On large externally definable sets and NIP

Itay Kaplan, HUJI Joint work with Martin Bays, Omer Ben-Neria and Pierre Simon Hodel Theory Conference in celebration of Ludomir Nevelski's 60th birthday, Bedlevo, Poland, 20/12/2022

VC-classes and NIP

Definition

Let X be a set and $\mathcal{F} \subseteq \mathcal{P}(X)$. We say that $A \subseteq X$ is shattered by \mathcal{F} if for every $S \subseteq A$ there is $F \in \mathcal{F}$ such that $F \cap A = S$. A family \mathcal{F} is said to be a VC-class on X if there is some $n < \omega$ such that no subset of X of size nis shattered by \mathcal{F} . In this case the VC-dimension of \mathcal{F} is the smallest integer n such that no subset of X of size n + 1 is shattered by \mathcal{F} . Let T be a theory. A formula $\varphi(x, y)$ has the *independence property* or IP if the set-system $\{\varphi(M, b) \mid b \in M\}$ is not a VC-class for any (some) $M \models T$. The negation is NIP: a formula is NIP if this class is a VC-class (for any M).

T (or any $M \models T$) is *NIP* if every formula is NIP.

A question about cofinal subsets of ${\mathbb R}$

Question

Is there a cofinal* family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ of finite subsets such that \mathcal{F} is a VC-class?

*Cofinal = every finite set is contained in a set in \mathcal{F} .

Note that there is a tension between two things: being a VC-class removes sets from \mathcal{F} while being cofinal adds sets to \mathcal{F} .

A question about cofinal subsets of ${\mathbb R}$

Question

Is there a cofinal* family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ of finite subsets such that \mathcal{F} is a VC-class?

*Cofinal = every finite set is contained in a set in \mathcal{F} .

Note that there is a tension between two things: being a VC-class removes sets from \mathcal{F} while being cofinal adds sets to \mathcal{F} . If \mathcal{F} is stable, then no such cofinal family exist, even for subsets of \mathbb{N} : Inductively choose $a_i \in \mathbb{N}$, $F_j \in \mathcal{F}$ such that $a_i \in F_j$ iff $i \leq j$. In stage j, choose $a_j \notin \bigcup \{F_j \mid j < i\}$ and F_j containing $\{a_i \mid i \leq j\}$.

Motivation

A set $X \subseteq M$ is *definable* if there is some formula $\psi(x)$ over M such that $X = \psi(M)$. A set $X \subseteq M$ is *externally definable* if there is some elementary extension $N \succ M$ and some formula $\psi(x)$ <u>over N</u> such that $X = \psi(M)$.

Fact

T is stable iff every externally definable set over any model is definable.

Examples

Example

A cut C in a linear order is externally definable.

Example

(An independent example) Let M a model of the theory of the random graph then any $S \subseteq M$ is externally definable.

Examples

Example

A cut C in a linear order is externally definable.

Example

(An independent example) Let M a model of the theory of the random graph then any $S \subseteq M$ is externally definable.

Fact (Shelah)

Suppose that M is a structure and M^{Sh} is an expansion given by adding predicates for all externally definable subsets in any number of variables. If Th (M) is NIP, then Th (M^{Sh}) has quantifier elimination and is NIP.

Question

Does every infinite externally definable set contain an infinite definable subset? Clearly if *T* is stable this is true.

Question

Does every infinite externally definable set contain an infinite definable subset?

Clearly if T is stable this is true.

Due to the example of the random graph we cannot hope to get much information in case of IP.

In fact the situation is worse: for any cardinal κ there is a random graph N of size κ and an externally definable subset $X \subseteq N$ with no infinite definable subset.

Indeed, let *N* be the Skolem hull of an indiscernible sequence $I = \langle a_i | i < \kappa \rangle$. $\{a_i | i < \kappa \text{ even}\}$ is externally definable but every definable subset is finite.

Question

Does every infinite externally definable set contain an infinite definable subset?

Clearly if T is stable this is true.

Due to the example of the random graph we cannot hope to get much information in case of IP.

In fact the situation is worse: for any cardinal κ there is a random graph N of size κ and an externally definable subset $X \subseteq N$ with no infinite definable subset.

Indeed, let *N* be the Skolem hull of an indiscernible sequence $I = \langle a_i | i < \kappa \rangle$. $\{a_i | i < \kappa \text{ even}\}$ is externally definable but every definable subset is finite.

