Weak heir, coheirs and the Elis semigroups

Adam Malinowski Ludomir Newelski

Instytut Matematyczny Uniwersytet Wrocławski

December 2022

A 3 b

Basics

G is an infinite group $\mathcal{A} \subseteq \mathcal{P}(G)$ is a *G*-algebra of sets $S(\mathcal{A})$ is a G-flow

Basics

G is an infinite group $\mathcal{A} \subseteq \mathcal{P}(G)$ is a *G*-algebra of sets $S(\mathcal{A})$ is a G-flow For $g \in G$, $\pi_g : S(\mathcal{A}) \xrightarrow{\approx} S(\mathcal{A})$ $\pi_{g}(p) = g \cdot p.$ $E(S(\mathcal{A})) := cl(\{\pi_g : g \in G\}) \subseteq S(\mathcal{A})^{S(\mathcal{A})},$ the Ellis semigroup of $S(\mathcal{A})$. It is also a *G*-flow: $g \cdot f = \pi_g \circ f$.

伺下 イラト イラ

G is an infinite group $\mathcal{A} \subseteq \mathcal{P}(G)$ is a *G*-algebra of sets $S(\mathcal{A})$ is a G-flow For $g \in G$, $\pi_g : S(\mathcal{A}) \xrightarrow{\approx} S(\mathcal{A})$ $\pi_{g}(p) = g \cdot p.$ $E(S(\mathcal{A})) := cl(\{\pi_g : g \in G\}) \subseteq S(\mathcal{A})^{S(\mathcal{A})},$ the Ellis semigroup of $S(\mathcal{A})$. It is also a *G*-flow: $g \cdot f = \pi_g \circ f$. Minimal subflows of $E(S(\mathcal{A})) =$ minimal left ideals $I \triangleleft_m E(S\mathcal{A})$. $J := \{u \in E(S(\mathcal{A})) : u^2 = u\}$. Then $J \cap I \neq \emptyset$ and for $u \in J \cap I$ *ul* is a group, an Ellis group of $S(\mathcal{A})$. Unique up to \cong .

周 ト イ ヨ ト イ ヨ ト

G is an infinite group $\mathcal{A} \subseteq \mathcal{P}(G)$ is a *G*-algebra of sets $S(\mathcal{A})$ is a G-flow For $g \in G$, $\pi_g : S(\mathcal{A}) \xrightarrow{\approx} S(\mathcal{A})$ $\pi_{g}(p) = g \cdot p.$ $E(S(\mathcal{A})) := cl(\{\pi_g : g \in G\}) \subseteq S(\mathcal{A})^{S(\mathcal{A})},$ the Ellis semigroup of $S(\mathcal{A})$. It is also a *G*-flow: $g \cdot f = \pi_g \circ f$. Minimal subflows of $E(S(\mathcal{A})) =$ minimal left ideals $I \triangleleft_m E(S\mathcal{A})$. $J := \{u \in E(S(\mathcal{A})) : u^2 = u\}$. Then $J \cap I \neq \emptyset$ and for $u \in J \cap I$ *ul* is a group, an Ellis group of $S(\mathcal{A})$. Unique up to \cong . $\beta G = S(\mathcal{P}(G)) \cong E(\beta G)$, why? Because $\mathcal{P}(G)$ is d-closed!

伺下 イヨト イヨト

Definition

•
$$p \in S(\mathcal{A}) \rightsquigarrow d_p : \mathcal{A} \to \mathcal{P}(G)$$

 $d_p(U) = \{g \in G : g^{-1}U \in p\}$
(Hrushovski's quantifier...)
 $d_p : \mathcal{A} \to \mathcal{P}(G)$ is a *G*-homomorphism

Examples of *d*-closed \mathcal{A} : $\mathcal{P}(G)$, $Def_{ext,G}(M)$

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

•
$$p \in S(\mathcal{A}) \rightsquigarrow d_p : \mathcal{A} \to \mathcal{P}(G)$$

 $d_p(U) = \{g \in G : g^{-1}U \in p\}$
(Hrushovski's quantifier...)
 $d_p : \mathcal{A} \to \mathcal{P}(G)$ is a *G*-homomorphism
• \mathcal{A} is *d*-closed if $\forall p \in S(\mathcal{A})d_p[\mathcal{A}] \subseteq \mathcal{A}$.

