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Grothendieck group of definable sets

I From the family of definable sets in a structure, with the operation t of disjoint
union, we may naturally construct a group (even a ring) in the following way.

I First, we mod out by the equivalence relation saying that X ∼ Y when there is a
definable bijection between X and Y .

I Then we want to induce a semigroup operation on the equivalence classes by
setting [X ] + [Y ] = [X t Y ].

I We make the equivalence relation coarser in order to ensure the cancellation law:
[X ] + [Z ] = [Y ] + [Z ] implies [X ] = [Y ].

I In order to make a group we artificially add inverses: for each nonempty X we add
a new formal element [−X ]. Then [X1] + [−Y1] ' [X2] + [−Y2] when there are
Z1,Z2 such that [X1 + Z1] = [X2 + Z2] and [Y1 + Z1] = [Y2 + Z2].

I Under this identification, the set of ('-classes of) expressions of the form
[X ] + [−Y ] has the obvious group structure (extending the one given above).
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Grothendieck group of a general semigroup

I If S is an abelian semigroup satisfying the cancellation law, we can embed S into
a group (namely, artificially adjoin a neutral element if necessary, along with
inverses for elements that don’t already have them).

I If S does not satisfy the cancellation law, we can mod out by an equivalence
relation that forces this, and then embed in a group.

I If S is not abelian, then it may not embed in a group even if it is (two-sided)
cancellative. (The universal theory of groups is not finitely axiomatisable.)

I However, there is a always a universal map from S to a group.
I This can be obtained either by considering a diagonal of all possible maps from S

into groups of appropriately bounded size, or by considering the group with
presentation 〈{gs | s ∈ S} | {gs1gs2g−1

s1s2 | s1, s2 ∈ S}〉.
I This group, along with the canonical homomorphism S → Gr(S), is called the

Grothendieck group of S.
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CLTS and Ellis groups

I Let S be a compact T2 left topological semigroup (CLTS) (i.e. such that left
multiplication s 7→ ss0 is continuous).

I Then S has minimal left ideals, which are all compact, principal and are disjoint
unions of groups, called Ellis groups.

I Ellis groups are all isomorphic (as abstract groups), but are in general not
topological nor closed in S.

I In general, if M is a minimal left ideal and p ∈ M is arbitrary, then M = Sp and
pM = pSp is an Ellis group.

I By taking the identity u in an Ellis group, it follows that if ϕ : S → Gr(S) is the
canonical homomorphism, then ϕ[uSu] = ϕ(u)ϕ[S]ϕ(u) = ϕ[S], so ϕ restricts to
a (semigroup) homomorphism uM → Gr(S). Since uM is a group and ϕ[S]
generates Gr(S), it is easy to see that it is a surjective group homomorphism.
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I In particular, if S is a compact left topological semigroup (e.g. an Ellis group) and
M is a minimal ideal in S, while u ∈ M is idempotent, then for every s ∈ S we
have ϕ(usu) = ϕ(u)ϕ(s)ϕ(u) = eϕ(s)e = ϕ(s). In particular,
ϕ[S] = ϕ[uSu] = ϕ[uM].

I Thus, uM is a group contained in S, such that ϕ restricts to a semigroup
homomorphism uM → Gr(S).

I Now, since the image of a group under a semigroup homomorphism is a group,
and ϕ[uM] = ϕ[S], it follows that ϕ is onto and its restriction to uM is a group
epimorphism.

Question (Kowalski)
Suppose S is the Ellis semigroup of a model-theoretic dynamical system.
Is the Ellis group the Grothendieck group (i.e. is the restriction of ϕ to uM injective)?

In general, no. There are examples when Gr(S) is trivial and uM is not.
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Grothendieck group is not the Ellis group

Example

I Let S0 be a monoid with elements u, f , v such that u, fu, f 2u, f 3u are all distinct,
f 4 = 1, f 2 is central, u2 = u, ufu = u, and likewise, v2 = v , vfv = v , and
moreover vu = f 3u and uv = f 3v .

I Then S = {u, fu, f 2u, f 3u, v , fv , f 2v , f 3v} is a finite (hence compact, with discrete
topology) subsemigroup.
I e.g. ufv = uff 4v = uf 2uv = f 2uv = f 5v = fv .

