Generalized continuous model theory and stability

Aleksander Ivanov

Department of Applied Mathematics Silesian Universyty of Technology

> December 20, 2022 Newelski 60

Logic S_{∞} -space

Let $L = (R_i^{n_i})_{i \in I}$ be a countable relational language and

$$\mathcal{X}_L = \prod_{i \in I} 2^{\omega^{n_i}}$$

be the corresponding space under the product topology τ .

 $\begin{array}{l} \mathcal{X}_L \text{ is the space of all L-structures on } \omega: \\ \mathsf{x} = (...x_i...) \in \mathcal{X}_L \iff \mathsf{structure} \ (\omega, R_i)_{i \in I}, \\ R_i \text{ is the } n_i\text{-ary relation defined by } x_i: \omega^{n_i} \to 2. \end{array}$

The **logic action** of S_{∞} is defined on \mathcal{X}_L by the rule:

$$g \circ x = y \Leftrightarrow \forall i \forall \overline{s}(y_i(\overline{s}) = x_i(g^{-1}(\overline{s}))).$$

Logic S_{∞} -space

Let $L = (R_i^{n_i})_{i \in I}$ be a countable relational language and

$$\mathcal{X}_L = \prod_{i \in I} 2^{\omega^{n_i}}$$

be the corresponding space under the product topology τ .

$$\begin{array}{l} \mathcal{X}_L \text{ is the space of all } L\text{-structures on } \omega: \\ \mathsf{x} = (...x_i...) \in \mathcal{X}_L \iff \mathsf{structure} \ (\omega, R_i)_{i \in I}, \\ R_i \text{ is the } n_i\text{-ary relation defined by } x_i : \omega^{n_i} \to 2. \end{array}$$

The **logic action** of S_{∞} is defined on \mathcal{X}_L by the rule:

$$g \circ \mathsf{x} = \mathsf{y} \Leftrightarrow \forall i \forall \overline{s}(y_i(\overline{s}) = x_i(g^{-1}(\overline{s}))).$$

Generalised model theory

Logic space for continuous structures Generalized continuous model theory Complexity

Other topologies

For any countable fragment F of $L_{\omega_1\omega},$ which is closed under quantifiers, all sets

$$Mod(\phi, \bar{s}) = \{M \in \mathcal{X}_L : M \models \phi(\bar{s})\}$$
 with $\bar{s} \subset \omega$

form a basis defining another topology (denoted by t_F) of the S_{∞} -space \mathcal{X}_L .

The logic action of the group S_{∞} on \mathcal{X}_L is continuous with respect to t_F .

Generalised model theory

Logic space for continuous structures Generalized continuous model theory Complexity

Space of expansions

Let $G \leq_{closed} S_{\infty}$.

When $M_0 = (\omega, ...)$ with $G = Aut(M_0)$ then a topology similar to τ can be defined on the *G*-space of all *L*-expansions of M_0 .

Having an appropriate fragment F of $L_{\omega_1\omega}$, a topology similar to t_F can be defined on this G-space.

• • = • • = •

Generalised model theory

Logic space for continuous structures Generalized continuous model theory Complexity

Space of expansions

Let $G \leq_{closed} S_{\infty}$.

When $M_0 = (\omega, ...)$ with $G = Aut(M_0)$ then a topology similar to τ can be defined on the *G*-space of all *L*-expansions of M_0 .

Having an appropriate fragment F of $L_{\omega_1\omega}$, a topology similar to t_F can be defined on this G-space.

4 E 6 4 E 6

General case when $G \leq_{closed} S_{\infty}$

Fix $G \leq_{closed} S_{\infty}$ and $(\langle \mathcal{X}, \tau \rangle, G) =$ Polish G-space with a countable basis.

Along with τ we shall consider another topology on \mathcal{X} .

Nice topology:

(below \mathcal{N}^G = standard basis of the topology of G)

周 ト イ ヨ ト イ ヨ ト

General case when $G \leq_{closed} S_{\infty}$

Fix $G \leq_{closed} S_{\infty}$ and $(\langle \mathcal{X}, \tau \rangle, G) =$ Polish G-space with a countable basis.

Along with τ we shall consider another topology on \mathcal{X} .

Nice topology:

(below $\mathcal{N}^{\mathcal{G}}$ = standard basis of the topology of \mathcal{G})

(b) a (B) b (a (B) b)

Nice topology

Definition (H.Becker) A topology **t** on \mathcal{X} is **nice** for the *G*-space ($\langle \mathcal{X}, \tau \rangle$, *G*) if:

(A) **t** is a Polish, **t** is finer than τ and the *G*-action remains **t**-continuous.

(B) There exists a basis \mathcal{B} for t (called **nice**) such that:

- \mathcal{B} consists of Borel sets and is countable;
- 2 for all $B_1, B_2 \in \mathcal{B}$, $B_1 \cap B_2 \in \mathcal{B}$;
- **③** for all $B \in \mathcal{B}$, $\mathcal{X} \setminus B \in \mathcal{B}$;
- for all $B \in \mathcal{B}$ and $u \in \mathcal{N}^{G}$, $B^{\Delta u}, B^{\star u} \in \mathcal{B}$;
- o for any B ∈ B there exists an open subgroup H < G such that B is invariant under the corresponding H-action.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Logic space for Polish groups?

Question:

Is it possible to extend the generalised model theory of H.Becker to actions of Polish groups (without the assumption $G \leq S_{\infty}$) ?

4 3 6 4 3

Looking for terminology. Canonical structure for G

Let (G, d) be a Polish group with a left invariant metric ≤ 1 . If (\mathcal{X}, d) is its completion, then $G \leq Iso(\mathcal{X})$.

J.Melleray: Any Polish G is the automorphism group of the continuous structure on \mathcal{X} , say M_G .

Let $S \subseteq_{cntble,dnse} \mathcal{X}$. Enumerate all orbits of G of finite tuples of S.