Examples of *d*-closed \mathcal{A} : $\mathcal{P}(G)$, $Def_{ext,G}(M)$

• • = • • = •

э

How does the topological dynamics of G-flows change when we change G?

How do the Ellis groups of S(A) change when we change G?

• • = • • = •

$$(S(\mathcal{A}), *) \xrightarrow{=} (E(S(\mathcal{A})), \circ), \\ p \mapsto \ell_p, \ \ell_p(x) = p * x$$

How does the topological dynamics of G-flows change when we change G?

How do the Ellis groups of S(A) change when we change G?

• • = • • = •

How does the topological dynamics of *G*-flows change when we change *G*?

How do the Ellis groups of S(A) change when we change G?

• • = • • = •

How does the topological dynamics of G-flows change when we change G?

How do the Ellis groups of S(A) change when we change G?

• $G \prec H$ are group structures

Def(G) is the G-algebra of definable subsets of G (with parameters)

- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_G := \{B \cap G : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_G := \{B \cap G : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_G := \{B \cap G : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_G := \{B \cap G : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_G := \{B \cap G : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_{\mathcal{G}} := \{B \cap \mathcal{G} : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_{\mathcal{G}} := \{B \cap \mathcal{G} : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G ≺ H are group structures
 Def(G) is the G-algebra of definable subsets of G (with parameters)
- $Def(G) \ni A = \varphi(G) \rightsquigarrow A^{\#} = \varphi(H) \subseteq H$
- $\mathcal{A} \subseteq Def(G)$ is a *d*-closed *G*-algebra
- $\mathcal{B} \subseteq \mathcal{P}(H)$ is a *d*-closed *H*-algebra such that $A^{\#} \in \mathcal{B}$ for every $A \in \mathcal{A}$.
- $\mathcal{B}|_{\mathcal{G}} := \{B \cap \mathcal{G} : B \in \mathcal{B}\} = \mathcal{A}$
- $\# : \mathcal{A} \longrightarrow \mathcal{B}$ is a Boolean *G*-algebra monomorphism (respects *G*-translations)
- $r: S(\mathcal{B}) \longrightarrow S(\mathcal{A})$ is restriction.

- G = G(M), we consider the *G*-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external *G*-types over *M*
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{U_{ext}}$.

So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$.

 \prec^* -extensions exist... (standard)

- G = G(M), we consider the G-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external G-types over M
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{L_{ext,M}}$. So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$. \prec^* -extensions exist... (standard)

- G = G(M), we consider the *G*-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external *G*-types over *M*
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{L_{ext,M}}$.

So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$.

 \prec^* -extensions exist... (standard)

- G = G(M), we consider the G-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external G-types over M
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{L_{ext,M}}$.

So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$.

 \prec^* -extensions exist... (standard)

- G = G(M), we consider the G-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external G-types over M
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{L_{ext,M}}$. So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$. \prec^* -extensions exist... (standard)

- G = G(M), we consider the G-flow $S_{ext,G}(M) = S(Def_{ext,G}(M))$ of external G-types over M
- $M \prec^* N$ and we want to compare algebraically $S_{ext,G}(M)$ and $S_{ext,G}(N)$ (including Ellis groups).

This reduces to the combinatorial set-up with $\mathcal{A} = Def_{ext,G}(M)$ and $\mathcal{B} = Def_{ext,G}(N)$.

