Around Vaught's conjecture for weakly o-minimal theories

Slavko Moconja (joint work with Predrag Tanović)

University of Belgrade Faculty of Mathematics

Supported by the Science Fund of the Republic of Serbia, Grant No. 7750027: Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity – SMART

Vaught's conjecture

If T is a complete first-order theory in a countable language, then $I(T,\aleph_0) \leq \aleph_0$ or $I(T,\aleph_0) = 2^{\aleph_0}$.

Vaught's conjecture

If T is a complete first-order theory in a countable language, then $I(T,\aleph_0) \leq \aleph_0$ or $I(T,\aleph_0) = 2^{\aleph_0}$.

Confirmed ordered cases

Vaught's conjecture holds for:

- theories of coloured linear orders (Rubin, 1973);
- theories of linear orders with Skolem functions (Shelah, 1978);
- o-minimal theories (Mayer, 1988).

Definition

A type $p \in S_1(A)$ is ordered if there is an A-definable linear order (D, <) s.t. $p(\mathfrak{C}) \subseteq D$. An ordered type is weakly o-minimal if every \mathfrak{C} -definable set D' has finitely many convex components on $p(\mathfrak{C})$ (i.e. $D' \cap p(\mathfrak{C})$ is a finite union of convex subsets of $p(\mathfrak{C})$).

Definition

A type $p \in S_1(A)$ is ordered if there is an A-definable linear order (D, <) s.t. $p(\mathfrak{C}) \subseteq D$. An ordered type is weakly o-minimal if every \mathfrak{C} -definable set D' has finitely many convex components on $p(\mathfrak{C})$ (i.e. $D' \cap p(\mathfrak{C})$ is a finite union of convex subsets of $p(\mathfrak{C})$).

Facts

1. For a type, being weakly o-minimal is independent of the choice of the order.

Definition

A type $p \in S_1(A)$ is ordered if there is an A-definable linear order (D, <) s.t. $p(\mathfrak{C}) \subseteq D$. An ordered type is weakly o-minimal if every \mathfrak{C} -definable set D' has finitely many convex components on $p(\mathfrak{C})$ (i.e. $D' \cap p(\mathfrak{C})$ is a finite union of convex subsets of $p(\mathfrak{C})$).

Facts

- 1. For a type, being weakly o-minimal is independent of the choice of the order.
- Every type in S₁(Ø) is weakly o-minimal iff the theory is weakly quasi-o-minimal (every €-definable subset of € is a Boolean combination of convex and Ø-definable sets).

Definition

A type $p \in S_1(A)$ is ordered if there is an A-definable linear order (D, <) s.t. $p(\mathfrak{C}) \subseteq D$. An ordered type is weakly o-minimal if every \mathfrak{C} -definable set D' has finitely many convex components on $p(\mathfrak{C})$ (i.e. $D' \cap p(\mathfrak{C})$ is a finite union of convex subsets of $p(\mathfrak{C})$).

Facts

- 1. For a type, being weakly o-minimal is independent of the choice of the order.
- Every type in S₁(Ø) is weakly o-minimal iff the theory is weakly quasi-o-minimal (every €-definable subset of € is a Boolean combination of convex and Ø-definable sets).
- 3. For weakly o-minimal p and any $B \supseteq A$, $S_p(B)$ is naturally linearly ordered (by <), and every $q \in S_p(B)$ is weakly o-minimal.

Let $p \in S_1(A)$ be weakly o-minimal witnessed by (D, <).

Definition

There are only two A-invariant global extensions of p:

 $\mathfrak{p}_{l} \ [\mathfrak{p}_{r}] \coloneqq \{ \varphi \in L(\mathfrak{C}) \mid \varphi(\mathfrak{C}) \text{ contains an initial [final] part of } p(\mathfrak{C}) \}.$

Let $p \in S_1(A)$ be weakly o-minimal witnessed by (D, <).