I The minimal ideals in S are {u, fu, f 2u, f 3u} and {v , fv , f 2v , f 3v}. The
idempotents are u, fu, v , fv , and the Ellis groups are
{u, f 2u}, {fu, f 3u}, {v , f 2v}, {fv , f 3v}
I e.g. f 3uf 3u = f 5(ufu) = fu = f (ufu) (since f 2 is central!)

I The Grothendieck group is trivial, since vu = f 3u maps to the identity, as does fu
(because it is idempotent).
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When Ellis group equals the Grothendieck group

Theorem
The following are equivalent:

1. Gr(S) = uM,
2. the map S → uM, f 7→ ufu is a homomorphism,
3. for each idempotent u′ ∈ M and minimal idempotent v ∈ S equivalent to u,

vu′ = u.
4. The product of any two minimal idempotents is idempotent.

They are implied by the following equivalent conditions:
5. The map S → M, f 7→ fu is a homomorphism.
6. For each idempotent u′ ∈ M and arbitrary f ∈ S, fu = fu′.

(The last condition easily follows if M is a group, 5. easily follows if M is the unique
minimal ideal in S.)
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6. For each idempotent u′ ∈ M and arbitrary f ∈ S, fu = fu′.
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Grothendieck kernel

I Let us write kerGr(S) for the kernel of the epimorphism uM → Gr(S), where
uM ⊆ S is an Ellis group.
I kerGr(S) does not depend on uM: if vN is another Ellis group, then there is a

ϕ-invariant isomorphism uM → vN (in particular, uM and vN are isomorphic as
groups with a predicate for the kernel).

I General problem: understanding kerGr(S), especially when S is some “naturally
occuring” semigroup.

I We have a description of kerGr(S) as a normal subgroup of uM.
I In general, kerGr(S) can be though of as an object “measuring” how badly the map

f 7→ ufu fails to be a homomorphism, or how badly the product of two minimal
idempotents can fail to be idempotent.
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Describing the kernel
Lemma
The kernel of ϕ �uM : uM → Gr(S) is the normal subgroup generated by elements of
the form uf1uf2u(uf1f2u)−1 (inverse is in uM).

Proof.
Write N for the normal subgroup. Then:

ϕ(uf1uf2u(uf1f2u)−1) = ϕ(f1)ϕ(f2)ϕ(uf1f2u)−1 = ϕ(f1)ϕ(f2)(ϕ(f1)ϕ(f2))−1 = eGr(S).

Thus N is contained in the kernel, so we have an induced epimorphism
ϕ′ : uM/N → Gr(S). In the other direction, consider the map ψ : S → uM/N given by
f 7→ ufuN. It is easy to see that this is a semigroup homomorphism:
ψ(f1)ψ(f2) = uf1uNuf2uN = uf1uf2uN = uf1f2uN = ψ(f1f2). Thus, ψ factors through
ϕ (by universality of Gr(S)), so there is ψ′ : Gr(S) → uM/N such that ψ = ψ′ ◦ ϕ, and
ψ′ is inverse to ϕ′, since ϕ(f ) = ϕ′ ◦ ψ(f ) and ψ(f ) = ψ′ ◦ ϕ(f ).
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Describing the kernel ctd

By manipulating idempotents, we get the following corollaries.

Corollary
The kernel is generated (as a normal subgroup of uM) by the elements of the form
ufu(ufu′)−1 = uf (ufu′)−1 = ufu(fu′)−1, where f ∈ S and u′ ∈ M is idempotent.

Corollary
The kernel is generated (as a normal subgroup of uM) by elements of the form ufu′,
where f ∈ S satisfies ufu = u (equivalently, such that fu is idempotent) and u′ ∈ M is
idempotent. (In fact, we can only consider f which are minimal idempotents equivalent
to u.)

Note that in all of these descriptions, we need conjugations, so they do not provide
generators of the kernel as a group.
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Corollary
The kernel is generated (as a normal subgroup of uM) by elements of the form ufu′,
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idempotent. (In fact, we can only consider f which are minimal idempotents equivalent
to u.)

Note that in all of these descriptions, we need conjugations, so they do not provide
generators of the kernel as a group.