For the closure of such an *n*-orbit *C* define a predicate $R_{\overline{C}}$ on (\mathcal{X}, d) (with continuity moduli = *id*) by

 $R_{\overline{C}}(y_1,...,y_n) = d((y_1,...,y_n),\overline{C}) \text{ (i.e. inf} \{d(\bar{y},\bar{c}):\bar{c}\in\overline{C}\}).$

ヘロト ヘヨト ヘヨト

Looking for terminology. Canonical structure for G

Let (G, d) be a Polish group with a left invariant metric ≤ 1 . If (\mathcal{X}, d) is its completion, then $G \leq Iso(\mathcal{X})$.

J.Melleray: Any Polish G is the automorphism group of the continuous structure on \mathcal{X} , say M_G .

Let $S \subseteq_{cntble,dnse} \mathcal{X}$. Enumerate all orbits of G of finite tuples of S.

For the closure of such an *n*-orbit *C* define a predicate $R_{\overline{C}}$ on (\mathcal{X}, d) (with continuity moduli = *id*) by

$$R_{\overline{C}}(y_1,...,y_n) = d((y_1,...,y_n),\overline{C})$$
 (i.e. $inf\{d(\overline{y},\overline{c}):\overline{c}\in\overline{C}\}).$

- 4 回 ト 4 戸 ト - 4 戸 ト -

The space of continuous structures

Fix a continuous signature *L* and Polish (\mathcal{Y}, d) ; *S* be a dense cntble $\subseteq \mathcal{Y}$.

• The Polish space \mathcal{Y}_L of continuous L-strctres on (\mathcal{Y}, d) : Metric: Enumerate all (j, \bar{s}) , where $\bar{s} \in S$ and $|\bar{s}| = arity(R_j)$. For L-structures M and N on \mathcal{Y} let

$$\delta(M,N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s}) | : i \text{ is the number of } (j,\bar{s}) \}.$$

Logic action: the Polish group $Iso(\mathcal{Y})$ acts on \mathcal{Y}_L continuously

Taking $\mathcal{Y} = M_G$ we get a G-space of L-expansions of M_G .

イロト イポト イラト イラト

The space of continuous structures

Fix a continuous signature *L* and Polish (\mathcal{Y}, d) ; *S* be a dense cntble $\subseteq \mathcal{Y}$.

• The Polish space \mathcal{Y}_L of continuous L-strctres on (\mathcal{Y}, d) : Metric: Enumerate all (j, \bar{s}) , where $\bar{s} \in S$ and $|\bar{s}| = arity(R_j)$. For L-structures M and N on \mathcal{Y} let

$$\delta(M,N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s}) | : i \text{ is the number of } (j,\bar{s}) \}.$$

Logic action: the Polish group $Iso(\mathcal{Y})$ acts on \mathcal{Y}_L continuously

Taking $\mathcal{Y} = M_G$ we get a *G*-space of *L*-expansions of M_G .

Universality

Theorem ([CL], [IMI])

For any Polish group G there is Polish (\mathcal{Y}, d) and a continuous relational signature L such that

- $G < Iso(\mathcal{Y})$
- for any Polish (G, X) there is a Borel 1-1-map M : X → Y_L
 s. t. for any x, x' ∈ X structures M(x) and M(x') are isomorphic if and only if x and x' are in the same G-orbit,

The map \mathcal{M} is a Borel *G*-invariant 1-1-reduction of (\mathcal{X}, E_G) to $(\mathcal{Y}_L, E_{lso(\mathcal{Y})})$.

Looking for terminology

Find counterparts for $Mod(\phi, \bar{s})$ and \bar{s} -stabilizers in S_{∞} ,

for t_F and for nice topology.

B N A B N

Grey subsets and subgroups

A grey subset of \mathcal{X} , denoted $\phi \sqsubseteq \mathcal{X}$, is a function $\mathcal{X} \to [0, 1]$.

It is **open (closed)**, $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if the **cone** $\phi_{< r}$ (resp. $\phi_{>r}$) is open for all $r \in [0, 1]$ (here $\phi_{< r} = \{z \in \mathcal{X} : \phi(z) < r\}$). (We also define Borel classes Σ_{α} , Π_{α}).

When G is a Polish group, then $H \sqsubseteq G$ is called a **grey subgroup** if H(1) = 0, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \le H(g) + H(g')).$

Grey subsets and subgroups

A grey subset of \mathcal{X} , denoted $\phi \sqsubseteq \mathcal{X}$, is a function $\mathcal{X} \to [0, 1]$.

It is **open (closed)**, $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if the **cone** $\phi_{< r}$ (resp. $\phi_{>r}$) is open for all $r \in [0, 1]$ (here $\phi_{< r} = \{z \in \mathcal{X} : \phi(z) < r\}$). (We also define Borel classes Σ_{α} , Π_{α}).

When G is a Polish group, then $H \sqsubseteq G$ is called a **grey subgroup** if H(1) = 0, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \le H(g) + H(g')).$

イロト イポト イラト イラト

Grey subsets and subgroups

A grey subset of \mathcal{X} , denoted $\phi \sqsubseteq \mathcal{X}$, is a function $\mathcal{X} \to [0, 1]$.

It is **open (closed)**, $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if the **cone** $\phi_{< r}$ (resp. $\phi_{>r}$) is open for all $r \in [0, 1]$ (here $\phi_{< r} = \{z \in \mathcal{X} : \phi(z) < r\}$). (We also define Borel classes Σ_{α} , Π_{α}).

When G is a Polish group, then $H \sqsubseteq G$ is called a **grey subgroup** if H(1) = 0, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \le H(g) + H(g')).$

イロト イポト イラト イラト

Grey stabilizer

Basic example: For \bar{c} from (\mathcal{Y}, d) and a linear δ with $\delta(0) = 0$ grey stabilizer $H_{\delta, \bar{c}} \sqsubseteq Iso(\mathcal{Y})$:

$$H_{\delta,ar{c}}(g) = \delta((d(ar{c},g(ar{c}))), ext{ where } g \in Iso(\mathcal{Y}).$$

* E > < E</p>

Example: grey subsets of \mathcal{Y}_L

A **continuous formula** is an expression built from 0,1 and atomic formulas by applications of the following functions:

$$x/2$$
 , $\dot{x-y} = max(x-y,0)$, $min(x,y)$, \dots , sup_x and inf_x .

