Newelski 60 meeting Będlewo, December 2022 A stable analogue of Szemerédi regularity

Ehud Hrushovski

Independent systems.

A simplicial complex is a downward-closed set of subsets of [n].

T any theory;  $A(0) \leq M \models T, p_1, \ldots, p_n$  commuting invariant types over acl(A(0)).

An S system:  $(A(u) : u \in S)$  substructures of M;  $A(u) \subset A(v)$  if  $u \subset v$ .

Here: An *independent system*:

 $(a_1, \dots, a_n) \models p_1 \otimes \dots \otimes p_n | A_0;$  $\{a_i : i \in u\} \subset A(u) \subset acl(A_0, a_i : i \in u)$ and for |u| > 2,

$$A(u) \perp^{a}_{\{A(v):v < u\}} \{A(v) : \neg(u \le v))\}$$

(Galois independence.)

An S-system is regular if: for any S' < S, independent S'-system B, and embedding  $A_{S'} \rightarrow B_{S'}$ , the system A + B remains independent.

#### Some points of reference:

Shelah, main gap;  $A_u$  elementary submodels. Independence: each A(u) is stably independent from  $\{A(v): \neg(u \leq v)\}$  over  $\{A(v): v < u\}$ .

The case:

$$A(u) = acl(\{a_i : i \in u\})$$

For T=ACF (e.g.), this is an independent system. This is key to proving simplicity of pseudo-finite fields.

Let  $S \subset P([n])$  be a simplicial complex. Define S + S the *doubling* of S, a subcomplex of  $\pm[n]$ :  $|u| = \{|i| : i \in u\}$ 

$$DS := \{ u \subset \{\pm\} \times [n] : |u| \in S, \& \neg \exists i \in [n] \ (i \in u \land -i \in u). \}$$

 $D(A_S)$ : described by a partial type: an independent system, with each  $A_u \cong A_{|u|}$ .

**Theorem 1.** Let  $(a_1, \ldots, a_n) \models p_1 \otimes \cdots \otimes p_n$ .

- (a) Let  $c \in acl(a_1, ..., a_n)$ . Then there exists a regular P(n)-system  $A(u) \subset acl(a_i : i \in u)$  with A(u) f.g. over  $A_0$ , and  $c \in A([n])$ .
- (b) Let A be an independent P(n)-system. Then A is regular iff the doubling D(A) is unique (a complete type).

(a): a "finitized Löwenheim-Skolem", top down. (b, 'only if'): using induction, reduce to S = P(n), with result known for  $P(n)^-$ ; form an S-system  $B_S$ ,  $B(u) = \bigcup A(u') : u' \in S + S, u' \cap [n] \subseteq u$ ; this extends A over  $P(n)^-$ .

We will concentrate on the 'if' direction in (b).

Proof for n = 1: tp(a) is stationary iff tp(a, b) is uniquely determined, where a, b are independent, tp(a) = tp(b). **Proof for** n = 2

#### Towards $n \ge 3$

Note that P(n) and DP(n) are n - 1-dimensional.

The geometric realization of P(n) is an n-1-simplex. DP(n) can be presented as the boundary of the convex hull of  $\bigcup_{i \in [n]} \{\pm e_i\}$ , where  $e_i$  is the *i*'th unit vector  $(0, \dots, 0, 1, 0, \dots 0) \in \mathbb{R}^n$ . Thus DP(n) is homeomrphic to an n-1-sphere.



•

Hence for any Abelian group C,

$$H^{n-1}(DP(n), C) \cong C$$

In particular if  $C \neq 0$  then  $H^{n-1}(DP(n), C) \neq 0$ .

Since any n - 1-face of  $u \in DP(n)_{n-1}$  belongs to just two facets, The group  $H^{n-1}(DP(n), C)$  can be defined as  $C^{DP(n)_n}$  modulo the subgroup generated by all  $\delta_u - \delta_{u'}$ , where  $u, u' \in DP(n)_n$  and |u - u'| = n - 1.

## **Proof for** $n \ge 3$

Assume A is not regular; we have to show that D(A) is not unique. We will define an invariant of D(A) in  $H^{n-1}(D(P(n)))$ .

We may assume the restriction of A to any horn  $H_i = \{u : i \in u\}$  is unique. (Otherwise work over  $a_i$  and use induction to prove reducibility of DX.)