 $M \prec^* N$ means:

Consider M_{ext} in $L_{ext,M}$ and N_{ext} in $L_{ext,N}$. Then the symbols of $L_{ext,M}$ are identified with some symbols of $L_{ext,N}$ so that $M_{ext} \prec N_{ext}|_{L_{ext,M}}$. So we can define $A^{\#}$ for $A \in Def_{ext,G}(M)$. \prec^* -extensions exist... (standard) Instead we shall compare algebraically $(S(\mathcal{A}), *)$ and $(S(\mathcal{B}), *)$ in

the comnbinatorial set-up (including Ellis groups).

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed...

Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(B)\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

• {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $ul \mapsto (K(ul), R(ul))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main obstacle: $r : (S(\mathcal{A}), *) \rightarrow (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(ul) = Ker(d_p), p \in ul$ and $R(ul) = Im(d_p), p \in ul$ Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

• {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $ul \mapsto (K(ul), R(ul))$

・ 同 ト ・ ヨ ト ・ ヨ ト

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

• {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $ul \mapsto (K(ul), R(ul))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

• {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $ul \mapsto (K(ul), R(ul))$

周 ト イ ヨ ト イ ヨ ト

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

• {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $uI \mapsto (K(uI), R(uI))$

$$\exists \forall R \in \mathcal{R} \forall I \triangleleft_m S(\mathcal{B}) \exists ! u \in I \cap J R = R(uI)$$

伺 ト イヨト イヨト

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

$$\{ Ellis groups of (S(\mathcal{B}), *) \} \longleftrightarrow \mathcal{K} \times \mathcal{R} \\ ul \mapsto (K(ul), R(ul))$$

 $\exists \forall R \in \mathcal{R} \forall I \triangleleft_m S(\mathcal{B}) \exists ! u \in I \cap J R = R(uI)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main obstacle: $r : (S(\mathcal{A}), *) \to (S(\mathcal{B}), *)$ is not a *-homomorphism. Additional assumptions needed... Let $I \triangleleft_m S(\mathcal{B})$ and $u \in I \cap J$. Let $K(uI) = Ker(d_p), p \in uI$ and $R(uI) = Im(d_p), p \in uI$. Let $\mathcal{K} = \{Ker(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}$ and $\mathcal{R} = \{Im(d_p) : p \in I \triangleleft_m S(\mathcal{B})\}.$

Proposition

● {Ellis groups of
$$(S(\mathcal{B}), *)$$
} $\longleftrightarrow \mathcal{K} \times \mathcal{R}$
 $uI \mapsto (K(uI), R(uI))$

伺 ト く ヨ ト く ヨ ト

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

- I |R| = 1 means every (some) I ⊲_m S(B) is a group equivalently: every (some) I ⊲_m S(B) is distal.
- ② $|\mathcal{K}| = 1$ means: there is exactly one $I \triangleleft_m S(\mathcal{B})$. equivalently: there is a generic type in $S(\mathcal{B})$.

< ロ > < 同 > < 三 > < 三 >

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

- |R| = 1 means every (some) I ⊲_m S(B) is a group equivalently: every (some) I ⊲_m S(B) is distal.
- ② $|\mathcal{K}| = 1$ means: there is exactly one $I \triangleleft_m S(\mathcal{B})$. equivalently: there is a generic type in $S(\mathcal{B})$.

< ロ > < 同 > < 三 > < 三 >

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

- $|\mathcal{R}| = 1$ means every (some) $I \triangleleft_m S(\mathcal{B})$ is a group
 - equivalently: every (some) $I \triangleleft_m S(B)$ is distal.
- |K| = 1 means: there is exactly one I ⊲_m S(B).
 equivalently: there is a generic type in S(B).

< ロ > < 同 > < 三 > < 三

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

• $|\mathcal{R}| = 1$ means every (some) $I \triangleleft_m S(\mathcal{B})$ is a group equivalently: every (some) $I \triangleleft_m S(\mathcal{B})$ is distal.

② $|\mathcal{K}| = 1$ means: there is exactly one $I \triangleleft_m S(\mathcal{B})$. equivalently: there is a generic type in $S(\mathcal{B})$.