Definition

There are only two A-invariant global extensions of p:

 $\mathfrak{p}_{l} \ [\mathfrak{p}_{r}] \coloneqq \{ \varphi \in L(\mathfrak{C}) \mid \varphi(\mathfrak{C}) \text{ contains an initial [final] part of } p(\mathfrak{C}) \}.$

These are also only two global non-forking extensions of p over A.

Proof. If $\mathfrak{p} \neq \mathfrak{p}_I, \mathfrak{p}_r$ extends p, then there is a bounded in $p(\mathfrak{C})$ set $\varphi(\mathfrak{C}, \overline{b})$, i.e. such that $a_0 < \varphi(\mathfrak{C}, \overline{b}) < a_1$ for $a_0 \models \mathfrak{p}_{I \upharpoonright A \overline{b}_0}$ and $a_1 \models \mathfrak{p}_{r \upharpoonright A \overline{b}}$. Take an automorphism f mapping a_0 to a_1 , then $f^n[\varphi(\mathfrak{C}, \overline{b})]$ are 2-inconsistent.

Remark

Independently on <, \mathfrak{p}_I and \mathfrak{p}_r are endpoints of $S_p(\mathfrak{C})$; all other *bounded* points are forking over A extensions of p.

Remark

Independently on <, \mathfrak{p}_l and \mathfrak{p}_r are endpoints of $S_p(\mathfrak{C})$; all other *bounded* points are forking over A extensions of p.

Remark

Denote $p^2(x, y) \coloneqq \mathfrak{p}^2_{r \upharpoonright A}(x, y)$; $p^2(x, y)$ is equal to $\mathfrak{p}^2_{l \upharpoonright A}(y, x)$.

 χ -relation

Theorem

On elements of $\bigcup \{ p(\mathfrak{C}) \mid p \in S_1(A) \text{ is weakly o-minimal} \}$, \mathcal{L}_A is symmetric and transitive (as a binary relation).

Theorem

On elements of $\bigcup \{ p(\mathfrak{C}) \mid p \in S_1(A) \text{ is weakly o-minimal} \}$, \mathcal{L}_A is symmetric and transitive (as a binary relation).

For weakly o-minimal $p, q \in S_1(A)$, and $a \models p$:

$$\mathscr{D}_q(\mathsf{a}) \coloneqq \Big\{ t \models q \mid t \swarrow_A \mathsf{a} \Big\}.$$

Since $\mathscr{D}_q(a) = \bigcup \{q'(\mathfrak{C}) \mid q' \in S_q(Aa) \smallsetminus \{\mathfrak{q}_{\restriction Aa}, \mathfrak{q}_{r \restriction Aa}\}\}$, it is a convex, bounded (maybe empty) subset of $q(\mathfrak{C})$.

Simple types

Definition

Weakly o-minimal type $p \in S_1(A)$ is simple if:

$$\mathscr{D}_{p}(a) \coloneqq \left\{ t \models p \mid t \swarrow_{A} a \right\}$$

is relatively Aa-definable on $p(\mathfrak{C})$. (Note, it is always relatively Aa- \bigvee -definable.)

Simple types

Definition

Weakly o-minimal type $p \in S_1(A)$ is simple if:

$$\mathscr{D}_p(a) \coloneqq \left\{ t \models p \mid t \swarrow_A a \right\}$$

is relatively Aa-definable on $p(\mathfrak{C})$. (Note, it is always relatively Aa- \bigvee -definable.)

Example

If $M = (\mathbb{Z}, <)$, p is the unique type over \emptyset and $a \models p$, then $\mathscr{D}_p(a)$ is a \mathbb{Z} -copy around a, so p is non-simple.

If $M = (\mathbb{Q}, <)$, p is the unique type over \emptyset and $a \models p$, then $\mathscr{D}_p(a) = \{a\}$, so p is simple.

Convex types

Definition

A weakly o-minimal type p is *convex* if (D, <) can be chosen such that $p(\mathfrak{C})$ is a convex subset of D.

Definition

A weakly o-minimal type p is *convex* if (D, <) can be chosen such that $p(\mathfrak{C})$ is a convex subset of D.