For  $u \in P(n)^-$  have  $b_u$ , that we may take Galois over  $a_u$ ; and  $tp(A[n]/A_{< n})$  does not imply tp(A[n]/B).

Let  $G^i = Aut(b^i/A)$  where  $b^i = B([n] - \{i\})$ . Let  $H = Aut(B/A) \le \prod_i G^i$ . So  $H \ne \prod_i G^i$ .

**Lemma.** Let  $G^1, \ldots, G^n$  be groups,  $n \ge 3$ , and  $H \le \prod_{i \in [n]} G^i$  Assume  $\pi_u(H) = \prod_{i \in u} G^i$  for  $u \in \binom{n}{n-1}$ . Then there exists a (unique!) abelian group C with surjective homomorphisms  $j_i : G^i \to C$ , such that

$$H = \{(x_1,\ldots,x_n) \in G : \Sigma_i j_i(x_i) = 0\}$$

Proof. We may assume  $N_1 =: \{x \in G_1 : (x, 1, \dots, 1) \in H\} = 1$ . To see that  $G^1$  is abelian, let  $x, y \in G^1$ . Then  $(x, 1, 1, \dots, 1, x')$  and  $(y, y', 1, \dots, 1)$  are in H, for some  $x' \in G_n$  and  $y' \in G_2$ . Taking commutators, we see that  $([x, y], 1, \dots, 1) \in H$  so  $[x, y] \in N_1$ .

Thus we may assume all  $G^i = C$ ; for  $v \in B_{n-1}$ ,  $b_v$  lies in an A(v)-definable C-torsor  $T_v$ ; let  $T_{[n]} = \prod_v T_v/H$ ; then T is again a C-torsor, and by Galois theory, it has a point  $t = t(A([n]) \text{ defined over } A([n]) \cup B.$ 

Now let us move to D(A). Choose elements  $b'_v$  of each  $T_v$ ,  $v \in D(A)_{n-1}$ . Then for  $a \in D(A)_n$ ,  $t(a) - (b'_v)_{v \in \binom{a}{n-1}} \in C$ . This gives a function from  $D(P(n))_n$  to C. Changing the choice of  $b'_v$  matters only up to a coboundary. Hence we get a well-defined element of  $H^{n-1}(D(P(n)) = C$ . But where this come from?

## **Regularity:** partition version.

Consider formulas  $\phi$  with a partition of their variables:  $\phi(x_1, \ldots, x_n)$ . The *boundary* of  $\phi$ :

$$\phi^{-}(x_1,\ldots,x_n) = \bigwedge_{i=1}^n (\exists x_i)\phi$$

,

**Definition.**  $\phi(x_1, \ldots, x_n)$  is  $(\epsilon$ -) partition-regular if it is statistically independent (relative to  $\phi^-$ ) from any stronger boundary formula. (up to  $\epsilon$ .)

**Theorem** (Szemeredi, Gowers, Rödl-Skokan). 1. Any  $\phi(x_1, \ldots, x_n)$  can be partitioned into finitely any  $\epsilon$ -regular formulas.

2. Counting criterion for regularity: take new variables  $x_{-1}, \ldots, x_{-n}$ .  $\phi$  is regular iff the  $2^n$  formulas  $\phi(x_{\pm 1}, \ldots, x_{\pm n})$  are statistically independent, relative to their boundaries.

Here is a precise and  $\epsilon$ -free statement of (1).

**Theorem.** Let  $\mu$  be a definable measure, with Fubini. Let M be a model. Then

$$B(u) := L_M(x_i : i \in u)$$

form an independent system of measure algebras.

(Independence = for the stable theory of atomlessBoolean algebras with a finitely additive map to [0, 1].(Ben-Yaacov))

Can be proved by methods of Tao, Towsner.

But (1) is apparently of relatively little use without the 'counting criterion' (2). (cf. Gowers norms.)

(2) is proved using analysis (Cauchy-Schwartz iterated n-1 times.)

**Corollary** (Expansions). If  $(T', \mu')$  expands  $(T, \mu)$ , and  $\phi$  is partition-regular with respect to  $(T, \mu)$ , then  $\phi$  is partition-regular with respect to  $(T', \mu')$ .

# An AG analogue of regularity

Basic observation:

o-minimality: A definable X has many subsets, or maps into a finite set (but very few finite covers.) strong minimality: X has very few subsets, but many finite covers (maps from a definable set, with finite fibers.) Serre, Grothendieck (implicitly Weil for curves) use this *topologically* to construct *l*-adic cohomology. Here we work measure-theoretically.