< ロ > < 同 > < 三 > < 三 >

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

- $|\mathcal{R}| = 1$ means every (some) $I \triangleleft_m S(\mathcal{B})$ is a group equivalently: every (some) $I \triangleleft_m S(\mathcal{B})$ is distal.
- ② $|\mathcal{K}| = 1$ means: there is exactly one $I \triangleleft_m S(\mathcal{B})$. equivalently: there is a generic type in $S(\mathcal{B})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume $|\mathcal{R}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are isomorphic to some closed subgroups of the Ellis subgroups of $S(\mathcal{B})$.

Theorem 2

Assume $|\mathcal{K}| = 1$. Then the Ellis groups of $S(\mathcal{A})$ are homomorphic images of some subgroups of the Ellis groups of $S(\mathcal{B})$.

On the assumptions

- $|\mathcal{R}| = 1$ means every (some) $I \triangleleft_m S(\mathcal{B})$ is a group equivalently: every (some) $I \triangleleft_m S(\mathcal{B})$ is distal.
- ② $|\mathcal{K}| = 1$ means: there is exactly one *I* ⊲_{*m*} *S*(\mathcal{B}). equivalently: there is a generic type in *S*(\mathcal{B}).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On the proofs

- dual to each other
- 2 use weak heirs and (weak) coheirs

Definition. Let $q \in S(\mathcal{B})$.

• q is a weak heir over \mathcal{A} if $d_q A^{\#} = (d_{r(q)}A)^{\#}$ for every $A \in \mathcal{A}$.

2 q is a weak coheir over A if ∀A, B ∈ A∀s ∈ S(B) if d_sA[#] ∩ B[#] ∈ q, then d_sA[#] ∩ B[#] ∩ G ≠ Ø.

On the proofs

- dual to each other
- 2 use weak heirs and (weak) coheirs

Definition. Let $q \in S(\mathcal{B})$.

- q is a weak heir over \mathcal{A} if $d_q A^{\#} = (d_{r(q)}A)^{\#}$ for every $A \in \mathcal{A}$.
- Q *q* is a weak coheir over *A* if ∀*A*, *B* ∈ *A*∀*s* ∈ *S*(*B*) if $d_s A^\# \cap B^\# \in q$, then $d_s A^\# \cap B^\# \cap G \neq \emptyset$.
- **③** q is a coheir over \mathcal{A} if $B \cap G \neq \emptyset$ for every $B \in q$.

On the proofs

- dual to each other
- 2 use weak heirs and (weak) coheirs

Definition. Let $q \in S(\mathcal{B})$.

- q is a weak heir over \mathcal{A} if $d_q A^{\#} = (d_{r(q)}A)^{\#}$ for every $A \in \mathcal{A}$.
- Q is a weak coheir over A if ∀A, B ∈ A∀s ∈ S(B)
 if $d_s A^\# \cap B^\# ∈ q$, then $d_s A^\# \cap B^\# \cap G ≠ \emptyset$.
- **③** *q* is a coheir over \mathcal{A} if $B \cap G \neq \emptyset$ for every $B \in q$.

Lemma

Assume $q \in S(\mathcal{B})$.

• q is a weak heir over \mathcal{A} iff r(s * q) = r(s) * r(q) for every $s \in S(\mathcal{B})$.

Q is a weak coheir ober A iff r(q ∗ s) = r(q) ∗ r(s) for every
 s ∈ S(B).

 $CH(\mathcal{B}/\mathcal{A}) = \{q \in S(\mathcal{B}) : q \text{ is a coheir over } \mathcal{A}\}$

Likewise $WCH(\mathcal{B}/\mathcal{A})$ (weak coheirs) and $WH(\mathcal{B}/\mathcal{A})$ (weak heirs).

・ 同 ト ・ ヨ ト ・ ヨ ト

• $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.

- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- *r* : WH(B/A) → S(A) and *r* : WCH(B/A) → S(A) are *-epimorphisms.
- $r: CH(\mathcal{B}/\mathcal{A}) \to S(\mathcal{A})$ is a *-isomorphism.