Any continuous sentence $\phi(\bar{c})$ defines a grey subset of \mathcal{Y}_L which belongs to Σ_n for some n:

$$\phi(\bar{c})$$
 takes *M* to the value $\phi^{M}(\bar{c})$.

• • = • • = •

Invariant grey subsets

Definition $\mathcal{X} = G$ -space.

A grey $\phi \sqsubseteq \mathcal{X}$ is **invariant** with respect to $H \sqsubseteq G$ if for any $g \in G$ we have $\phi(g(x)) \le \phi(x) + H(g)$.

Example: Assuming that continuity moduli of *L*-symbols are id for any continuous $\phi(\bar{x})$ there is a linear function δ such that

 $H_{\delta,\bar{c}}(g) = \delta((d(\bar{c},g(\bar{c}))), \text{ where } g \in Iso(Y).$

and the grey subset $\phi(ar{c}) \sqsubseteq \mathcal{Y}_L$ satisfy

$$\phi^{g(M)}(\bar{c}) \leq \phi^{M}(\bar{c}) + H_{\delta,\bar{c}}(g).$$

Invariant grey subsets

Definition $\mathcal{X} = G$ -space.

A grey $\phi \sqsubseteq \mathcal{X}$ is **invariant** with respect to $H \sqsubseteq G$ if for any $g \in G$ we have $\phi(g(x)) \le \phi(x) + H(g)$.

Example: Assuming that continuity moduli of *L*-symbols are id for any continuous $\phi(\bar{x})$ there is a linear function δ such that

$$H_{\delta,\bar{c}}(g) = \delta((d(\bar{c},g(\bar{c}))), \text{ where } g \in Iso(Y).$$

and the grey subset $\phi(\bar{c}) \sqsubseteq \mathcal{Y}_L$ satisfy

$$\phi^{g(M)}(\bar{c}) \leq \phi^{M}(\bar{c}) + H_{\delta,\bar{c}}(g).$$

• • = • • = •

Grey bases

- 1. Distinguish \mathcal{R} , a countable family of open grey $\sqsubseteq G$ so that
 - all $\rho_{< r}$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.
 - *R* consists of grey cosets, i.e. for such *ρ* ∈ *R* there is a grey subgroup *H* ∈ *R* and an element *g*₀ ∈ *G* so that for any *g* ∈ *G*, *ρ*(*g*) = *H*(*gg*₀⁻¹).

2. Considering a (G, \mathcal{R}) -space \mathcal{X} we distinguish a cntble family \mathcal{U} of open grey sbsts of \mathcal{X} generating the topol. τ .

Grey bases

- 1. Distinguish \mathcal{R} , a countable family of open grey $\sqsubseteq G$ so that
 - all $\rho_{< r}$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.
 - *R* consists of grey cosets, i.e. for such *ρ* ∈ *R* there is a grey subgroup *H* ∈ *R* and an element *g*₀ ∈ *G* so that for any *g* ∈ *G*, *ρ*(*g*) = *H*(*gg*₀⁻¹).
- 2. Considering a (G, \mathcal{R}) -space \mathcal{X} we distinguish a cntble family \mathcal{U} of open grey sbsts of \mathcal{X} generating the topol. τ .

Nice basis

Definition. A family \mathcal{B} of Borel grey subsets of the *G*-space \mathcal{X} is a **nice basis** w.r.to \mathcal{R} if:

- \mathcal{B} is countable and generates the topol. finer than τ ;
- for all $\phi_1, \phi_2 \in \mathcal{B}$, the functions $\min(\phi_1, \phi_2)$, $\max(\phi_1, \phi_2)$, $|\phi_1 \phi_2|$, $\phi_1 \phi_2 \phi_1 + \phi_2$ belong to \mathcal{B} ;
- for all $\phi \in \mathcal{B}$ and rational $r \in [0, 1]$, $r\phi$ and $1 \phi \in \mathcal{B}$;
- for all $\phi \in \mathcal{B}$ and $\rho \in \mathcal{R}$, $\phi^{*\rho}, \phi^{\Delta \rho} \in \mathcal{B}$;
- any $\phi \in \mathcal{B}$ is invariant w.r.to some open grey subgrp $H \in \mathcal{R}$.

A topology **t** on \mathcal{X} is \mathcal{R} -nice for the *G*-space $\langle \mathcal{X}, \tau \rangle$ if: (a) **t** is Polish, **t** is finer than τ and (G, \mathcal{X}) is continuous w.r.to **t**; (b) there exists a nice basis \mathcal{B} so that **t** is generated by all $\phi_{<q}$ with $\phi \in \mathcal{B}$ and $q \in \mathbb{Q} \cap (0, 1]$.

(日)

Nice basis

Definition. A family \mathcal{B} of Borel grey subsets of the *G*-space \mathcal{X} is a **nice basis** w.r.to \mathcal{R} if:

- \mathcal{B} is countable and generates the topol. finer than τ ;
- for all $\phi_1, \phi_2 \in \mathcal{B}$, the functions $\min(\phi_1, \phi_2)$, $\max(\phi_1, \phi_2)$, $|\phi_1 \phi_2|$, $\phi_1 \phi_2 \phi_1 + \phi_2$ belong to \mathcal{B} ;
- for all $\phi \in \mathcal{B}$ and rational $r \in [0, 1]$, $r\phi$ and $1 \phi \in \mathcal{B}$;
- for all $\phi \in \mathcal{B}$ and $\rho \in \mathcal{R}$, $\phi^{*\rho}, \phi^{\Delta \rho} \in \mathcal{B}$;
- any $\phi \in \mathcal{B}$ is invariant w.r.to some open grey subgrp $H \in \mathcal{R}$.

