Newelski 60 meeting Bȩdlewo, December 2022 A stable analogue of Szemerédi regularity

Ehud Hrushovski

Independent systems.
A simplicial complex is a downward-closed set of subsets of $[n]$.
T any theory; $A(0) \leq M \models T, p_{1}, \ldots, p_{n}$ commuting invariant types over $\operatorname{acl}(A(0))$.
An S system: $(A(u): u \in S)$ substructures of $M ; A(u) \subset$ $A(v)$ if $u \subset v$.
Here: An independent system:

$$
\begin{gathered}
\left(a_{1}, \ldots, a_{n}\right) \models p_{1} \otimes \cdots \otimes p_{n} \mid A_{0} ; \\
\left\{a_{i}: i \in u\right\} \subset A(u) \subset \operatorname{acl}\left(A_{0}, a_{i}: i \in u\right)
\end{gathered}
$$

and for $|u| \geq 2$,

$$
\left.A(u) \perp_{\{A(v): v<u\}}^{a}\{A(v): \neg(u \leq v))\right\}
$$

(Galois independence.)
An S-system is regular if: for any $S^{\prime}<S$, independent $S^{\prime \prime}$ system B, and embedding $A_{S^{\prime}} \rightarrow B_{S^{\prime}}$, the system $A+B$ remains independent.

Some points of reference: Shelah, main gap; A_{u} elementary submodels. Independence: each $A(u)$ is stably independent from $\{A(v): \neg(u \leq v)\}$ over $\{A(v): v<u\}$.

The case:

$$
A(u)=\operatorname{acl}\left(\left\{a_{i}: i \in u\right\}\right)
$$

For $\mathrm{T}=\mathrm{ACF}$ (e.g.), this is an independent system. This is key to proving simplicity of pseudo-finite fields.

Let $S \subset P([n])$ be a simplicial complex.
Define $S+S$ the doubling of S, a subcomplex of $\pm[n]$: $|u|=\{|i|: i \in u\}$

$$
D S:=\{u \subset\{ \pm\} \times[n]:|u| \in S, \& \neg \exists i \in[n](i \in u \wedge-i \in u) .\}
$$

$D\left(A_{S}\right)$: described by a partial type: an independent system, with each $A_{u} \cong A_{|u|}$.

Theorem 1. Let $\left(a_{1}, \ldots, a_{n}\right) \models p_{1} \otimes \cdots \otimes p_{n}$.
(a) Let $c \in \operatorname{acl}\left(a_{1}, \ldots, a_{n}\right)$. Then there exists a regular $P(n)$-system $A(u) \subset \operatorname{acl}\left(a_{i}: i \in u\right)$ with $A(u)$ f.g. over A_{0}, and $c \in A([n])$.
(b) Let A be an independent $P(n)$-system. Then A is regular iff the doubling $D(A)$ is unique (a complete type).
(a): a "finitized Löwenheim-Skolem", top down.
(b, 'only if'): using induction, reduce to $S=P(n)$, with result known for $P(n)^{-}$; form an S-system $B_{S}, B(u)=$ $\cup A\left(u^{\prime}\right): u^{\prime} \in S+S, u^{\prime} \cap[n] \subseteq u$; this extends A over $P(n)^{-}$.
We will concentrate on the 'if' direction in (b).

Proof for $n=1$:
$t p(a)$ is stationary iff $t p(a, b)$ is uniquely determined, where a, b are independent, $\operatorname{tp}(a)=t p(b)$.

Proof for $n=2$

Towards $n \geq 3$

Note that $P(n)$ and $D P(n)$ are n-1-dimensional.
The geometric realization of $P(n)$ is an $n-1$-simplex. $D P(n)$ can be presented as the boundary of the convex hull of $\cup_{i \in[n]}\left\{ \pm e_{i}\right\}$, where e_{i} is the i 'th unit vector $(0, \cdots, 0,1,0, \cdots 0) \in \mathbb{R}^{n}$. Thus $D P(n)$ is homeomrphic to an $n-1$-sphere.

Hence for any Abelian group C,

$$
H^{n-1}(D P(n), C) \cong C
$$

In particular if $C \neq 0$ then $H^{n-1}(D P(n), C) \neq 0$.
Since any n - 1 -face of $u \in D P(n)_{n-1}$ belongs to just two facets, The group $H^{n-1}(D P(n), C)$ can be defined as $C^{D P(n)_{n}}$ modulo the subgroup generated by all $\delta_{u}-\delta_{u^{\prime}}$, where $u, u^{\prime} \in D P(n)_{n}$ and $\left|u-u^{\prime}\right|=n-1$.