Proofs of the Theorems (idea):

Let $I \triangleleft_m S(\mathcal{A})$. We find $I'' \triangleleft_m S(\mathcal{B})$, $u \in J \cap I$ and $u'' \in J \cap I''$ with r[I''] = I(using weak heirs) and $u \in r[u''I'']$.

/⊒ ▶ ◀ ⊒ ▶ ◀

- $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.
- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- I r : WH(B/A) → S(A) and r : WCH(B/A) → S(A) are *-epimorphisms.
- $r: CH(\mathcal{B}/\mathcal{A}) \to S(\mathcal{A})$ is a *-isomorphism.

Proofs of the Theorems (idea):

Let $I \triangleleft_m S(\mathcal{A})$. We find $I'' \triangleleft_m S(\mathcal{B})$, $u \in J \cap I$ and $u'' \in J \cap I''$ with r[I''] = I(using weak heirs) and $u \in r[u''I'']$.

▲ □ ▶ ▲ □ ▶ ▲

- $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.
- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- ◎ $r : WH(B/A) \to S(A)$ and $r : WCH(B/A) \to S(A)$ are *-epimorphisms.
 - $r: CH(\mathcal{B}/\mathcal{A}) \to S(\mathcal{A})$ is a *-isomorphism.

```
Proofs of the Theorems (idea):
Let I \triangleleft_m S(\mathcal{A}).
We find I'' \triangleleft_m S(\mathcal{B}), u \in J \cap I and u'' \in J \cap I'' with r[I''] = I
(using weak heirs) and u \in r[u''I''].
```

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.
- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- ◎ $r : WH(B/A) \to S(A)$ and $r : WCH(B/A) \to S(A)$ are *-epimorphisms.
- $r: CH(\mathcal{B}/\mathcal{A}) \to S(\mathcal{A})$ is a *-isomorphism.

Proofs of the Theorems (idea):

Let $I \triangleleft_m S(\mathcal{A})$. We find $I'' \triangleleft_m S(\mathcal{B})$, $u \in J \cap I$ and $u'' \in J \cap I''$ with r[I''] = I(using weak heirs) and $u \in r[u''I'']$.

周 ト イ ヨ ト イ ヨ ト

- $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.
- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- ◎ $r : WH(B/A) \to S(A)$ and $r : WCH(B/A) \to S(A)$ are *-epimorphisms.
- $r: CH(\mathcal{B}/\mathcal{A}) \to S(\mathcal{A})$ is a *-isomorphism.

Proofs of the Theorems (idea):

Let $I \triangleleft_m S(\mathcal{A})$.

We find $I'' \triangleleft_m S(\mathcal{B})$, $u \in J \cap I$ and $u'' \in J \cap I''$ with r[I''] = I (using weak heirs) and $u \in r[u''I'']$.

周 ト イ ヨ ト イ ヨ ト

- $CH(\mathcal{B}/\mathcal{A}) \subseteq WCH(\mathcal{B}/\mathcal{A}) \subseteq S(\mathcal{B})$ are closed.
- WH(B/A), CH(B/A), WCH(B/A) are non-empty sub-semigroups of (S(B), *)
- ◎ $r : WH(B/A) \to S(A)$ and $r : WCH(B/A) \to S(A)$ are *-epimorphisms.

•
$$r: CH(\mathcal{B}/\mathcal{A}) o S(\mathcal{A})$$
 is a *-isomorphism.

Proofs of the Theorems (idea): Let $I \triangleleft_m S(\mathcal{A})$. We find $I'' \triangleleft_m S(\mathcal{B})$, $u \in J \cap I$ and $u'' \in J \cap I''$ with r[I''] = I(using weak heirs) and $u \in r[u''I'']$.

伺下 イヨト イヨト

• We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \stackrel{\cong}{\longrightarrow} uI$.

We define φ : G → u''I'' = I'' by φ(x) = x * u'', a *-homomorphism.

() $\mathcal{G}'' := \varphi[\mathcal{G}]$ is a closed subgroup of I'' isomorphic to uI.