Example

Consider $M = (\mathbb{N} + \mathbb{Z}, <)$ whose theory is NIP. Then \mathbb{N} is an externally definable subset with no infinite definable subset.

Question

Suppose that T is NIP. Is there a cardinal κ such that if X is externally definable of size $\geq \kappa$ then X contains an infinite definable set?

Question

Suppose that T is NIP. Is there a cardinal κ such that if X is externally definable of size $\geq \kappa$ then X contains an infinite definable set?

Fact (Chernikov-Simon 2013) Yes! One can take $\kappa = \beth_{\alpha}$.

Question

Suppose that T is NIP. Is there a cardinal κ such that if X is externally definable of size $\geq \kappa$ then X contains an infinite definable set?

Fact (Chernikov-Simon 2013) Yes! One can take $\kappa = \beth_{\omega}$.

Question (Chernikov-Simon 2013) Can we choose κ to be \aleph_1 ?

Definition

Suppose that $\varphi(x, y)$ is a formula, $N \succ M$ and $c \in N$. Say that a formula $\psi(x, z)$ (over \emptyset) is an *honest definition* of $tp_{\varphi^{opp}}(c/M)$ if for every finite $A_0 \subseteq M$ there is some $b \in M^{\chi}$ such that

$$\varphi\left(A_{0},c\right)\subseteq\psi\left(M,b\right)\subseteq\varphi\left(M,c\right).$$

Fact (Chernikov-Simon for NIP theories, Bays-K-Simon for NIP formulas)

If $\varphi(x, y)$ is NIP then there is a formula $\psi(x, z)$ that serves as an honest definition for any φ^{opp} -type (over any M).

Suppose that M is NIP. Let $c \in N \succ M$ and let $X = \varphi(M, c)$ be externally definable.

Let $\psi(x, z)$ be an honest definition of $\varphi(M, c)$.

Then for every finite $X_0 \subseteq X$, there is some $b \in M^z$ such that

$$X_{0}\subseteq\psi\left(M,b\right) \subseteq\mathsf{X}.$$

Suppose that M is NIP. Let $c \in N \succ M$ and let $X = \varphi(M, c)$ be externally definable.

Let $\psi(x, z)$ be an honest definition of $\varphi(M, c)$. Then for every finite $X_0 \subseteq X$, there is some $b \in M^z$ such that

$$X_0 \subseteq \psi(\mathbf{M}, b) \subseteq \mathbf{X}.$$

If we show that one of those ψ (M, b)'s is infinite, we found an infinite definable subset. So suppose none of them is infinite. Let $\mathcal{F} = \{\psi$ (M, b) | $b \in M^{z}, \psi$ (M, b) $\subseteq X\}$. We get that \mathcal{F} is a *cofinal* family of finite subsets of X. \mathcal{F} is a VC-class since M is NIP.

Suppose that M is NIP. Let $c \in N \succ M$ and let $X = \varphi(M, c)$ be externally definable.

Let $\psi(x, z)$ be an honest definition of $\varphi(M, c)$. Then for every finite $X_0 \subseteq X$, there is some $b \in M^z$ such that

$$X_0 \subseteq \psi(\mathbf{M}, b) \subseteq \mathbf{X}.$$

If we show that one of those ψ (M, b)'s is infinite, we found an infinite definable subset. So suppose none of them is infinite.

Let $\mathcal{F} = \{\psi(\mathbf{M}, b) \mid b \in \mathbf{M}^{z}, \psi(\mathbf{M}, b) \subseteq \mathbf{X}\}.$

We get that \mathcal{F} is a *cofinal* family of finite subsets of X.

 \mathcal{F} is a VC-class since M is NIP.

Chernikov-Simon's proof of the \beth_{ω} bound was through:

Fact (Chernikov-Simon, 2013)

There is no NIP cofinal family of finite subsets of \beth_{ω} .

(The proof uses alternation rank and \beth_{ω} was used for the Erdös-Rado coloring theorem.)

Theorem (Bays, Ben-Neria, K., Simon)

Suppose that \mathcal{F} is a cofinal family of finite subsets of \aleph_{ω} . Then \mathcal{F} has IP: it is not a VCclass. More precisely, if \mathcal{F} is a cofinal family of finite subsets of \aleph_n then \mathcal{F} has

VC-dimension > n.

Corollary

Suppose that M is NIP. If X is an externally definable set of size $\geq \aleph_{\omega}$ then X contains a definable subset.