Example

Let $M = (\mathbb{Q}, <, P_n)_{n < \omega}$ where $\{P_n(\mathbb{Q})\}_{n < \omega}$ is a dense partition of \mathbb{Q} (by which I mean that between any two points there are points of every colour). Types over \emptyset are $p_n(x)$ determined by $P_n(x)$, for each n, and $p_{\infty}(x)$ determined by $\{\neg P_n(x)\}_{n < \omega}$.

Types $p_n(x)$ are convex witnessed by $(P_n(\mathfrak{C}), <)$, but $p_{\infty}(x)$ is not convex.

Definition

A weakly o-minimal type p is *convex* if (D, <) can be chosen such that $p(\mathfrak{C})$ is a convex subset of D.

Example

Let $M = (\mathbb{Q}, <, P_n)_{n < \omega}$ where $\{P_n(\mathbb{Q})\}_{n < \omega}$ is a dense partition of \mathbb{Q} (by which I mean that between any two points there are points of every colour). Types over \emptyset are $p_n(x)$ determined by $P_n(x)$, for each n, and $p_{\infty}(x)$ determined by $\{\neg P_n(x)\}_{n < \omega}$.

Types $p_n(x)$ are convex witnessed by $(P_n(\mathfrak{C}), <)$, but $p_{\infty}(x)$ is not convex.

Remark

If p is simple and convex and $a \models p$, then $\mathscr{D}_p(a)$ is Aa-definable.

Theorem

Let T be a binary weakly quasi-o-minimal theory. Then $I(T,\aleph_0)\leqslant \aleph_0$, except if:

- (C_1) T is not small;
- (C_2) there are infinitely many pairwise \bot^w non-isolated types in $S_1(\varnothing);$
- (C_3) there is a non-simple type in $S_1(\emptyset)$;
- (C_4) there is a non-convex type in $S_1(\emptyset)$;
- (C_5) there is a non-isolated forking extension of some $p \in S_1(\emptyset)$ over 1-element domain.

If there is $p \in S_1(\emptyset)$ which is non-simple, or simple and non-convex, take a countable Morley sequence $\bar{a}_I = (a_i)_{i \in I}$ in \mathfrak{p}_r over \emptyset .

If there is $p \in S_1(\emptyset)$ which is non-simple, or simple and non-convex, take a countable Morley sequence $\bar{a}_I = (a_i)_{i \in I}$ in \mathfrak{p}_r over \emptyset .

Type $p(x) \cup \bigcup_{i \in I} x \notin \mathscr{D}_p(a_i)$ can be omitted in a model $M_I \supseteq \bar{a}_I$.

If there is $p \in S_1(\emptyset)$ which is non-simple, or simple and non-convex, take a countable Morley sequence $\bar{a}_I = (a_i)_{i \in I}$ in \mathfrak{p}_r over \emptyset .

Type $p(x) \cup \bigcup_{i \in I} x \notin \mathscr{D}_p(a_i)$ can be omitted in a model $M_I \supseteq \overline{a}_I$.

Any maximal Morley sequence in \mathfrak{p}_r over \emptyset in M contains one element from each $\mathscr{D}_p(a_i)$, so its order type is I.

If there is $p \in S_1(\emptyset)$ which is non-simple, or simple and non-convex, take a countable Morley sequence $\bar{a}_I = (a_i)_{i \in I}$ in \mathfrak{p}_r over \emptyset .

Type
$$p(x) \cup \bigcup_{i \in I} x \notin \mathscr{D}_p(a_i)$$
 can be omitted in a model $M_I \supseteq \overline{a}_I$.

Any maximal Morley sequence in \mathfrak{p}_r over \emptyset in M contains one element from each $\mathscr{D}_p(a_i)$, so its order type is I.

Thus non-isomorphic countable orders I and J give non-isomorphic models M_I and M_J .

Orthogonality

Definition

Let $p, q \in S_1(A)$ be weakly o-minimal and $p \not\perp^w q$, and $a \models p$. pand q are forking orthogonal, $p \perp^f q$, if $\mathcal{D}_q(a) = \emptyset$, and forking non-orthogonal, $p \not\perp^f q$, if $\mathcal{D}_q(a) \neq \emptyset$.