Proof for $n \geq 3$

Assume A is not regular; we have to show that $D(A)$ is not unique. We will define an invariant of $D(A)$ in $H^{n-1}(D(P(n))$.
We may assume the restriction of A to any horn $H_{i}=$ $\{u: i \in u\}$ is unique. (Otherwise work over a_{i} and use induction to prove reducibility of $D X$.)
For $u \in P(n)^{-}$have b_{u}, that we may take Galois over a_{u}; and $t p\left(A[n] / A_{<n}\right)$ does not imply $\operatorname{tp}(A[n] / B)$.
Let $G^{i}=\operatorname{Aut}\left(b^{i} / A\right)$ where $b^{i}=B([n]-\{i\})$. Let $H=$ $\operatorname{Aut}(B / A) \leq \Pi_{i} G^{i}$. So $H \neq \Pi_{i} G^{i}$.

Lemma. Let G^{1}, \ldots, G^{n} be groups, $n \geq 3$, and $H \leq$ $\Pi_{i \in[n]} G^{i}$ Assume $\pi_{u}(H)=\Pi_{i \in u} G^{i}$ for $u \in\binom{n}{n-1}$.
Then there exists a (unique!) abelian group C with surjective homomorphisms $j_{i}: G^{i} \rightarrow C$, such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right) \in G: \Sigma_{i} j_{i}\left(x_{i}\right)=0\right\}
$$

Proof. We may assume $N_{1}=:\left\{x \in G_{1}:(x, 1, \cdots, 1) \in\right.$ $H\}=1$. To see that G^{1} is abelian, let $x, y \in G^{1}$. Then $\left(x, 1,1, \cdots, 1, x^{\prime}\right)$ and $\left(y, y^{\prime}, 1, \cdots, 1\right)$ are in H, for some $x^{\prime} \in G_{n}$ and $y^{\prime} \in G_{2}$. Taking commutators, we see that $([x, y], 1, \cdots, 1) \in H$ so $[x, y] \in N_{1}$.

Thus we may assume all $G^{i}=C$; for $v \in B_{n-1}, b_{v}$ lies in an $A(v)$-definable C-torsor T_{v}; let $T_{[n]}=\Pi_{v} T_{v} / H$; then T is again a C-torsor, and by Galois theory, it has a point $t=t(A([n])$ defined over $A([n]) \cup B$.

Now let us move to $D(A)$. Choose elements b_{v}^{\prime} of each T_{v}, $v \in D(A)_{n-1}$. Then for $a \in D(A)_{n}, t(a)-\left(b_{v}^{\prime}\right)_{v \in\left(_{n-1}^{a}\right)} \in C$. This gives a function from $D(P(n))_{n}$ to C. Changing the choice of b_{v}^{\prime} matters only up to a coboundary. Hence we get a well-defined element of $H^{n-1}(D(P(n))=C$.

But where this come from?

Regularity: partition version.

Consider formulas ϕ with a partition of their variables: $\phi\left(x_{1}, \ldots, x_{n}\right)$. The boundary of ϕ :

$$
\phi^{-}\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{n}\left(\exists x_{i}\right) \phi
$$

Definition. $\phi\left(x_{1}, \ldots, x_{n}\right)$ is (ϵ-) partition-regular if it is statistically independent (relative to ϕ^{-}) from any stronger boundary formula. (up to ϵ.)

Theorem (Szemeredi,Gowers, Rödl-Skokan). 1. Any $\phi\left(x_{1}, \ldots, x_{n}\right)$ can be partitioned into finitely any ϵ-regular formulas.
2. Counting criterion for regularity: take new variables $x_{-1}, \ldots, x_{-n} . \quad \phi$ is regular iff the 2^{n} formulas $\phi\left(x_{ \pm 1}, \ldots, x_{ \pm n}\right)$ are statistically independent, relative to their boundaries.

Here is a precise and ϵ-free statement of (1).
Theorem. Let μ be a definable measure, with Fubini. Let M be a model. Then

$$
B(u):=L_{M}\left(x_{i}: i \in u\right)
$$

form an independent system of measure algebras.
(Independence $=$ for the stable theory of atomless Boolean algebras with a finitely additive map to $[0,1]$. (Ben-Yaacov))
Can be proved by methods of Tao, Towsner.
But (1) is apparently of relatively little use without the 'counting criterion' (2). (cf. Gowers norms.)
(2) is proved using analysis (Cauchy-Schwartz iterated $n-$ 1 times.)

Corollary (Expansions). If (T^{\prime}, μ^{\prime}) expands (T, μ), and ϕ is partition-regular with respect to (T, μ), then ϕ is partition-regular with respect to $\left(T^{\prime}, \mu^{\prime}\right)$.

