
Weak heir, coheirs and the Elis semigroups

Adam Malinowski Ludomir Newelski

Instytut Matematyczny
Uniwersytet Wroc lawski

December 2022

Newelski Weak heir, coheirs and the Elis semigroups



Basics

G is an infinite group
A ⊆ P(G ) is a G -algebra of sets
S(A) is a G -flow

For g ∈ G , πg : S(A)
≈−→ S(A)

πg (p) = g · p.
E (S(A)) := cl({πg : g ∈ G}) ⊆ S(A)S(A),
the Ellis semigroup of S(A). It is also a G -flow:
g · f = πg ◦ f .
Minimal subflows of E (S(A)) = minimal left ideals I Cm E (SA).
J := {u ∈ E (S(A)) : u2 = u}. Then J ∩ I 6= ∅ and for u ∈ J ∩ I
uI is a group, an Ellis group of S(A). Unique up to ∼=.
βG = S(P(G )) ∼= E (βG ), why? Because P(G ) is d-closed!
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Some definitions

Definition

p ∈ S(A) dp : A → P(G )
dp(U) = {g ∈ G : g−1U ∈ p}
(Hrushovski’s quantifier...)
dp : A → P(G ) is a G -homomorphism

A is d-closed if ∀p ∈ S(A)dp[A] ⊆ A.

Examples of d-closed A: P(G ), Defext,G (M)

Newelski Weak heir, coheirs and the Elis semigroups



Some definitions

Definition

p ∈ S(A) dp : A → P(G )
dp(U) = {g ∈ G : g−1U ∈ p}
(Hrushovski’s quantifier...)
dp : A → P(G ) is a G -homomorphism

A is d-closed if ∀p ∈ S(A)dp[A] ⊆ A.

Examples of d-closed A: P(G ), Defext,G (M)

Newelski Weak heir, coheirs and the Elis semigroups



Properties of a d-closed A

From now on we assume A is a d-closed G -algebra.

1 For p ∈ S(A), dp ∈ End(A).

2 Let d : S(A)→ End(A), p 7→ dp. Then
d is a bijection, induces ∗ in S(A) such that

d : (S(A), ∗)
∼=−→ (End(A), ◦)

U ∈ p ∗ q ⇐⇒ dqU ∈ p

3 (S(A), ∗)
∼=−→ (E (S(A)), ◦),

p 7→ `p, `p(x) = p ∗ x
How does the topological dynamics of G -flows change when we
change G?
How do the Ellis groups of S(A) change when we change G?

Newelski Weak heir, coheirs and the Elis semigroups



Properties of a d-closed A

From now on we assume A is a d-closed G -algebra.

1 For p ∈ S(A), dp ∈ End(A).

2 Let d : S(A)→ End(A), p 7→ dp. Then
d is a bijection, induces ∗ in S(A) such that

d : (S(A), ∗)
∼=−→ (End(A), ◦)

U ∈ p ∗ q ⇐⇒ dqU ∈ p

3 (S(A), ∗)
∼=−→ (E (S(A)), ◦),

p 7→ `p, `p(x) = p ∗ x
How does the topological dynamics of G -flows change when we
change G?
How do the Ellis groups of S(A) change when we change G?

Newelski Weak heir, coheirs and the Elis semigroups



Properties of a d-closed A

From now on we assume A is a d-closed G -algebra.

1 For p ∈ S(A), dp ∈ End(A).

2 Let d : S(A)→ End(A), p 7→ dp. Then
d is a bijection, induces ∗ in S(A) such that

d : (S(A), ∗)
∼=−→ (End(A), ◦)

U ∈ p ∗ q ⇐⇒ dqU ∈ p

3 (S(A), ∗)
∼=−→ (E (S(A)), ◦),

p 7→ `p, `p(x) = p ∗ x
How does the topological dynamics of G -flows change when we
change G?
How do the Ellis groups of S(A) change when we change G?