Orthogonality

Definition

Let $p, q \in S_1(A)$ be weakly o-minimal and $p \not\perp^w q$, and $a \models p$. pand q are forking orthogonal, $p \perp^f q$, if $\mathcal{D}_q(a) = \emptyset$, and forking non-orthogonal, $p \not\perp^f q$, if $\mathcal{D}_q(a) \neq \emptyset$.

Example

Let $M = (\mathbb{Q}, <, P)$, where $\{P(\mathbb{Q}), \neg P(\mathbb{Q})\}$ is a dense partition, and p(x) and q(x) types over \emptyset determined by P(x) and $\neg P(X)$, respectively. Then $p \not\perp^w q$ but $p \perp^f q$.

Orthogonality

Definition

Let $p, q \in S_1(A)$ be weakly o-minimal and $p \not\perp^w q$, and $a \models p$. pand q are forking orthogonal, $p \perp^f q$, if $\mathcal{D}_q(a) = \emptyset$, and forking non-orthogonal, $p \not\perp^f q$, if $\mathcal{D}_q(a) \neq \emptyset$.

Example

Let $M = (\mathbb{Q}, <, P)$, where $\{P(\mathbb{Q}), \neg P(\mathbb{Q})\}$ is a dense partition, and p(x) and q(x) types over \emptyset determined by P(x) and $\neg P(X)$, respectively. Then $p \not\perp^w q$ but $p \perp^f q$.

Theorem

Both \angle^w and \angle^f are equivalence relations on $S_1(A)$.

Theorem

Assume that $(C_1) - (C_5)$ don't hold; in particular, \angle^w is finite equivalence relation on $S_1^{ni}(\emptyset)$.

- If \angle^{f} is infinite on $S_{1}^{ni}(\varnothing)$, then $I(\mathcal{T}, \aleph_{0}) = \aleph_{0}$;
- if ∠^f is finite on S₁ⁿⁱ(Ø), then I(T, ℵ₀) < ℵ₀, Moreover, there is a (complicated) formula for I(T, ℵ₀).

Theorem

Assume that $(C_1) - (C_5)$ don't hold; in particular, \angle^w is finite equivalence relation on $S_1^{ni}(\emptyset)$.

- If \measuredangle^f is infinite on $S_1^{ni}(\emptyset)$, then $I(\mathcal{T},\aleph_0) = \aleph_0$;
- if ∠^f is finite on S₁ⁿⁱ(Ø), then I(T, ℵ₀) < ℵ₀, Moreover, there is a (complicated) formula for I(T, ℵ₀).

Some parts of the proof (II)

A countable M is prime over maximal Morley sequences of \mathcal{X}^{f} -representatives.

For the proof that the existence of a non-simple (or a simple and non-convex) type over a finite set implies many models, triviality suffices.

For the proof that the existence of a non-simple (or a simple and non-convex) type over a finite set implies many models, triviality suffices.

Definition

A weakly o-minimal type p is *trivial* over A if for any n, $a_1 < \cdots < a_n \models p$ and $a_i \bigcup_A a_{i+1}$ imply $(a_1, \ldots, a_n) \models \mathfrak{p}_{r \upharpoonright A}^n$ (equivalently, $(a_n, \ldots, a_1) \models \mathfrak{p}_{l \upharpoonright A}^n$). For the proof that the existence of a non-simple (or a simple and non-convex) type over a finite set implies many models, triviality suffices.

Definition

A weakly o-minimal type p is *trivial* over A if for any n, $a_1 < \cdots < a_n \models p$ and $a_i \bigcup_A a_{i+1}$ imply $(a_1, \ldots, a_n) \models \mathfrak{p}_{r \upharpoonright A}^n$ (equivalently, $(a_n, \ldots, a_1) \models \mathfrak{p}_{l \upharpoonright A}^n$).