Proof of Theorem 2

- We find a group H ⊆ WH(B/A) such that r : H → ul is an epimorphism.
- We define $\psi : \mathcal{H} \to u'' l''$ by $\psi(x) = u'' * x$, a *-homomorphism.
- $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

A (1) > A (2) > A

- We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \xrightarrow{\cong} uI$.
- ② We define φ : G → u''I'' = I'' by $\varphi(x) = x * u''$, a *-homomorphism.

③ $\mathcal{G}'':=arphi[\mathcal{G}]$ is a closed subgroup of I'' isomorphic to uI .

Proof of Theorem 2

- We find a group H ⊆ WH(B/A) such that r : H → ul is an epimorphism.
- ② We define ψ : \mathcal{H} → u''I'' by $\psi(x) = u'' * x$, a *-homomorphism.
- $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

- We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \xrightarrow{\cong} uI$.
- ② We define φ : G → u''I'' = I'' by $\varphi(x) = x * u''$, a *-homomorphism.
- $\ \ \, {\mathfrak G}'':=\varphi[{\mathcal G}] \ \, {\rm is \ a \ closed \ subgroup \ of \ } I'' \ \, {\rm isomorphic \ to \ } uI.$

Proof of Theorem 2

- We find a group H ⊆ WH(B/A) such that r : H → ul is an epimorphism.
- We define $\psi : \mathcal{H} \to u'' l''$ by $\psi(x) = u'' * x$, a *-homomorphism.
- $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

- A 🗇 🕨 A 🖻 🕨 A 🖻

• We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \xrightarrow{\cong} uI$.

 $\ \ \, {\mathfrak G}'':=\varphi[{\mathcal G}] \ \, {\rm is \ a \ closed \ subgroup \ of \ } I'' \ \, {\rm isomorphic \ to \ } uI.$

Proof of Theorem 2

- We find a group $\mathcal{H} \subseteq WH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{H} \to uI$ is an epimorphism.
- ② We define ψ : \mathcal{H} → u''I'' by $\psi(x) = u'' * x$, a *-homomorphism.
- (1) $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

▲ □ ▶ ▲ □ ▶ ▲

• We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \xrightarrow{\cong} uI$.

 $\textbf{ 0 } \mathcal{G}'' := \varphi[\mathcal{G}] \text{ is a closed subgroup of } I'' \text{ isomorphic to } uI.$

Proof of Theorem 2

- We find a group $\mathcal{H} \subseteq WH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{H} \to uI$ is an epimorphism.
- We define $\psi : \mathcal{H} \to u'' I''$ by $\psi(x) = u'' * x$, a *-homomorphism.

④ $\mathcal{H}'':=\psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

・ 同 ト ・ ヨ ト ・ ヨ ト

• We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \stackrel{\cong}{\longrightarrow} uI$.

 $\ \ \, {\mathfrak G}'':=\varphi[{\mathcal G}] \ \, {\rm is \ a \ closed \ subgroup \ of \ } I'' \ \, {\rm isomorphic \ to \ } uI.$

Proof of Theorem 2

- We find a group $\mathcal{H} \subseteq WH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{H} \to uI$ is an epimorphism.
- We define $\psi : \mathcal{H} \to u'' I''$ by $\psi(x) = u'' * x$, a *-homomorphism.
- $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

周 ト イ ヨ ト イ ヨ ト

• We define a group $\mathcal{G} \subseteq CH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{G} \xrightarrow{\cong} uI$.

 $\textbf{ 0 } \mathcal{G}'' := \varphi[\mathcal{G}] \text{ is a closed subgroup of } I'' \text{ isomorphic to } uI.$

Proof of Theorem 2

- We find a group $\mathcal{H} \subseteq WH(\mathcal{B}/\mathcal{A})$ such that $r : \mathcal{H} \to uI$ is an epimorphism.
- We define $\psi : \mathcal{H} \to u'' I''$ by $\psi(x) = u'' * x$, a *-homomorphism.
- $\mathcal{H}'' := \psi[\mathcal{H}]$ is a subgroup of u''I'' isomorphic to uI.