Corollary
If S0 ⊆ S (both CLTS) is a subsemigroup containing all the minimal ideals of S, then
Gr(S0) = Gr(S).
In particular, if S has finitely many minimal ideals, then for S0 =

⋃
{minimal ideals of S} we

have Gr(S0) = Gr(S) (or, more generally, if this is closed in S).



Connection to Ludomir’s talk
I Suppose G is a group definable in M and N � M. Then we have a natural

embedding Sfs,G(C/M) ⊆ Sfs,G(C/N): a global type finitely satisfiable in M is
finitely satisfiable in N.

I Sfs,G(C/M) is an Ellis semigroup, as is Sfs,G(C/N).
I Question: are these two groups related?
I For example, it may happen that uM naturally embeds into vN , and in fact we

have uM
∼=→ Gr(Sfs,G(C/M)) ↪→ Gr(Sfs,G(C/N))

∼=→ vN .
I I believe this actually does happen in the context of Theorem 2 in Ludomir’s talk.

Indeed, the minimal ideals of both semigroups are groups, so they are isomorphic
to the Grothendieck groups, and the fact that the natural map
Gr(Sfs,G(C/M)) → Gr(Sfs,G(C/N)) is injective should follow from Ludomir’s paper.

I Perhaps Theorem 1 could also be recovered, as under its assumptions, Ellis groups
are still isomorphic to the Grothendieck group, and perhaps the restriction map
induces an epimorphism from a subgroup of Gr(Sfs,G(C/N)) to Gr(Sfs,G(C/M)).
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Grothendieck groups and connected components

I If G is a group (type-)definable in M, then SG,fs(C/M) is a CLTS and we have a
surjective homomorphism Sfs,G(C/M) → G∗/(G∗)000M .

I By universality, this induces a homomorphism Gr(Sfs,G(C/M)) → G∗/(G∗)000M .
I Thus we have a sequence of homomorphisms

uM → Gr(Sfs,G(C/M)) → G∗/(G∗)000M .
I Note that while G∗/(G∗)000M is a model-theoretic object, the Grothendieck group is

obtained from the purely algebraic structure of the semigroup.
I This leads to a new variant of Newelski’s conjecture: (when?) is the natural map

Gr(Sfs,G(C/M)) → G∗/(G∗)000M an isomorphism?
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Grothendieck group of a theory?

I Given a monster model C, we may consider the Ellis semigroup E(Sc̄(C)) of
associated Aut(C)-flow Sc̄(C).

I The Ellis group of this flow does not depend on C (Krupiński, Newelski, Simon).
I We have a semigroup homomorphism E(Sc̄(C)) → Gal(T ). Since Gal(T ) is a group,

it follows that it also factors through Gr(E(Sc̄(C))).
I Thus, we have a sequence of group epimorphisms uM → Gr(E(Sc̄(C))) → Gal(T ),

and the objects on the left and right hand side do not depend on C.
I In particular, the size of Gr(E(Sc̄(C))) is bounded, and Gr(E(Sc̄(C))) is coded by

the Grothendieck kernel, which is a normal subgroup containing the kernel of
uM → Gal(T ).

I This implies that, at the very least, we have a “maximal Grothendieck group”
(corresponding to the intersection of all possible kernels), and suggests that
perhaps Gr(E(Sc̄(C))) does not depend on C (so it is an invariant of T ).
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Topological aspects
I For topological semigroups, instead of homomorphisms into groups, we can

consider only continuous homomorphisms into groups endowed with a topology.
I For instance, write Grtop(S) for the universal continuous homomorphism from S to

a Hausdorff topological group.
I Then, since G∗/(G∗)00M is a Hausdorff topological group, we have again a

sequence uM → Grtop(Sfs,G(C/M)) → G∗/(G∗)00M and it makes sense to ask
if/when the maps appearing here are isomorphisms.

I For example, if all types are definable (e.g. G is definable in an o-minimal
expansion of R), then the latter function is an isomorphism.

I Even for the usual Grothendieck group, it might be interesting to consider what
sort of topology is induced to the Grothendieck group from, say, Sfs,G(C/M), or
uM (with the τ -topology), in particular, (when) the group operations are
continuous and when the topology is T2 or T1. (For example, it seems that the
multiplication is always continuous on the left with respect to the topology
induced from the semigroup.)
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