Remark

If there is a non-simple, or simple and non-convex, trivial type over finite set, then $I(T,\aleph_0) = 2^{\aleph_0}$.

Shifts

Let (D, <) be an A-definable order.

Definition

Let $S_t(x)$ be an L_A -formula (in variables t and x). It is a (right) shift (on D) if $(a, b \in D)$:

- $S_a(\mathfrak{C})$ is a convex subset of D with minimum a;
- a < b implies $\sup S_a(\mathfrak{C}) \leq \sup S_b(\mathfrak{C})$;

•
$$S_a^n(\mathfrak{C}) \subsetneq S_a^{n+1}(\mathfrak{C})$$
 for all *n*, where
 $S_t^{n+1}(x) \coloneqq (\exists t')(S_t^n(t') \land S_{t'}(x)).$

Shifts

Let (D, <) be an A-definable order.

Definition

Let $S_t(x)$ be an L_A -formula (in variables t and x). It is a (right) shift (on D) if $(a, b \in D)$:

- $S_a(\mathfrak{C})$ is a convex subset of D with minimum a;
- a < b implies $\sup S_a(\mathfrak{C}) \leq \sup S_b(\mathfrak{C});$

•
$$S_a^n(\mathfrak{C}) \subsetneq S_a^{n+1}(\mathfrak{C})$$
 for all *n*, where
 $S_t^{n+1}(x) \coloneqq (\exists t')(S_t^n(t') \land S_{t'}(x)).$

Examples

- If (D, <) is infinite and discrete, there is a shift.
- If f is an A-definable strictly increasing function on D s.t.
 f(x) > x for all x ∈ D, there is a shift.

Theorem (small)

If there exists a shift over a finite set A, then there is a trivial and non-simple type over a finite extension of A.

Theorem (small)

If there exists a shift over a finite set A, then there is a trivial and non-simple type over a finite extension of A.

Corollary (few models)

There are no shifts over finite sets.

Let S_t be a shift on (D, <) (over A) and $a \in D$. Let $S_a^{\infty} := \bigcup_{n < \omega} S_a^n$.

Consider any convex completion of

$$\{x \in D\} \cup \{S_a^n < x \mid n < \omega\} \cup \{\varphi \in L(Aa) \mid \varphi(S_a^{\infty}) = S_a^{\infty}\}.$$

If non-trivial, we find a dense set of isolated types over a finite extension of Aa, contradicting smallness.

Consider the following situation $a, b \models p$, a < b and $a \not \perp_A b$.

Then *b* belongs to some bounded *Aa*-definable set *D'*, and consider the trace of $S_a := \{t \in D \mid (\exists d' \in D') a \leq t \leq d'\}$ on $p(\mathfrak{C})$.

If for some $b \models p$, $b \in S_a$, $\sup(S_a) < \sup(S_b)$, then S_a is a shift (maybe after some modification).

It is not possible to have $b \models p$, $b \in S_a$ and $\sup(S_a) > \sup(S_b)$, and this is by weakly o-minimality.

So if there are no shifts, $(x \leq y \land y \in S_x) \lor (y \leq x \land x \in S_y)$ relatively defines a convex equivalence relation on $p(\mathfrak{C})$.

Corollary

 $\mathscr{D}_p(a)$ is the union of *E*-classes of *a*, for all (non-full) relatively *A*-definable convex equivalence relations on $p(\mathfrak{C})$.

Corollary

 $\mathscr{D}_p(a)$ is the union of *E*-classes of *a*, for all (non-full) relatively *A*-definable convex equivalence relations on $p(\mathfrak{C})$.

Corollary

a b $dcl^{eq}(a) \cap dcl^{eq}(b)$

Corollary

 $\mathscr{D}_p(a)$ is the union of *E*-classes of *a*, for all (non-full) relatively *A*-definable convex equivalence relations on $p(\mathfrak{C})$.

Corollary

 $a \bigcup_{\mathsf{dcl}^{eq}(a) \cap \mathsf{dcl}^{eq}(b)} b$

Theorem (few models)

Every type over a finite set is convex.