周 ト イ ヨ ト イ ヨ ト

- Let $I \triangleleft_m S(\mathcal{A})$ and $u \in J \cap I$.
- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- ③ Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- ④ I' is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $l'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in l'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

- Let $I \triangleleft_m S(\mathcal{A})$ and $u \in J \cap I$.
- Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- ◎ Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- ④ I' is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- ③ There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $l'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in l'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

• Let
$$I \triangleleft_m S(\mathcal{A})$$
 and $u \in J \cap I$.

- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- ④ I' is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- ③ There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $l'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in l'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

• Let
$$I \triangleleft_m S(\mathcal{A})$$
 and $u \in J \cap I$.

- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- **③** *I'* is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $l'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in l'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in ul} l'_q : Im(d_{q'}) = R'\}$.

- Let $I \triangleleft_m S(\mathcal{A})$ and $u \in J \cap I$.
- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- **③** *I'* is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $l'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in l'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

- Let $I \triangleleft_m S(\mathcal{A})$ and $u \in J \cap I$.
- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- **③** *I'* is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.
- For every $q \in I$, we have that $I'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in I'_q$, $Ker(d_{q'}) = K'$.
- Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in ul} I'_q : Im(d_{q'}) = R'\}$.

Both groups \mathcal{G}, \mathcal{H} are canonical (unique up to \cong). The choice of \mathcal{H} :

• Let
$$I \triangleleft_m S(\mathcal{A})$$
 and $u \in J \cap I$.

- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- **③** *I'* is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.

• For every
$$q \in I$$
, we have that
 $I'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in I'_q$,
 $Ker(d_{q'}) = K'$.

• Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

Both groups \mathcal{G}, \mathcal{H} are canonical (unique up to \cong). The choice of \mathcal{H} :

• Let
$$I \triangleleft_m S(\mathcal{A})$$
 and $u \in J \cap I$.

- ② Let WH_u(B) = r⁻¹(u) ∩ WH(B/A), a closed subsemigroup of WH(B/A).
- Fix $I' \triangleleft_m WH_u(\mathcal{B})$. Let $K' = Ker(d_{q'}), q' \in I'$ (common kernel) and $\mathcal{R}'_u = \{Im(d_{q'}) : q' \in I'\}$.
- **③** *I'* is a disjoint union of isomorphic groups u'I', $u' \in J \cap I'$. Fix $u' \in J \cap I'$.
- There is $I^+ \triangleleft S(\mathcal{B})$ with $I' = WH_u(\mathcal{B}/\mathcal{A}) \cap I^+$. Also, $r[I^+] = I$.

• For every
$$q \in I$$
, we have that
 $I'_q := I^+ \cap WH(\mathcal{B}/\mathcal{A}) \cap r^{-1}(q) \neq \emptyset$ and for every $q' \in I'_q$,
 $Ker(d_{q'}) = K'$.

• Let $R' = Im(d_{u'})$. Then $\mathcal{H} = \{q' \in \bigcup_{q \in uI} I'_q : Im(d_{q'}) = R'\}$.

But: the Ellis structural theorem holds for $WH(\mathcal{B}/\mathcal{A})$ and \mathcal{H} is just an Ellis subgroup of $WH(\mathcal{B}/\mathcal{A})$.

Weak heirs and weak coheirs in the stable case

- $q \in WH_G(M/N)$ iff $q|_{\Delta_M}$ does not fork over M.
- $q \in WCH_G(M/N)$ iff $q|_{\Delta_M^*}$ does not fork over M.

Proposition

Assume T is stable, $a \in G(\mathfrak{C})$ and $M \prec N$ then tp(a/N) is a weak heir over M iff $tp(a^{-1}/N)$ is a weak coheir over M.

Proposition

Assume T is stable, $M \prec N$ and G = G(M) is abelian-by-finite. Then $WH_G(M/N) = WCH_G(M/N)$.

A 回 > A 回 > A