Theorem (Bays, Ben-Neria, K., Simon)

Suppose that \mathcal{F} is a cofinal family of finite subsets of \aleph_{ω} . Then \mathcal{F} has IP: it is not a VC-class. More precisely, if \mathcal{F} is a cofinal family of finite subsets of \aleph_n then \mathcal{F} has

VC-dimension > n.

Corollary

Suppose that M is NIP. If X is an externally definable set of size $\geq \aleph_{\omega}$ then X contains a definable subset.

Going back to the \aleph_1 -question, we get:

Question

Suppose that \mathcal{F} is a cofinal family of finite subsets of \aleph_1 . Does it follow that \mathcal{F} has IP?

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Proof idea:

Define inductively on $\alpha < \omega_1$ an ω -order $<^{\alpha}$.

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Proof idea: Define inductively on $\alpha < \omega_1$ an ω -order $<^{\alpha}$. Write $\alpha, \beta \vdash \gamma$ to mean that $\beta, \gamma < \alpha$ and $\gamma <^{\alpha} \beta$.

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Proof idea:

Define inductively on $\alpha < \omega_1$ an ω -order $<^{\alpha}$.

Write $\alpha, \beta \vdash \gamma$ to mean that $\beta, \gamma < \alpha$ and $\gamma <^{\alpha} \beta$.

The inductive condition on $<^{\alpha}$ is that for every finite set $A \subseteq \alpha$ there is some $A \subseteq B \subseteq \alpha$ such that *B* is closed under \vdash : if $\gamma, \beta \in B$ and $\gamma, \delta < \beta$ and $\delta <^{\alpha} \gamma$ then $\delta \in B$.

Let \mathcal{F} be the set of finite subsets of ω_1 which are closed under \vdash .

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Proof idea:

Define inductively on $\alpha < \omega_1$ an ω -order $<^{\alpha}$.

Write $\alpha, \beta \vdash \gamma$ to mean that $\beta, \gamma < \alpha$ and $\gamma <^{\alpha} \beta$.

The inductive condition on $<^{\alpha}$ is that for every finite set $A \subseteq \alpha$ there is some $A \subseteq B \subseteq \alpha$ such that *B* is closed under \vdash : if $\gamma, \beta \in B$ and $\gamma, \delta < \beta$ and $\delta <^{\alpha} \gamma$ then $\delta \in B$.

Let \mathcal{F} be the set of finite subsets of ω_1 which are closed under \vdash . Then \mathcal{F} is NIP: for every $\alpha_0, \alpha_1, \alpha_2$, there is some permutation σ of $\{0, 1, 2\}$ such that $\alpha_{\sigma(0)}, \alpha_{\sigma(1)} \vdash \alpha_{\sigma(2)}$. This means that there can be no $C \in \mathcal{F}$ containing $\alpha_{\sigma(0)}, \alpha_{\sigma(1)}$ but not $\alpha_{\sigma(2)}$.

Theorem (Bays, Ben-Neria, K., Simon)

The answer is NO: there is a cofinal family \mathcal{F} of finite subsets of \aleph_1 which is NIP (in fact of VCdimension 2).

Proof idea:

Define inductively on $\alpha < \omega_1$ an ω -order $<^{\alpha}$.

Write $\alpha, \beta \vdash \gamma$ to mean that $\beta, \gamma < \alpha$ and $\gamma <^{\alpha} \beta$.

The inductive condition on $<^{\alpha}$ is that for every finite set $A \subseteq \alpha$ there is some $A \subseteq B \subseteq \alpha$ such that *B* is closed under \vdash : if $\gamma, \beta \in B$ and $\gamma, \delta < \beta$ and $\delta <^{\alpha} \gamma$ then $\delta \in B$.

Let \mathcal{F} be the set of finite subsets of ω_1 which are closed under \vdash . Then \mathcal{F} is NIP: for every $\alpha_0, \alpha_1, \alpha_2$, there is some permutation σ of $\{0, 1, 2\}$ such that $\alpha_{\sigma(0)}, \alpha_{\sigma(1)} \vdash \alpha_{\sigma(2)}$. This means that there can be no $C \in \mathcal{F}$ containing $\alpha_{\sigma(0)}, \alpha_{\sigma(1)}$ but not $\alpha_{\sigma(2)}$.

Question

Is there a cofinal family of finite subset of \aleph_2 of VC-dimension 3?

A surprising undecidable statement

A surprising undecidable statement

Corollary

The following statement is independent of ZFC: there is a cofinal family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ of finite subsets such that \mathcal{F} is a VC-class.