A topology **t** on \mathcal{X} is \mathcal{R} -nice for the *G*-space $\langle \mathcal{X}, \tau \rangle$ if: (a) **t** is Polish, **t** is finer than τ and (G, \mathcal{X}) is continuous w.r.to **t**; (b) there exists a nice basis \mathcal{B} so that **t** is generated by all $\phi_{<q}$ with $\phi \in \mathcal{B}$ and $q \in \mathbb{Q} \cap (0, 1]$.

(日)

The Urysohn sphere

The Urysohn sphere \mathfrak{U} is the unique Polish metric space of diameter 1 which is universal and ultrahomogeneous.

Approximating substructure: The rational Urysohn sphere, $\mathbb{Q}\mathfrak{U}$, is both ultrahomogeneous and universal for countable metric spaces with rational distances and diameter ≤ 1 .

There is a nice embedding of $\mathbb{Q}\mathfrak{U}$ into \mathfrak{U} . Let G_0 be a dense countable subgroup of $Iso(\mathbb{Q}\mathfrak{U})$; we may view it as a subgroup of $Iso(\mathfrak{U})$.

We now define ${\cal R}$

< 同 > < 国 > < 国 >

The Urysohn sphere

The Urysohn sphere \mathfrak{U} is the unique Polish metric space of diameter 1 which is universal and ultrahomogeneous.

Approximating substructure: The rational Urysohn sphere, $\mathbb{Q}\mathfrak{U}$, is both ultrahomogeneous and universal for countable metric spaces with rational distances and diameter ≤ 1 .

There is a nice embedding of $\mathbb{Q}\mathfrak{U}$ into \mathfrak{U} . Let G_0 be a dense countable subgroup of $Iso(\mathbb{Q}\mathfrak{U})$; we may view it as a subgroup of $Iso(\mathfrak{U})$.

We now define ${\mathcal R}$

• • = • • = •

The Urysohn sphere as a platform. $\mathcal{R}^{\mathfrak{U}}(G_0)$

Let \mathcal{R}_0 be the family of all clopen grey subgroups of $\mathsf{Aut}(\mathfrak{U})$ of the (truncated) form

 $H_{q,\overline{s}}: g \to q \cdot d(g(\overline{s}), \overline{s}), \text{ where } \overline{s} \subset \mathbb{Q}\mathfrak{U}, \text{ and } q \in \mathbb{Q}^+.$

$(\mathcal{R}_0 \text{ is closed under conjugacy by elements of } G_0)$

Consider the closure of \mathcal{R}_0 under the function **max** and define $\mathcal{R}^{\mathfrak{U}}(G_0)$ to be the family of all G_0 -cosets of grey subgroups from $\max(\mathcal{R}_0)$.

イロト イポト イラト イラト

The Urysohn sphere as a platform. $\mathcal{R}^{\mathfrak{U}}(G_0)$

Let \mathcal{R}_0 be the family of all clopen grey subgroups of Aut(\mathfrak{U}) of the (truncated) form

 $H_{q,\overline{s}}: g \to q \cdot d(g(\overline{s}), \overline{s}), \text{ where } \overline{s} \subset \mathbb{Q}\mathfrak{U}, \text{ and } q \in \mathbb{Q}^+.$

 $(\mathcal{R}_0 \text{ is closed under conjugacy by elements of } G_0)$

Consider the closure of \mathcal{R}_0 under the function **max** and define $\mathcal{R}^{\mathfrak{U}}(G_0)$ to be the family of all G_0 -cosets of grey subgroups from $\max(\mathcal{R}_0)$.

イロト イポト イラト イラト

The Urysohn space as a platform. $\mathcal{B}_{\mathcal{L}}$

Let \mathcal{L} be a countable fragment of $L_{\omega_1\omega}$ and

let $\mathcal{B}_{\mathcal{L}}$ be the family of all grey subsets of $\mathfrak{U}_{\mathcal{L}}$ defined by continuous \mathcal{L} -sentences (with parameters from $\mathbb{Q}\mathfrak{U}$) as above.

The space \mathfrak{U}_L

Theorem (IMI17)

The family $\mathcal{B}_{\mathcal{L}}$ is a $\mathcal{R}^{\mathfrak{U}}(G_0)$ -nice basis.

Similar constructions (with weaker forms of this theorem, where **nice** is replaced by **good**):

- The complex Hilbert space l₂(ℕ) (and the countable approximating substructure Ql₂).
- The measure algebra on [0, 1].

伺 ト イ ヨ ト イ ヨ

The space \mathfrak{U}_L

Theorem (IMI17)

The family $\mathcal{B}_{\mathcal{L}}$ is a $\mathcal{R}^{\mathfrak{U}}(G_0)$ -nice basis.

Similar constructions (with weaker forms of this theorem, where **nice** is replaced by **good**):

- The complex Hilbert space l₂(ℕ) (and the countable approximating substructure Ql₂).
- The measure algebra on [0,1].

- 3 b - 4 3 b

Existence

 $\begin{array}{l} \textbf{Theorem} \ensuremath{\sc limits}\ensuremath{\mathsf{Theorem}}\ensuremath{\sc limits}\ensuremath{\mathsf{IM}}\ensuremath{\mathsf{I7}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I}}\ensuremath{\mathsf{I17}}\ensuremath{\mathsf{I}}\ensure$

Then there is an \mathcal{R} -nice topology for $(\langle \mathcal{X}, \tau \rangle, G)$ so that \mathcal{U} consists of open grey subsets.

イロト イポト イラト イラト

Ubiquity in the case of \mathfrak{U}

Theorem ([IMI17]). Let $G = Iso(\mathfrak{U})$.

