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Introduction Soluble dimnesional groups Endogenies

Dimension

Definition
A theory T is finite-dimensional if there is a dimension function
dim from the collection of all interpretable sets in models of T to
{−∞} ∪ ω, satisfying for a formula ϕ(x , y) and interpretable
sets X and Y :

• Invariance: If a ≡ a′ then dim(ϕ(x ,a)) = dim(ϕ(x ,a′)).

• Algebraicity: dim(∅) = −∞, and dim X = 0 iff X is finite.

• Union: dim(X ∪ Y ) = max{dim(X ), dim(Y )}.
• Fibration: Let f : X → Y be an interpretable map.

If dim(f−1(y)) ≥ d for all y ∈ Y , then dim(X ) ≥ dim(Y ) + d ;
if dim(f−1(y)) ≤ d for all y ∈ Y , then dim(X ) ≤ dim(Y ) + d .
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Remarks

Of course, fibration implies that

• If dim(f−1(y)) = d for all y ∈ Y , then dim(X ) = dim(Y ) + d .

Note that we do not suppose that the dimension is definable,
i.e. that all sets {y ∈ Y : dim(f−1(y)) = d} are definable.
If dimension is definable, then fibration with = implies the two
fibration axioms (with ≥ and ≤).
In [Wa00] a more general notion of dimension is defined. Our
notion of finite-dimensionality would correspond to fine
finite-dimensional with lower fibration.
Examples of finite-dimensional theories include theories of
finite Lascar rank, finite SU-rank, finite Uþ-rank and o-minimal
theories.
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Finite-dimensional groups

Fact
In a finite-dimensional theory, if f : G→ H is a definable
homomorphism of definable groups, then

dim G = dim im f + dim ker f .

In particular, if H ≤ G, then

dim G = dim H + dim G/H.

So H has infinite index in G iff dim H < dim G.

This follows immediately from the fibration axiom.
It follows that we have a descending and an ascending chain
condition on definable subgroups up to finite index.
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Finite-dimensional fields
Theorem (W.)
In a finite-dimensional theory:
• An infinite type-definable skew field K is definable and has

finite dimension over its centre.

• A type-definable K -vector space is definable, of finite linear
dimension equal to dim V/ dim K .
• An invariant domain of bounded dimension is right and left

Ore, and its skew field of (right or left) fractions is definable.
• A

∧
-definable (non-commutative, non-unitary) domain is a

definable skew field.∧
-definable means that the group is the intersection of

definable supergroups.
The infinitesimals in a non-standard real closed field show that∧

-definability is necessary in the last item.
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Automorphisms

Theorem (W.)
In a finite-dimensional theory:
• A definable endomorphism of a definable skew field is zero

or surjective.

• A ∅-definable additively or multiplicatively ∅-connected field
contains infinitely many absolutely algebraic elements.
• A definable field with infinitely many absolutely algebraic

elements has no infinite type-definable family of definable
automorphisms.
• A definable automorphism of a ∅-definable, additively or

multiplicatively ∅-connected field is acleq(∅)-definable.
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Connected components

There is no a priori assumption on the existence of connected
components (although we usually assume connectednes of
one of the groups involved). This is a major complication, and
much of the proofs is devoted to working around this.

Theorem
Let G be a connected group acting on the infinite abelian group
A in a finite-dimensional theory. Suppose that A has no infinite
G-invariant definable subgroup of smaller dimension, and there
is g ∈ G with (g − 1)A infinite. Then A has a G-invariant
G-minimal definable subgroup of finite index.

Theorem
Let G be a finite-dimensional nilpotent connected group. Then
G has a definable connected lower central series.
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Proof.
Suppose A∗ ≤ A is a G-invariant definable subgroup of finite
index. Then CG(A/A∗) has finite index in G and must be the
whole of G. So (g − 1)A ≤ A∗; it is contained in every
G-invariant subgroup of finite index.