Proof.

By Gödel, ZFC is consistent with CH: $\aleph_1 = 2^{\aleph_0}$, so that it is consistent that there is such a family.

By Cohen, ZFC is consistent with $2^{\aleph_0} > \aleph_{\omega}$, implying that such a family does not exist.

Theorem (Bays, Ben-Neria, K., Simon)

Let X be an uncountable set. If \mathcal{F} is a cofinal family of finite subsets of X, then the two-sorted structure $(X, \mathcal{F}; \in)$ has IP.

Theorem (Bays, Ben-Neria, K., Simon)

Let X be an uncountable set. If \mathcal{F} is a cofinal family of finite subsets of X, then the two-sorted structure $(X, \mathcal{F}; \in)$ has IP.

Recall the setting:

M is NIP. $c \in N \succ M$ and $X = \varphi(M, c)$ is externally definable. Let $\psi(x, z)$ be an honest definition of $\varphi(M, c)$. Then for every finite $X_0 \subseteq X$, there is some $b \in M^z$ such that

 $X_0 \subseteq \psi(M, b) \subseteq X.$

Let $\mathcal{F} = \{\psi(\mathbf{M}, b) \mid b \in \mathbf{M}^{z}, \psi(\mathbf{M}, b) \subseteq \mathbf{X}\}.$

Theorem (Bays, Ben-Neria, K., Simon)

Let X be an uncountable set. If \mathcal{F} is a cofinal family of finite subsets of X, then the two-sorted structure $(X, \mathcal{F}; \in)$ has IP.

Recall the setting:

M is NIP. $c \in N \succ M$ and $X = \varphi(M, c)$ is externally definable. Let $\psi(x, z)$ be an honest definition of $\varphi(M, c)$. Then for every finite $X_0 \subseteq X$, there is some $b \in M^z$ such that

 $X_0 \subseteq \psi(\mathbf{M}, b) \subseteq \mathbf{X}.$

Let $\mathcal{F} = \{\psi(M, b) | b \in M^{z}, \psi(M, b) \subseteq X\}.$ Then $(X, \mathcal{F}; \in)$ is interpretable in M^{Sh} ,

Corollary

If M is NIP, every externally definable set of size $\geq \aleph_1$ contains an infinite definable subset.

General κ

In fact we get more:

Theorem

Let κ be any cardinal and let X have size $\geq \kappa^+$. If \mathcal{F} is a family of subsets of X such that every finite subset of X is contained in a set from \mathcal{F} (we call such families ω -cofinal) and each set in \mathcal{F} has size $< \kappa$, then the two-sorted structure $(X, \mathcal{F}; \in)$ has IP.

Corollary

If M is NIP, every externally definable set of size $\geq \kappa^+$ contains a definable subset of size $\geq \kappa$.

Lemma

Let κ be any infinite cardinal. Assume that:

- |X| ≥ κ⁺.
 R ⊆ Xⁿ and 1 ≤ n.
 For every a₁,..., a_{n-1} ∈ X, | {a₀ ∈ X | R(a₀, a₁,..., a_{n-1})} | < κ.
 For every set A ⊆ X of size |A| = n, for some a ∈ A and some tuple
- 4. For every set $A \subseteq X$ of size |A| = n, for some $a \in A$ and some tup $\bar{a} \in (A \setminus a)^{n-1}$, $R(a, \bar{a})$ holds.

Lemma

Let κ be any infinite cardinal. Assume that:

Then, there is some partition of $\{1, \ldots, n-1\}$ into nonempty disjoint sets u, v such that letting $x := \langle x_i | i \in u \cup \{0\} \rangle$ and $y := \langle x_i | i \in v \rangle$, the partitioned formula $\phi(x, y) := R(x_0, x_1, \ldots, x_{n-1})$ has IP.

Lemma

Let κ be any infinite cardinal. Assume that:

Then, there is some partition of $\{1, \ldots, n-1\}$ into nonempty disjoint sets u, v such that letting $x := \langle x_i | i \in u \cup \{0\} \rangle$ and $y := \langle x_i | i \in v \rangle$, the partitioned formula $\phi(x, y) := R(x_0, x_1, \ldots, x_{n-1})$ has IP.

Example

Choose, for each ordinal $\alpha < \omega_1$, an ω -order $<^{\alpha}$ on α . Let $\mathbb{R}(\alpha, \beta, \gamma)$ hold iff $\alpha, \beta < \gamma$ and $\alpha <^{\gamma} \beta$.