Consider the logic *G*-space \mathfrak{U}_L under the standard topology τ . Let \mathcal{F} be a countable family of Borel grey subsets of \mathfrak{U}_L generating a topology finer than τ such that any $\phi \in \mathcal{F}$ is invariant w.r.to a grey subgroup $H \in \mathcal{R}^{\mathfrak{U}}$.

Then there is an $\mathcal{R}^{\mathfrak{U}}$ -nice topology **t** for the *G*-space $\langle \mathfrak{U}_L, \tau \rangle$ which is generated by some countable fragment of $L_{\omega_1\omega}$ such that \mathcal{F} consists of **t**-open grey subsets.

Lindström

G is a Polish group with a grey basis \mathcal{R} consisting of grey cosets, $\langle \mathcal{X}, \tau \rangle$ is a Polish G-space, ect.

Theorem

Let **t** be \mathcal{R} -good. Let $Y = Gx_0$ for some (any) $x_0 \in Y$ and Y be a G_{δ} -subset of \mathcal{X} . Then both topologies τ and **t** are equal on Y.

4 3 5 4

Companions

Let X_0 and X_1 be closed invariant subsets of $(\mathcal{X}, \mathbf{t})$. X_1 is a **companion** of X_0 if τ -closures of X_0 and X_1 coincide and any element of \mathcal{B} is τ -clopen on X_1 .

Effros space

Given a Polish space \mathcal{Y} the **Effros structure** on $\mathcal{F}(\mathcal{Y})$ is the Borel space with respect to the σ -algebra generated by

$$\mathcal{C}_U = \{ D \in \mathcal{F}(\mathcal{Y}) : D \cap U \neq \emptyset \},\$$

for open $U \subseteq \mathcal{Y}$.

Given a Polish group G and a continuous (or Borel) action (G \mathcal{Y}), grey basis \mathcal{R} (for G) and \mathcal{B} (for t on \mathcal{Y}) consider $\mathcal{F}((\mathcal{Y}, t) \times G)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Effros space

Given a Polish space \mathcal{Y} the **Effros structure** on $\mathcal{F}(\mathcal{Y})$ is the Borel space with respect to the σ -algebra generated by

$$\mathcal{C}_U = \{ D \in \mathcal{F}(\mathcal{Y}) : D \cap U \neq \emptyset \},\$$

for open $U \subseteq \mathcal{Y}$.

Given a Polish group G and a continuous (or Borel) action (G \mathcal{Y}), grey basis \mathcal{R} (for G) and \mathcal{B} (for t on \mathcal{Y}) consider $\mathcal{F}((\mathcal{Y}, t) \times G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complete theories

G is a Polish group with a grey basis ${\cal R}$ consisting of grey cosets, $({\cal X},\tau),$ t, ${\cal B},$...

Observation. The set of indecomposable *G*-invariant members $X \in \mathcal{F}(\mathcal{X}, \mathbf{t})$ (i.e. "complete theories") is Borel.

• • = • • = •

Complexity of companions

Theorem. The set of pairs (X_0, X_1) of *G*-invariant members of $\mathcal{F}(\mathcal{X}, \mathbf{t})$ with the condition that X_1 is a companion of X_0 is Borel.

3.1

Universality of \mathfrak{U}_L

Coskey and Lupini:

For any Polish G and any standard Borel G-space \mathcal{X} there is a continuous group monomorphism $\Phi : G \to \mathsf{lso}(\mathfrak{U})$ and a Borel Φ -equivariant injection $f : \mathcal{X} \to \mathfrak{U}_L$.

All Polish groups can be considered as elements of $\mathcal{F}(\mathsf{Iso}(\mathfrak{U}))$, Polish spaces are elements of $\mathcal{F}(\mathfrak{U}_L, \mathfrak{t})$ and Polish *G*-spaces are pairs from $\mathcal{F}((\mathfrak{U}_L, \mathfrak{t}) \times \mathsf{Iso}(\mathfrak{U}))$.

• • = • • = •

Universality of \mathfrak{U}_L

Coskey and Lupini:

For any Polish G and any standard Borel G-space \mathcal{X} there is a continuous group monomorphism $\Phi : G \to \mathsf{lso}(\mathfrak{U})$ and a Borel Φ -equivariant injection $f : \mathcal{X} \to \mathfrak{U}_L$.

All Polish groups can be considered as elements of $\mathcal{F}(\mathsf{Iso}(\mathfrak{U}))$, Polish spaces are elements of $\mathcal{F}(\mathfrak{U}_L, \mathsf{t})$ and Polish *G*-spaces are pairs from $\mathcal{F}((\mathfrak{U}_L, \mathsf{t}) \times \mathsf{Iso}(\mathfrak{U}))$.

周 ト イ ヨ ト イ ヨ ト

Universality of \mathfrak{U}_L

Coskey and Lupini:

For any Polish G and any standard Borel G-space \mathcal{X} there is a continuous group monomorphism $\Phi : G \to \mathsf{lso}(\mathfrak{U})$ and a Borel Φ -equivariant injection $f : \mathcal{X} \to \mathfrak{U}_L$.

All Polish groups can be considered as elements of $\mathcal{F}(\mathsf{Iso}(\mathfrak{U}))$, Polish spaces are elements of $\mathcal{F}(\mathfrak{U}_L, \mathsf{t})$ and Polish *G*-spaces are pairs from $\mathcal{F}((\mathfrak{U}_L, \mathsf{t}) \times \mathsf{Iso}(\mathfrak{U}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Universality of \mathfrak{U}_L

Coskey and Lupini:

For any Polish G and any standard Borel G-space \mathcal{X} there is a continuous group monomorphism $\Phi : G \to \mathsf{lso}(\mathfrak{U})$ and a Borel Φ -equivariant injection $f : \mathcal{X} \to \mathfrak{U}_L$.

All Polish groups can be considered as elements of $\mathcal{F}(Iso(\mathfrak{U}))$, Polish spaces are elements of $\mathcal{F}(\mathfrak{U}_L, t)$ and Polish *G*-spaces are pairs from $\mathcal{F}((\mathfrak{U}_L, t) \times Iso(\mathfrak{U}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A substitute for stability?

