
Newelski 60 meeting
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Independent systems.
A simplicial complex is a downward-closed set of subsets
of [n].
T any theory; A(0) ≤ M |= T , p1, . . . , pn commuting in-
variant types over acl(A(0)).
An S system: (A(u) : u ∈ S) substructures of M ; A(u) ⊂
A(v) if u ⊂ v.
Here: An independent system:

(a1, . . . , an) |= p1⊗ · · ·⊗pn|A0;

{ai : i ∈ u} ⊂ A(u) ⊂ acl(A0, ai : i ∈ u)

and for |u| ≥ 2,

A(u) ⊥a
{A(v):v<u} {A(v) : ¬(u ≤ v))}
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(Galois independence.)

An S-system is regular if: for any S ′ < S, independent S ′-
system B, and embedding AS′ → BS′ , the system A + B
remains independent.
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Some points of reference:
Shelah, main gap; Au elementary submodels. In-
dependence: each A(u) is stably independent from
{A(v) : ¬(u ≤ v)} over {A(v) : v < u}.

The case:
A(u) = acl({ai : i ∈ u})

For T=ACF (e.g.), this is an independent system. This is
key to proving simplicity of pseudo-finite fields.
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Let S ⊂ P ([n]) be a simplicial complex.
Define S + S the doubling of S, a subcomplex of ±[n]:
|u| = {|i| : i ∈ u}

DS := {u ⊂ {±}×[n] : |u| ∈ S,&¬∃i ∈ [n] (i ∈ u∧−i ∈ u).}

D(AS): described by a partial type: an independent sys-
tem, with each Au

∼= A|u|.
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Theorem 1. Let (a1, . . . , an) |= p1⊗ · · ·⊗pn.

(a) Let c ∈ acl(a1, . . . , an). Then there exists a regular
P (n)-system A(u) ⊂ acl(ai : i ∈ u) with A(u) f.g.
over A0, and c ∈ A([n]).

(b) Let A be an independent P (n)-system. Then A is
regular iff the doubling D(A) is unique (a complete
type).

(a): a “finitized Löwenheim-Skolem”, top down.
(b, ‘only if’): using induction, reduce to S = P (n), with
result known for P (n)−; form an S-system BS, B(u) =
∪A(u′) : u′ ∈ S + S, u′ ∩ [n] ⊆ u; this extends A over
P (n)−.
We will concentrate on the ‘if’ direction in (b).
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Proof for n = 1:
tp(a) is stationary iff tp(a, b) is uniquely determined, where
a, b are independent, tp(a) = tp(b).
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Proof for n = 2
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Towards n ≥ 3

Note that P (n) and DP (n) are n− 1-dimensional.

The geometric realization of P (n) is an n − 1-simplex.
DP (n) can be presented as the boundary of the con-
vex hull of ∪i∈[n]{±ei}, where ei is the i’th unit vector
(0, · · · , 0, 1, 0, · · · 0) ∈ Rn. Thus DP (n) is homeomrphic
to an n− 1-sphere.
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Hence for any Abelian group C,

Hn−1(DP (n), C) ∼= C

In particular if C 6= 0 then Hn−1(DP (n), C) 6= 0.

Since any n − 1-face of u ∈ DP (n)n−1 belongs to just
two facets, The group Hn−1(DP (n), C) can be defined as
CDP (n)n modulo the subgroup generated by all δu − δu′ ,
where u, u′ ∈ DP (n)n and |u− u′| = n− 1.
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Proof for n ≥ 3

Assume A is not regular; we have to show that D(A)
is not unique. We will define an invariant of D(A) in
Hn−1(D(P (n)).
We may assume the restriction of A to any horn Hi =
{u : i ∈ u} is unique. (Otherwise work over ai and use
induction to prove reducibility of DX.)
For u ∈ P (n)− have bu, that we may take Galois over au;
and tp(A[n]/A<n) does not imply tp(A[n]/B).
Let Gi = Aut(bi/A) where bi = B([n] − {i}). Let H =
Aut(B/A) ≤ ΠiG

i. So H 6= ΠiG
i.
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Lemma. Let G1, . . . , Gn be groups, n ≥ 3, and H ≤
Πi∈[n]G

i Assume πu(H) = Πi∈uG
i for u ∈

(
n

n−1

)
.

Then there exists a (unique!) abelian group C with surjec-
tive homomorphisms ji : Gi → C, such that

H = {(x1, . . . , xn) ∈ G : Σiji(xi) = 0}

Proof. We may assume N1 =: {x ∈ G1 : (x, 1, · · · , 1) ∈
H} = 1. To see that G1 is abelian, let x, y ∈ G1. Then
(x, 1, 1, · · · , 1, x′) and (y, y′, 1, · · · , 1) are in H, for some
x′ ∈ Gn and y′ ∈ G2. Taking commutators, we see that
([x, y], 1, · · · , 1) ∈ H so [x, y] ∈ N1.
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Thus we may assume all Gi = C; for v ∈ Bn−1, bv lies in
an A(v)-definable C-torsor Tv; let T[n] = ΠvTv/H; then T
is again a C-torsor, and by Galois theory, it has a point
t = t(A([n]) defined over A([n]) ∪B.

Now let us move to D(A). Choose elements b′v of each Tv,
v ∈ D(A)n−1. Then for a ∈ D(A)n, t(a)− (b′v)v∈( a

n−1)
∈ C.