Now consider finitely many gi ∈ G such that B =
∑

i(gi − 1)A
has maximal dimension possible. As (g − 1)A is infinite for
some g ∈ G, the group B is infinite; by maximality of dim B it
must be commensurable with gB ≤

∑
i [(ggi − 1)A− (g − 1)A]

for any g ∈ G.
By compactness the commensurability is uniform, and by
Schlichting’s Theorem there is a G-invariant definable subgroup
B0 commensurable with B.
Then dim A = dim B0 = dim B, so there is a maximal sum
A0 =

∑
j(gj − 1)A of finite index in A. Then A0 is G-invariant

and G-minimal.
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Proof.
We use induction on the dimension. If G is abelian, the
statement is clear.

Otherwise choose g ∈ γn−1G \ Z (G), where n is the nilpotency
class of G. Then x 7→ [x ,g] is a homomorphism from G to
γnG ≤ Z (G); its image Z is definable, connected and infinite.
Since dim(G/Z ) < dim G and γk (G) is the pre-image of
γk (G/Z ) under the canonical projection G→ G/Z , we finish by
induction.
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Soluble finite-dimensional groups

Theorem
Let M be a connected abelian group acting faithfully on the
infinite abelian group A in a finite-dimensional theory. Suppose
• A has no infinite M-invariant definable subgroup of smaller

dimension.
• CA(M) is trivial.

Then A is M-minimal, and there is a definable field K such that
A ∼= K + and M ↪→ K×.

Theorem
Let G be a nilpotent connected group acting on an infinite
abelian group A, in a finite-dimensional theory. Then either the
action is nilpotent, or there is a definable centreless 2-soluble
section which naturally interprets a field.
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Proof.
Note that any finite M-invariant subgroup of A is centralised by
M by connectedness, whence trivial.

Put

R = 〈M〉 ≤ End(A).

For r ∈ R both ker r and im r are definable M-invariant, whence
finite (thus trivial) or of finite index in A. If ker r has finite index,
im r is finite, whence trivial, and r = 0. Thus ker r = {0} for all
r ∈ R \ {0}, and R is an integral domain.
It is easy to see that A is M-minimal, so R acts by
automorphisms.
Thus any r ∈ R is determined by (a, ra) for any non-zero a ∈ A.
Hence dim R ≤ 2 dim A. It follows that its field of fractions K is
definable, and A is a finite-dimensional vector space over K .
By minimality of dim A the linear dimension is 1, and A ∼= K +;
clearly M ↪→ R× = K×.
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Thus any r ∈ R is determined by (a, ra) for any non-zero a ∈ A.
Hence dim R ≤ 2 dim A. It follows that its field of fractions K is
definable, and A is a finite-dimensional vector space over K .
By minimality of dim A the linear dimension is 1, and A ∼= K +;
clearly M ↪→ R× = K×.
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Proof.
If CA(G) is infinite, dim(A/CA(G)) < dim A and we finish by
induction.

If CA(G) is finite, then by connectedness G acts on A/CA(G)
without fixed points, so we may assume CA(G) = {0}.
In particular, A has no non-trivial finite G-invariant subgroups.
G′ is connected and definable, and dim(G′) < dim(G). By
induction either a field is naturally definable and we are done,
or the action of G′ on A is nilpotent and we consider CA(G′).
Note that G/G′ acts on CA(G′) without fixed points, so CA(G′)
is infinite.
Let A1 ≤ CA(G′) be G-invariant of minimal dimension possible.
We finish by the field interpretation theorem.

Corollary
A connected soluble non-nilpotent finite-dimensional group
interprets naturally a field.
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Some late theorems

Theorem
Let G be a connected group acting faithfully on the infinite
abelian group A in a finite-dimensional theory. Suppose
• A is G-minimal and CA(G) = {0}.
• G has a definable infinite abelian normal subgroup M.

Then there is a definable field K over which A is definably a
vector space of finite linear dimension, such that the action of G
is K -linear and the action of M scalar (so M is central in G).

Corollary
A finite-dimensional connected soluble group has a nilpotent
derived subgroup.
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Homogenies
Homogenies are the same as homomorphisms, only that
everything is up to finite index, and up to finite subgroups.

In the finite-dimensional context, they occur naturally.