Given a (G, \mathcal{R}) -space \mathcal{X} , a nice/good basis \mathcal{B} , a grey subset $\phi \in \mathcal{B}$ and a **t**-closed subset $Y \subseteq \mathcal{X}$

define the notion ϕ is **unstable** w.r. to Y in terms of generalised model theory.

Stable platform

- Let X be a metric structure and N be a countable approximating substructure (denoted by N = QX).
- Let $\mathcal{R}^{\mathfrak{X}}(G_0)$, L, $\mathcal{B}_{\mathcal{L}}$ be as before $(G_0 \leq \mathsf{Iso}(\mathbb{Q}\mathfrak{X}))$,
- Y be a t-closed subset of \mathfrak{X}_L which corresponds to a complete first order theory of *L*-expansions of \mathfrak{X} ,
- Assume that \mathfrak{X} is a stable continuous structure. Assume that $\phi(\bar{x}, \bar{x}')$ is unstable with respect to Y.

周 ト イ ヨ ト イ ヨ ト

Stable platforms

Then there exists $\bar{s}_1 \bar{s}'_1 \dots \bar{s}_n \bar{s}'_n \dots$ such that there in some $M \in Y$ where

 $\lim_{i} \lim_{j} \phi(\bar{s}_{i}, \bar{s}'_{j}) \neq \lim_{j} \lim_{i} \phi(\bar{s}_{i}, \bar{s}'_{j})$ and one of these limits exists,

but for any formula $\hat{\theta}(\bar{x},\bar{x}')$ of the language of $\mathfrak X$

$$lim_i lim_j \hat{\theta}(\bar{s}_i, \bar{s}'_j) = lim_j lim_i \hat{\theta}(\bar{s}_i, \bar{s}'_j).$$

The following platforms are stable:

- The complex Hilbert space $l_2(\mathbb{N})$.
- The Polish ultrametric Urysohn space for $\mathbb{Q} \cap [0,1]$.

< ロ > < 同 > < 三 > < 三 >

Stable platforms

Then there exists $\bar{s}_1 \bar{s}'_1 \dots \bar{s}_n \bar{s}'_n \dots$ such that there in some $M \in Y$ where

 $\lim_{i} \lim_{j} \phi(\bar{s}_{i}, \bar{s}'_{j}) \neq \lim_{j} \lim_{i} \phi(\bar{s}_{i}, \bar{s}'_{j})$ and one of these limits exists,

but for any formula $\hat{\theta}(\bar{x},\bar{x}')$ of the language of $\mathfrak X$

$$lim_i lim_j \hat{ heta}(\overline{s}_i, \overline{s}'_j) = lim_j lim_i \hat{ heta}(\overline{s}_i, \overline{s}'_j).$$

The following platforms are stable:

- The complex Hilbert space $l_2(\mathbb{N})$.
- The Polish ultrametric Urysohn space for $\mathbb{Q} \cap [0,1]$.

4 E 6 4 E 6 .

A substitute

Let $\mathfrak{X}, \mathbb{QX}, \mathcal{R}^{\mathfrak{X}}(G_0), L, \mathcal{B}_{\mathcal{L}} (G_0 \leq \mathsf{lso}(\mathbb{QX}))$ and a **t**-closed subset $Y \subseteq \mathfrak{X}_L$ be as above. Let $\bar{s}, \bar{s}' \in \mathbb{QX}$ and $\phi(\bar{s}, \bar{s}') \in \mathcal{B}_{\mathcal{L}}$.

Definition. The grey set $\phi(\bar{s}, \bar{s}')$ is **unstable** with respect to Y if

- there are rational r_1 and $r_2 \in [0,1]$ such that $r_1 < r_2$ and
- for any *n* and any $\varepsilon \in \mathbb{Q} \cap [0, 1]$ there exist $\bar{s}_1, \bar{s}'_1, \dots, \bar{s}_n, \bar{s}'_n \in \mathbb{QX}$ such that $d(tp^{\mathfrak{X}}(\bar{s}_i \bar{s}'_j), tp^{\mathfrak{X}}(\bar{s} \bar{s}')) \leq \varepsilon$ for all $i, j \leq n$ and

 $Y \cap \bigcap \{ (\phi(\bar{s}_i, \bar{s}'_j) - r_1)_{\leq \varepsilon} : i < j \} \cap \bigcap \{ (r_2 - \phi(\bar{s}_i, \bar{s}'_j))_{\leq \varepsilon} : j \leq i \} \neq \emptyset.$

A Borel substitute

Given (G, \mathcal{R}) -space \mathcal{X} , a nice basis \mathcal{B} , a grey subset $\phi \in \mathcal{B}$. **Definition.** A t-closed $Y \subseteq \mathcal{X}$ is **unstable relatively to** $(\mathcal{X}, \mathcal{B})$ if

- there is a grey set $\phi \in \mathcal{B}$ and grey subgroups $H, H' \in \mathcal{R}$ s. t. ϕ is invariant w. r. to max(H, H') and
- for any n and any $arepsilon \in \mathbb{Q} \cap [0,1]$ there exist

 $\begin{array}{l} g_{1,1},g_{1,2},\ldots,g_{1,n},g_{2,1},\ldots,g_{n-1,n},g_{1,n},\ldots,g_{n,n}\in G_0 \text{ such }\\ \text{that } H(g_{i,j}^{-1}g_{i,l})\leq \varepsilon \text{ and } H'(g_{i,j}^{-1}g_{l,j})\leq \varepsilon \text{ for all }\\ i,j,l\in\{1,\ldots,n\} \text{ and } \end{array}$

$$Y \cap \bigcap \{ (g_{i,j}\phi)_{\leq \varepsilon} : i < j \} \cap \bigcap \{ (g_{i,j}\phi)_{\geq 1-\varepsilon} : j \leq i \} \neq \emptyset.$$

Theorem. The family $\{Y \in \mathcal{F}(\mathcal{X}, t) \mid Y \text{ is } G \text{-invariant and stable relatively to } (\mathcal{X}, \mathcal{B}) \}$ is Borel.