Newelski Weak heir, coheirs and the Elis semigroups



Properties of a d-closed A

From now on we assume A is a d-closed G -algebra.

1 For p ∈ S(A), dp ∈ End(A).

2 Let d : S(A)→ End(A), p 7→ dp. Then
d is a bijection, induces ∗ in S(A) such that

d : (S(A), ∗)
∼=−→ (End(A), ◦)

U ∈ p ∗ q ⇐⇒ dqU ∈ p

3 (S(A), ∗)
∼=−→ (E (S(A)), ◦),

p 7→ `p, `p(x) = p ∗ x
How does the topological dynamics of G -flows change when we
change G?
How do the Ellis groups of S(A) change when we change G?

Newelski Weak heir, coheirs and the Elis semigroups



Combinatorial set-up

We work in the following combinatorial set-up:

G ≺ H are group structures
Def (G ) is the G -algebra of definable subsets of G (with
parameters)

Def (G ) 3 A = ϕ(G ) A# = ϕ(H) ⊆ H

A ⊆ Def (G ) is a d-closed G -algebra

B ⊆ P(H) is a d-closed H-algebra such that A# ∈ B for every
A ∈ A.

B|G := {B ∩ G : B ∈ B} = A
# : A −→ B is a Boolean G -algebra monomorphism (respects
G -translations)

r : S(B) −→ S(A) is restriction.
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Model-theoretic set-up

Our combinatorial set-up is motivated by the following
model-theoretic set-up:

G = G (M), we consider the G -flow
Sext,G (M) = S(Defext,G (M)) of external G -types over M

M ≺∗ N and we want to compare algebraically Sext,G (M) and
Sext,G (N) (including Ellis groups).

This reduces to the combinatorial set-up with A = Defext,G (M)
and B = Defext,G (N).
M ≺∗ N means:
Consider Mext in Lext,M and Next in Lext,N . Then the symbols of
Lext,M are identified with some symbols of Lext,N so that
Mext ≺ Next |Lext,M .

So we can define A# for A ∈ Defext,G (M).
≺∗-extensions exist... (standard)
Instead we shall compare algebraically (S(A), ∗) and (S(B), ∗) in
the comnbinatorial set-up (including Ellis groups).
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Ellis groups of S(B)

Main obstacle: r : (S(A), ∗)→ (S(B), ∗) is not a
∗-homomorphism. Additional assumptions needed...
Let I /m S(B) and u ∈ I ∩ J.
Let K (uI ) = Ker(dp), p ∈ uI and R(uI ) = Im(dp), p ∈ uI .
Let K = {Ker(dp) : p ∈ I /m S(B)} and
R = {Im(dp) : p ∈ I /m S(B)}.

Proposition

1 {Ellis groups of (S(B), ∗)} ←→ K×R
uI 7→ (K (uI ),R(uI ))

2 K (uI ) = K (u′I ′) ⇐⇒ I = I ′

3 ∀R ∈ R∀I /m S(B)∃!u ∈ I ∩ J R = R(uI )
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The main results

Theorem 1

Assume |R| = 1. Then the Ellis groups of S(A) are isomorphic to
some closed subgroups of the Ellis subgroups of S(B).

Theorem 2

Assume |K| = 1. Then the Ellis groups of S(A) are homomorphic
images of some subgroups of the Ellis groups of S(B).

On the assumptions

1 |R| = 1 means every (some) I /m S(B) is a group
equivalently: every (some) I /m S(B) is distal.

2 |K| = 1 means: there is exactly one I /m S(B).
equivalently: there is a generic type in S(B).
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Weak heirs and (weak) coheirs

On the proofs

1 dual to each other

2 use weak heirs and (weak) coheirs

Definition. Let q ∈ S(B).

1 q is a weak heir over A if dqA
# = (dr(q)A)# for every A ∈ A.

