
(2) If $\mathbb{F} \neq \mathbb{F}_{2}$, then $d_{G H}\left(\mathrm{~T}_{n}(\mathbb{F}), \mathrm{UT}_{n}(\mathbb{F})\right)=\frac{n}{2}$.
(3) $d_{G H}\left(\mathrm{~T}_{n}(\mathbb{F}), \operatorname{Diag}_{n}(\mathbb{F})\right)=\frac{n-1}{2}$

Thank you!

[^0]: ${ }^{1}$ arXiv:2109.10130 J. Gismatullin \& K. Tarasek, On binomials and algebraic closure of some pseudofinite fields, Communications in Algebra, 2023, VOL. 51, NO. 1, 95-97, DOI: 10.1080/00927872.2022.2088778
 ${ }^{2}$ http://www.math.uni.wroc.pl/~gismat/gh.pdf
 ${ }^{3}$ arXiv:2010. 03394

[^1]: ${ }^{a}$ R. Lidl, H. Niederreiter. Finite fields, '97

[^2]: ${ }^{4}$ arXiv:2010.03394, JG, KM, MZ