An AG analogue of regularity

Basic observation:
o-minimality: A definable X has many subsets, or maps into a finite set (but very few finite covers.) strong minimality: X has very few subsets, but many finite covers (maps from a definable set, with finite fibers.) Serre, Grothendieck (implicitly Weil for curves) use this topologically to construct l-adic cohomology.
Here we work measure-theoretically. 'measure' $|Y / X| \longleftrightarrow$ degree of $Y \rightarrow X$.

Dualize the definition of regularity.

For a simplicial complex $S \subset P(n)$, an S-variety X is just a variety X_{u} for $u \in S$, and a dominant morphism $p_{u, v}: X_{u} \rightarrow X_{v}$ when $v \subset u$.
We assume $X_{u} \rightarrow \Pi_{i \in U} X_{i}$ is dominant and finite. We say that X is irreducible if the fiber product

$$
\widehat{X}:=\left\{x \in \Pi_{u} X_{u}: p_{u, v}\left(x_{u}\right)=x_{v}\right\}
$$

has a unique maximal-dimensional component. Given a $P(n)$-variety X, let $D X$ be the $D P(n)$-variety with $X_{w}:=X_{|w|}$.

Theorem. Let X be a $P(n)$-variety. If $D X$ is irreducible, so is any $X \times_{X^{-}} Y, Y$ an irreducible $P(n)^{-}$-variety over $X^{-}:=X \mid P(n)^{-}$. (Special case for ACF of Theorem 1).

Corollary (Expansions (dual)). Assume $T^{\prime}, p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ expands T, p_{1}, \ldots, p_{n}, and for $a_{1}, \ldots, a_{n} \models p_{1}^{\prime} \otimes \cdots \otimes p_{n}^{\prime}, T^{\prime}$ adds no structure to $\operatorname{acl}_{T}\left(a_{1}, \ldots, a_{n}\right)$ over a_{1}, \ldots, a_{n}, i.e.

$$
\operatorname{Aut}\left(\operatorname{acl}_{T^{\prime}}\left(a_{1}, \ldots, a_{n}\right)\right) \rightarrow \operatorname{Aut}\left(\operatorname{acl}_{T}\left(a_{1}, \ldots, a_{n}\right)\right.
$$

If A_{S} is regular for T, it is regular for T^{\prime}.

Pseudo-finite bridge

The AG (or stable) regularity was defined by analogy with combinatorial regularity; but in the setting of pseudofinite fields they can be directly compared; a generic automorphism turns covers into partitions. This can be used to present definable regularity over pseudo-finite fields (Tao, Chevalier-Levi.)
$\pi: Y \rightarrow X$ a Galois cover; $X=Y / G$.
X a variety over a pseudo-finite field $F=F i x(\sigma)$.
$Y_{h}=\{y \in Y: \sigma(y)=h(y)\}$
$X_{h}=\pi\left(Y_{h}\right)$ partitions X according to conjugacy classes of G.
Geometric doubling \rightarrow combinatorial doubling .

GVF's, Bedlewo 2017 (invitation, apology and update)

$$
\begin{gathered}
G V F_{k(t)}=T h_{\forall}\left(k(t)^{a l g},+, \cdot, h t_{n}\right)_{n=1,2, \cdots} \\
G V F_{\mathbb{Q}} \subseteq T h_{\forall}\left(\mathbb{Q}^{a l g},+, \cdot, h t_{n}\right)
\end{gathered}
$$

Equality? See poster by Michat Szachniewicz.
theorem. Any quantifier-free GVF type on a curve X over F is determined by:

1. The height (of the first nontrivial coordinate).
2. the F-adelic qf type. (values of F-adelic formulas.), and
3. the Néron character $N W_{p}$.

An extension holds for any smooth projective variety X. It allows defining a canonical extension of a qf type over F to one over a GVF $K \geq F$. (1)-formulas over F. (2)canonical extension of local types. (3) in Hilbert spaces. (4) mass zero to any exceptional divisor strictly over K.
https://people.maths.ox.ac.uk/hrushovski/GVFs/ GVF3.pdf

Corollary. Let $F=F \leq K$. Formulas on X over K are uniform limits of :

- algebraically bounded, finite formulas.
- formulas over F
- adelic formula $R_{t}(c, b, x)$ over K.
- formulas (x, c) giving values of the canonical bilinear map $A \times J$, with $c \in J\left(K^{\text {alg }}\right)$

To spell out the uniformity: for any such ϕ and $\epsilon>0$ there exists a combination ψ of the three above forms, such that for any GVF structure L on $K(X)$ extending the given GVF structure on $K,|\phi-\psi|(K)<\epsilon$.
theorem. The theory GVF is qf stable.
I.e.: if $\left(a_{i}, b_{i}\right)$ is a qf-indiscernible sequence and ϕ a formula, then $\phi\left(a_{1}, b_{2}\right)=\phi\left(b_{1}, a_{2}\right)$.
revived by: Karim Adiprasito, Itai Ben Yaacov, H.