2 q is a weak coheir over A if ∀A,B ∈ A∀s ∈ S(B)
if dsA

# ∩ B# ∈ q, then dsA
# ∩ B# ∩ G 6= ∅.

3 q is a coheir over A if B ∩ G 6= ∅ for every B ∈ q.
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Weak heirs and (weak) coheirs

Lemma

Assume q ∈ S(B).

1 q is a weak heir over A iff r(s ∗ q) = r(s) ∗ r(q) for every
s ∈ S(B).

2 q is a weak coheir ober A iff r(q ∗ s) = r(q) ∗ r(s) for every
s ∈ S(B).

CH(B/A) = {q ∈ S(B) : q is a coheir over A}

Likewise WCH(B/A) (weak coheirs) and WH(B/A) (weak heirs).
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Weak heirs and (weak) coheirs

Properties

1 CH(B/A) ⊆WCH(B/A) ⊆ S(B) are closed.

2 WH(B/A),CH(B/A),WCH(B/A) are non-empty
sub-semigroups of (S(B), ∗)

3 r : WH(B/A)→ S(A) and r : WCH(B/A)→ S(A) are
∗-epimorphisms.

4 r : CH(B/A)→ S(A) is a ∗-isomorphism.

Proofs of the Theorems (idea):
Let I /m S(A).
We find I ′′ /m S(B), u ∈ J ∩ I and u′′ ∈ J ∩ I ′′ with r [I ′′] = I
(using weak heirs) and u ∈ r [u′′I ′′].
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Proofs of the Theorems

Proof of Theorem 1

1 We define a group G ⊆ CH(B/A) such that r : G
∼=−→ uI .

2 We define ϕ : G → u′′I ′′ = I ′′ by ϕ(x) = x ∗ u′′, a
∗-homomorphism.

3 G′′ := ϕ[G] is a closed subgroup of I ′′ isomorphic to uI .

Proof of Theorem 2

1 We find a group H ⊆WH(B/A) such that r : H → uI is an
epimorphism.

2 We define ψ : H → u′′I ′′ by ψ(x) = u′′ ∗ x , a
∗-homomorphism.

3 H′′ := ψ[H] is a subgroup of u′′I ′′ isomorphic to uI .
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The choice of H
Both groups G,H are canonical (unique up to ∼=). The choice of
H:

1 Let I /m S(A) and u ∈ J ∩ I .

2 Let WHu(B) = r−1(u) ∩WH(B/A), a closed subsemigroup of
WH(B/A).

3 Fix I ′ /m WHu(B). Let K ′ = Ker(dq′), q
′ ∈ I ′ (common

kernel) and R′u = {Im(dq′) : q′ ∈ I ′}.
4 I ′ is a disjoint union of isomorphic groups u′I ′, u′ ∈ J ∩ I ′. Fix

u′ ∈ J ∩ I ′.

5 There is I+ / S(B) with I ′ = WHu(B/A) ∩ I+. Also,
r [I+] = I .

6 For every q ∈ I , we have that
I ′q := I+ ∩WH(B/A) ∩ r−1(q) 6= ∅ and for every q′ ∈ I ′q,
Ker(dq′) = K ′.

7 Let R ′ = Im(du′). Then H = {q′ ∈
⋃

q∈uI I
′
q : Im(dq′) = R ′}.
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Final comments

But: the Ellis structural theorem holds for WH(B/A) and H is
just an Ellis subgroup of WH(B/A).

Weak heirs and weak coheirs in the stable case

q ∈WHG (M/N) iff q|∆M
does not fork over M.

q ∈WCHG (M/N) iff q|∆∗M does not fork over M.

Proposition

Assume T is stable, a ∈ G (C) and M ≺ N then tp(a/N) is a weak
heir over M iff tp(a−1/N) is a weak coheir over M.

Proposition

Assume T is stable, M ≺ N and G = G (M) is abelian-by-finite.
Then WHG (M/N) = WCHG (M/N).
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