A Borel substitute

Given (G, \mathcal{R}) -space \mathcal{X} , a nice basis \mathcal{B} , a grey subset $\phi \in \mathcal{B}$. **Definition.** A t-closed $Y \subseteq \mathcal{X}$ is **unstable relatively to** $(\mathcal{X}, \mathcal{B})$ if

- there is a grey set $\phi \in \mathcal{B}$ and grey subgroups $H, H' \in \mathcal{R}$ s. t. ϕ is invariant w. r. to max(H, H') and
- for any n and any $arepsilon \in \mathbb{Q} \cap [0,1]$ there exist

 $\begin{array}{l} g_{1,1},g_{1,2},\ldots,g_{1,n},g_{2,1},\ldots,g_{n-1,n},g_{1,n},\ldots,g_{n,n}\in G_0 \text{ such }\\ \text{that } H(g_{i,j}^{-1}g_{i,l})\leq \varepsilon \text{ and } H'(g_{i,j}^{-1}g_{l,j})\leq \varepsilon \text{ for all }\\ i,j,l\in\{1,\ldots,n\} \text{ and } \end{array}$

$$Y \cap \bigcap \{ (g_{i,j}\phi)_{\leq \varepsilon} : i < j \} \cap \bigcap \{ (g_{i,j}\phi)_{\geq 1-\varepsilon} : j \leq i \} \neq \emptyset.$$

Theorem. The family $\{Y \in \mathcal{F}(\mathcal{X}, t) \mid Y \text{ is } G \text{-invariant and stable relatively to } (\mathcal{X}, \mathcal{B}) \}$ is Borel.

An example of a relatively stable piece over $\mathfrak U$

The platform \mathfrak{U} is not stable.

Fix $\mathbb{Q}\mathfrak{U}$ (rational Urysohn space) , G_0 (dense cntable $\leq \mathsf{lso}(\mathbb{Q}\mathfrak{U}))$, $\mathcal{R}^{\mathfrak{U}}(G_0)$, $\mathcal{B}_\mathcal{L}.$ and let $\mathcal{X}=\mathfrak{U}_L.$

- *Continuous signature:* (*d*, *P*) where *P* is unary with continuity modulus *id*.
- Age K: all finite metric spaces (A, d, P) such that there is a metric space B ⊇ A and some B₀ ⊆ B s.t. P extends to the function d(x, B₀) on B.

 \mathcal{K} is a *Fraïssé class*, i.e. it has HP, JEP, NAP, PP (Polish Property), CP (Continuity Property).

・ 同 ト ・ ヨ ト ・ ヨ ト

An example of a relatively stable piece over $\mathfrak U$

The platform \mathfrak{U} is not stable.

Fix QU (rational Urysohn space), G_0 (dense cntable $\leq Iso(QU)$), $\mathcal{R}^{\mathfrak{U}}(G_0)$, $\mathcal{B}_{\mathcal{L}}$. and let $\mathcal{X} = \mathfrak{U}_L$.

- Continuous signature: (d, P) where P is unary with continuity modulus *id*.
- Age K: all finite metric spaces (A, d, P) such that there is a metric space B ⊇ A and some B₀ ⊆ B s.t. P extends to the function d(x, B₀) on B.

 \mathcal{K} is a *Fraïssé class*, i.e. it has HP, JEP, NAP, PP (Polish Property), CP (Continuity Property).

A relatively stable piece over \mathfrak{U}

Let *M* be the Faïssé limit of \mathcal{K} . Then *M* is isometric to a structure of the form (\mathfrak{U}, d, P) .

Theorem. Let $M = (\mathfrak{U}, d, P)$ be the Faïssé limit of \mathcal{K} . Let Y be the t-closed set defined by Th(M). Then Th(M) is separably categorical and any grey set $\phi(\bar{s}, \bar{s}')$ is stable with respect to Y.

(any formula $\phi(\bar{x}, \bar{y})$ is stable with respect to $Th(\mathfrak{U})$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary from the proof

Let *M* be as in the formulation of Theorem , $\phi(\bar{x}, \bar{y})$ be any formula of the language of this structure and $p(\bar{x})$ and $q(\bar{y})$ be types of Th(M).

(1) Then there is a 0-definable predicate $\theta(\bar{x}, \bar{y})$ of $Th(\mathfrak{U})$ such that $\phi(\bar{x}, \bar{y}) - \theta(\bar{x}, \bar{y})$ (viewed in [-1, 1]) is stable on $p(\bar{x}) \cup q(\bar{y})$.

(2) The condition that $\phi(\bar{x}, \bar{y})$ is stable on $p(\bar{x}) \cup q(\bar{y})$ is equivalent to the condition that $\phi(\bar{x}, \bar{y})$ is constant on $p(\bar{x}) \cup q(\bar{y})$.

Corollary from the proof

Let *M* be as in the formulation of Theorem , $\phi(\bar{x}, \bar{y})$ be any formula of the language of this structure and $p(\bar{x})$ and $q(\bar{y})$ be types of Th(M).

(1) Then there is a 0-definable predicate $\theta(\bar{x}, \bar{y})$ of $Th(\mathfrak{U})$ such that $\phi(\bar{x}, \bar{y}) - \theta(\bar{x}, \bar{y})$ (viewed in [-1, 1]) is stable on $p(\bar{x}) \cup q(\bar{y})$.

(2) The condition that $\phi(\bar{x}, \bar{y})$ is stable on $p(\bar{x}) \cup q(\bar{y})$ is equivalent to the condition that $\phi(\bar{x}, \bar{y})$ is constant on $p(\bar{x}) \cup q(\bar{y})$.