'measure'  $|Y/X| \leftrightarrow degree of Y \to X.$ 

Dualize the definition of regularity.

For a simplicial complex  $S \subset P(n)$ , an S-variety X is just a variety  $X_u$  for  $u \in S$ , and a dominant morphism  $p_{u,v}: X_u \to X_v$  when  $v \subset u$ . We assume  $X_u \to \prod_{i \in U} X_i$  is dominant and finite. We say that X is irreducible if the fiber product

$$\widehat{X} := \{ x \in \Pi_u X_u : p_{u,v}(x_u) = x_v \}$$

has a unique maximal-dimensional component. Given a P(n)-variety X, let DX be the DP(n)-variety with  $X_w := X_{|w|}$ .

**Theorem.** Let X be a P(n)-variety. If DX is irreducible, so is any  $X \times_{X^-} Y$ , Y an irreducible  $P(n)^-$ -variety over  $X^- := X|P(n)^-$ . (Special case for ACF of Theorem 1). **Corollary** (Expansions (dual)). Assume  $T', p'_1, \ldots, p'_n$  expands  $T, p_1, \ldots, p_n$ , and for  $a_1, \ldots, a_n \models p'_1 \otimes \cdots \otimes p'_n$ , T' adds no structure to  $acl_T(a_1, \ldots, a_n)$  over  $a_1, \ldots, a_n$ , i.e.

 $Aut(acl_{T'}(a_1,\ldots,a_n)) \twoheadrightarrow Aut(acl_T(a_1,\ldots,a_n))$ 

If  $A_S$  is regular for T, it is regular for T'.

# Pseudo-finite bridge

The AG (or stable) regularity was defined by *analogy* with combinatorial regularity; but in the setting of pseudo-finite fields they can be directly compared; a generic auto-morphism turns *covers* into *partitions*. This can be used to present definable regularity over pseudo-finite fields (Tao, Chevalier-Levi.)

 $\pi: Y \to X$  a Galois cover; X = Y/G. X a variety over a pseudo-finite field  $F = Fix(\sigma)$ .  $Y_h = \{y \in Y : \sigma(y) = h(y)\}$  $X_h = \pi(Y_h)$  partitions X according to conjugacy classes of G.

Geometric doubling  $\rightarrow$  combinatorial doubling .

GVF's, Bedlewo 2017 (invitation, apology and update)

$$GVF_{k(t)} = Th_{\forall}(k(t)^{alg}, +, \cdot, ht_n)_{n=1,2,\cdots}$$

$$GVF_{\mathbb{Q}} \subseteq Th_{\forall}(\mathbb{Q}^{alg}, +, \cdot, ht_n)$$

Equality? See poster by Michał Szachniewicz.

**theorem.** Any quantifier-free GVF type on a curve X over F is determined by:

- 1. The height (of the first nontrivial coordinate).
- 2. the F-adelic qf type. (values of F-adelic formulas.), and
- 3. the Néron character NW<sub>p</sub>.

An extension holds for any smooth projective variety X. It allows defining a *canonical extension* of a qf type over F to one over a GVF  $K \ge F$ . (1)-formulas over F. (2)canonical extension of local types. (3) in Hilbert spaces. (4) mass zero to any exceptional divisor strictly over K. https://people.maths.ox.ac.uk/hrushovski/GVFs/ GVF3.pdf **Corollary.** Let  $F = F \leq K$ . Formulas on X over K are uniform limits of :

- algebraically bounded, finite formulas.
- formulas over F
- adelic formula  $R_t(c, b, x)$  over K.
- formulas (x, c) giving values of the canonical bilinear map A × J, with c ∈ J(K<sup>alg</sup>)

To spell out the uniformity: for any such  $\phi$  and  $\epsilon > 0$  there exists a combination  $\psi$  of the three above forms, such that for any GVF structure L on K(X) extending the given GVF structure on K,  $|\phi - \psi|(K) < \epsilon$ .

#### theorem. The theory GVF is qf stable.

I.e.: if  $(a_i, b_i)$  is a qf-indiscernible sequence and  $\phi$  a formula, then  $\phi(a_1, b_2) = \phi(b_1, a_2)$ . revived by: Karim Adiprasito, Itai Ben Yaacov, H.