This gives a function from D(P (n))n to C. Changing the
choice of b′v matters only up to a coboundary. Hence we
get a well-defined element of Hn−1(D(P (n)) = C.
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But where this come from?
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Regularity: partition version.

Consider formulas φ with a partition of their variables:
φ(x1, . . . , xn). The boundary of φ:

φ−(x1, . . . , xn) =
n∧

i=1

(∃xi)φ

,

Definition. φ(x1, . . . , xn) is (ε-) partition-regular if it is
statistically independent (relative to φ−) from any stronger
boundary formula. (up to ε.)
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Theorem (Szemeredi,Gowers, Rödl-Skokan). 1. Any
φ(x1, . . . , xn) can be partitioned into finitely any
ε-regular formulas.

2. Counting criterion for regularity: take new variables
x−1, . . . , x−n. φ is regular iff the 2n formulas
φ(x±1, . . . , x±n) are statistically independent,
relative to their boundaries.
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Here is a precise and ε-free statement of (1).

Theorem. Let µ be a definable measure, with Fubini. Let
M be a model. Then

B(u) := LM(xi : i ∈ u)

form an independent system of measure algebras.

(Independence = for the stable theory of atomless
Boolean algebras with a finitely additive map to [0, 1].
(Ben-Yaacov))
Can be proved by methods of Tao, Towsner.
But (1) is apparently of relatively little use without the
‘counting criterion’ (2). (cf. Gowers norms.)
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(2) is proved using analysis (Cauchy-Schwartz iterated n−
1 times.)

Corollary (Expansions). If (T ′, µ′) expands (T, µ), and
φ is partition-regular with respect to (T, µ), then φ is
partition-regular with respect to (T ′, µ′).
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An AG analogue of regularity

Basic observation:
o-minimality: A definable X has many subsets, or maps
into a finite set (but very few finite covers.)
strong minimality: X has very few subsets, but many fi-
nite covers (maps from a definable set, with finite fibers.)
Serre, Grothendieck (implicitly Weil for curves) use this
topologically to construct l-adic cohomology.
Here we work measure-theoretically.
‘measure’ |Y/X| ←→ degree of Y → X.

Dualize the definition of regularity.
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For a simplicial complex S ⊂ P (n), an S-variety X is
just a variety Xu for u ∈ S, and a dominant morphism
pu,v : Xu → Xv when v ⊂ u.
We assume Xu → Πi∈UXi is dominant and finite.
We say that X is irreducible if the fiber product

X̂ := {x ∈ ΠuXu : pu,v(xu) = xv}

has a unique maximal-dimensional component.
Given a P (n)-variety X, let DX be the DP (n)-variety
with Xw := X|w|.

Theorem. Let X be a P (n)-variety. If DX is irreducible,
so is any X ×X− Y , Y an irreducible P (n)−-variety over
X− := X|P (n)−. (Special case for ACF of Theorem 1).

21



Corollary (Expansions (dual)). Assume T ′, p′1, . . . , p
′
n ex-

pands T, p1, . . . , pn, and for a1, . . . , an |= p′1⊗ · · ·⊗p′n, T ′

adds no structure to aclT (a1, . . . , an) over a1, . . . , an, i.e.

Aut(aclT ′(a1, . . . , an)) � Aut(aclT (a1, . . . , an)

If AS is regular for T , it is regular for T ′.
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Pseudo-finite bridge

The AG (or stable) regularity was defined by analogy with
combinatorial regularity; but in the setting of pseudo-
finite fields they can be directly compared; a generic auto-
morphism turns covers into partitions. This can be used
to present definable regularity over pseudo-finite fields (
Tao, Chevalier-Levi.)

π : Y → X a Galois cover; X = Y/G.
X a variety over a pseudo-finite field F = Fix(σ).
Yh = {y ∈ Y : σ(y) = h(y)}
Xh = π(Yh) partitions X according to conjugacy classes
of G.
Geometric doubling → combinatorial doubling .
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GVF’s, Bedlewo 2017 (invitation,

apology and update)

GV Fk(t) = Th∀(k(t)alg,+, ·, htn)n=1,2,···

GV FQ ⊆ Th∀(Qalg,+, ·, htn)

Equality? See poster by Micha l Szachniewicz.
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theorem. Any quantifier-free GVF type on a curve X
over F is determined by:

1. The height (of the first nontrivial coordinate).

2. the F -adelic qf type. (values of F -adelic formulas.),
and

3. the Néron character NWp.

An extension holds for any smooth projective variety X.
It allows defining a canonical extension of a qf type over
F to one over a GVF K ≥ F . (1)-formulas over F . (2)-
canonical extension of local types. (3) in Hilbert spaces.
(4) mass zero to any exceptional divisor strictly over K.
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https://people.maths.ox.ac.uk/hrushovski/GVFs/

GVF3.pdf
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Corollary. Let F = F ≤ K. Formulas on X over K are
uniform limits of :

• algebraically bounded, finite formulas.

• formulas over F

• adelic formula Rt(c, b, x) over K.

• formulas (x, c) giving values of the canonical bilinear
map A× J , with c ∈ J(Kalg)

To spell out the uniformity: for any such φ and ε > 0 there
exists a combination ψ of the three above forms, such that
for any GVF structure L on K(X) extending the given
GVF structure on K, |φ− ψ|(K) < ε.
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theorem. The theory GVF is qf stable.

I.e.: if (ai, bi) is a qf-indiscernible sequence and φ a for-
mula, then φ(a1, b2) = φ(b1, a2).
revived by: Karim Adiprasito, Itai Ben Yaacov, H.
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