Appendix: Relative stability

Let *M* be a continuous metric structure and $\phi(\bar{x}, \bar{y})$ and $\theta(\bar{x}, \bar{y})$ be formulas with parameters from *M*.

Definition

We say that $\phi(\bar{x}, \bar{y})$ is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M) if the formula $(\phi - \theta)(\bar{x}, \bar{y})$ (viewed in [-1, 1]) is stable.

- Stable equivalence is an equivalence relation on the set of formulas.
- If a formula $\phi(\bar{x}, \bar{y})$ is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M) then if $\phi(\bar{x}, \bar{y})$ is stable with respect to $\theta(\bar{x}, \bar{y})$ and vice versa.

< ロ > < 同 > < 三 > < 三 >

Relative stability of formulas

(without the assumption of satbility of $Th(\mathfrak{X})$)

 $\phi(\bar{x}, \bar{x}')$ is **unstable** w.r. to Y and $\hat{\theta}$ if there exists $\bar{s}_1 \bar{s}'_1 \dots \bar{s}_n \bar{s}'_n \dots$ such that

$${{{lim}_i}{lim}_j}{\hat heta}(ar s_i,ar s_j')={{lim}_j}{{lim}_i}{\hat heta}(ar s_i,ar s_j')$$

and

$$lim_i lim_j \phi(\bar{s}_i, \bar{s}'_j) \neq lim_j lim_i \phi(\bar{s}_i, \bar{s}'_j)$$

in some $M \in Y$.

• • = • • = •

Appendix: Definability of types

Observation. Assume that $\phi(\bar{x}, \bar{y})$ is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M).

Let $p(\bar{x}) \in S_{\phi}(M)$ and \bar{a} be its realization. Let $q(\bar{x}) \in S_{\theta}(M)$ be defined by \bar{a} . Let $\psi(\bar{y})$ be the definable predicate over M which defines the $(\phi - \theta)$ -type of \bar{a} over M

Then the type $p(\bar{x})$ is defined by the sum $\phi(p, \bar{y}) = \theta(q, \bar{y}) + \psi(\bar{y})$.

• • = • • = •

Appendix: Definability of types

Observation. Assume that $\phi(\bar{x}, \bar{y})$ is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M). Let $p(\bar{x}) \in S_{\phi}(M)$ and \bar{a} be its realization. Let $q(\bar{x}) \in S_{\theta}(M)$ be defined by \bar{a} . Let $\psi(\bar{y})$ be the definable predicate over M which defines the $(\phi - \theta)$ -type of \bar{a} over M

Then the type $p(\bar{x})$ is defined by the sum $\phi(p, \bar{y}) = \theta(q, \bar{y}) + \psi(\bar{y})$.

周 ト イ ヨ ト イ ヨ ト

Appendix: Definability of types

Observation. Assume that $\phi(\bar{x}, \bar{y})$ is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M). Let $p(\bar{x}) \in S_{\phi}(M)$ and \bar{a} be its realization. Let $q(\bar{x}) \in S_{\theta}(M)$ be defined by \bar{a} . Let $\psi(\bar{y})$ be the definable predicate over M which defines the $(\phi - \theta)$ -type of \bar{a} over M

Then the type $p(\bar{x})$ is defined by the sum $\phi(p, \bar{y}) = \theta(q, \bar{y}) + \psi(\bar{y})$.

< 回 > < 回 > < 回 >

Appendix: Existence of non-forking extensions

Let $A \subset M$ and $p(\bar{x}) \in S(A)$. Let $\phi_i(\bar{x}, \bar{y})$ $(i \leq n)$ be formulas such that each of them is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M). Let $\Delta = \{(\phi_i - \theta)(\bar{x}, \bar{y}) | 1 \leq i \leq n\}$.

Then there are definable predicates $\psi_i(\bar{y})$, $1 \leq i \leq n$, almost over A which define a Δ -type over M consistent with $p(\bar{x})$ such that $\phi_i(\bar{x}, \bar{y}) = \theta(\bar{x}, \bar{y}) + \psi_i(\bar{y})$.

(reformulation Lemmas 2.7 and 2.18 of [Pillay-Book-1996] and Lemma 2.2 and Corollary 2.4 of [Ben Yaacov-JSL-2008])

Appendix: Existence of non-forking extensions

Let $A \subset M$ and $p(\bar{x}) \in S(A)$. Let $\phi_i(\bar{x}, \bar{y})$ $(i \leq n)$ be formulas such that each of them is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M). Let $\Delta = \{(\phi_i - \theta)(\bar{x}, \bar{y}) | 1 \leq i \leq n\}$.

Then there are definable predicates $\psi_i(\bar{y})$, $1 \leq i \leq n$, almost over A which define a Δ -type over M consistent with $p(\bar{x})$ such that $\phi_i(\bar{x}, \bar{y}) = \theta(\bar{x}, \bar{y}) + \psi_i(\bar{y})$.

(reformulation Lemmas 2.7 and 2.18 of [Pillay-Book-1996] and Lemma 2.2 and Corollary 2.4 of [Ben Yaacov-JSL-2008])

Appendix: Existence of non-forking extensions

Let $A \subset M$ and $p(\bar{x}) \in S(A)$. Let $\phi_i(\bar{x}, \bar{y})$ $(i \leq n)$ be formulas such that each of them is stably equivalent to $\theta(\bar{x}, \bar{y})$ with respect to Th(M). Let $\Delta = \{(\phi_i - \theta)(\bar{x}, \bar{y}) | 1 \leq i \leq n\}$.

Then there are definable predicates $\psi_i(\bar{y})$, $1 \le i \le n$, almost over A which define a Δ -type over M consistent with $p(\bar{x})$ such that $\phi_i(\bar{x}, \bar{y}) = \theta(\bar{x}, \bar{y}) + \psi_i(\bar{y})$.

(reformulation Lemmas 2.7 and 2.18 of [Pillay-Book-1996] and Lemma 2.2 and Corollary 2.4 of [Ben Yaacov-JSL-2008])