From the proof of the lemma, we get that R(x, y; z) has IP.

From the proof of the lemma, we get that R(x, y; z) has IP. Question Does R(x; y, z) have IP? Note that letting

$$\mathcal{F} = \left\{ \left\{ \alpha \, | \, \mathbf{R} \left(\alpha, \beta, \gamma \right) \right\} \, | \, \beta, \gamma \in \omega_1 \, \right\},\,$$

 ${\mathcal F}$ is a cofinal family of finite subsets of ω_1 .

Idea of the proof, using the lemma

Suppose that $|X| \ge \kappa^+$ and that \mathcal{F} is a cofinal family of subsets of X, each of size $< \kappa$. Suppose that $vc(\mathcal{F}) = n$. For any $0 \le k \le n$ and any $m \le k$, let $R_{m,k}(x_0, \ldots, x_k)$ be the relation defined by:

$$[\exists t \in \mathcal{F} \ \bigwedge_{1 \leq i \leq k} (x_i \in t)^{(i \leq m)}] \land [\forall t \in \mathcal{F} ((\bigwedge_{1 \leq i \leq k} (x_i \in t)^{(i \leq m)}) \to x_0 \in t)].$$

Idea of the proof, using the lemma

Suppose that $|X| \ge \kappa^+$ and that \mathcal{F} is a cofinal family of subsets of X, each of size $< \kappa$. Suppose that $vc(\mathcal{F}) = n$. For any $0 \le k \le n$ and any $m \le k$, let $R_{m,k}(x_0, \ldots, x_k)$ be the relation defined by:

$$[\exists t \in \mathcal{F} \ \bigwedge_{1 \leq i \leq k} (x_i \in t)^{(i \leq m)}] \land [\forall t \in \mathcal{F} ((\bigwedge_{1 \leq i \leq k} (x_i \in t)^{(i \leq m)}) \to x_0 \in t)].$$

Let $R(x_0, x_1, ..., x_n) = \bigvee_{m \le k \le n} R_{m,k}(x_0, ..., x_k)$. Then *R* satisfies the conditions of the lemma on *X*.

Some open questions

Question

Suppose that M is a structure and $X = \phi(M, c)$ is externally definable of size $\geq \aleph_1$. Suppose that ϕ is NIP. Does it follow that X contains an infinite definable subset?

Some open questions

Question

Suppose that M is a structure and $X = \phi(M, c)$ is externally definable of size $\geq \aleph_1$. Suppose that ϕ is NIP. Does it follow that X contains an infinite definable subset?

More generally,

we can define $\operatorname{ext}(T, \phi, \kappa)$ as the minimal λ (if exists) such that whenever $M \vDash T$ and $X \subseteq M^k$ is externally definable by $\phi(x, c)$, then Xcontains a definable subset of size $\geq \kappa$. If T is NIP then $\operatorname{ext}(T, \phi, \kappa) \leq \kappa^+$. If the honest definition of ϕ is NIP and $\kappa = \aleph_{\alpha}$, $\operatorname{ext}(T, \phi, \kappa) \leq \aleph_{\alpha+\omega}$. If we assume only that ϕ is NIP, it is not even clear that $\operatorname{ext}(T, \phi, \aleph_0)$ exists.

Question

What is $ext(T, \phi, \kappa)$ when ϕ is NIP?

Some open questions

Question

Suppose that M is a structure and $X = \phi(M, c)$ is externally definable of size $\geq \aleph_1$. Suppose that ϕ is NIP. Does it follow that X contains an infinite definable subset?

More generally,

we can define $\operatorname{ext}(T, \phi, \kappa)$ as the minimal λ (if exists) such that whenever $M \vDash T$ and $X \subseteq M^k$ is externally definable by $\phi(x, c)$, then Xcontains a definable subset of size $\geq \kappa$. If T is NIP then $\operatorname{ext}(T, \phi, \kappa) \leq \kappa^+$. If the honest definition of ϕ is NIP and $\kappa = \aleph_{\alpha}$, $\operatorname{ext}(T, \phi, \kappa) \leq \aleph_{\alpha+\omega}$. If we assume only that ϕ is NIP, it is not even clear that $\operatorname{ext}(T, \phi, \aleph_0)$ exists.

Question

What is $ext(T, \phi, \kappa)$ when ϕ is NIP?

Question

Does $ext(T, \aleph_0) = \infty$ hold whenever T is IP?

Thank you!