Definition
Let A and B be abelian groups. A homogeny from A to B is a
subgroup H of A× B such that
• πAH has finite index in A.
• The cokernel cokerH = {b ∈ B : (0,b) ∈ H} is finite.

Thus H induces a homorphism πAH → B/cokerH.
If H1 and H2 are homogenies, their sum is defined pointwise, as

H1 + H2 = {(a,b1 + b2) ∈ A× B : (a,b1) ∈ H and (a,b2) ∈ H2}.

πA(H1+H2) = πAH1∩πAH2, coker(H1+H2) = cokerH1+cokerH2.
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Endogenies

If A = B, we speak of endogenies rathen than homogenies.

Under addition and composition, the endogenies of A form a
prering, where only left distributivity fails.
We call two homogenies H1 and H2 equivalent if H1 − H2 has
finite image. Equivalence is preserved under sum and product,
and left distributivity holds modulo equivalence. Hence the
pre-ring of endogenies modulo equivalence is a ring.
We shall call a pre-ring of endogenies essentially infinite/
unbounded, if it is infinite/unbounded modulo equivalence.
In our context A will be connected, and endogenies will be total.
We shall use Greek letters to denote an endogeny of A.
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Strong commutation

Definition
Two endogenies γ and δ of A commute strongly if

im (γδ − δγ) = cokerγ + cokerδ.

The strong centralizer of γ is denoted C#(γ).

This is much stronger than requiring γδ and δγ to be equivalent.
Note that γ need not commute with itself.

Lemma
• If γ and δ commute strongly, then
δ[cokerγ] ≤ cokerγ + cokerδ.
• C#(γ) is a prering, i.e. is closed under +, − and ◦.
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Invariance
Definition
A subgroup B ≤ A is γ-invariant if γ[B] ≤ B + cokerγ.

The sum of two γ-invariant subgroups is γ-invariant. However,
the intersection of two γ-invariant subgroups need not be
γ-invariant, unless one of them contains cokerγ.

Lemma
Suppose γ and δ are commuting strongly.
• cokerγ is δ-invariant.
• If B ≤ A is γ-invariant, so is δ[B].
• If ker γ is connected-by-finite, (ker γ)0 is δ-invariant.

However,

• ker γ need not be δ-invariant, unless γ is a homomorphism.
• Even if δ is invertible, δ−1 need not commute strongly with γ.
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The setting

• T is finite-dimensional.
• A is a definable, connected, abelian group.
• Γ and ∆ are two invariant prerings of definable endogenies

of A.
• Γ and ∆ commute strongly.
• Both Γ and ∆ are essentially infinite.
• At least one of Γ or ∆ is essentially unbounded.

Theorem
If moreover every endogeny from Γ and ∆ has a finite kernel,
then there is a finite F ≤ A which is both Γ- and ∆-invariant,
and such that on A/F, both Γ and ∆ act by automorphisms.
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Proof.
Suppose Γ is essentially unbounded. If there is no greatest
Γ-invariant finite subgroup FΓ, take an infinite G =

∑
n<ω Fn.

By essential unboundedness, there are inequivalent γ1, γ2 ∈ Γ
with the same action on G, whence G ≤ ker(γ1 − γ2), a
contradiction to kernel finiteness. So FΓ exists.
If Γ is essentially bounded, ∆ is not, so F∆ exists. Then
cokerγ ≤ F∆ for each γ ∈ Γ, and Γ is outright bounded.
For finite Γ-invariant F there is γ ∈ Γ6∼0 with F ≤ ker γ, so

FΓ =
∑
{F : F finite and Γ-invariant} ≤

∑
{ker γ : γ ∈ Γ6∼0}

is bounded and ∆-invariant. There are inequivalent δ1, δ2 ∈ ∆
with FΓ ≤ ker(δ1 − δ2). Hence FΓ is finite.
Now FΓ ≤ F∆ by ∆-invariance; equality holds by symmetry.
A = A/F has no non-trivial, finite, Γ- or ∆-invariant subgroup. Γ
and ∆ act by commuting endomorphisms. So finite kernels are
invariant, whence trivial.
Endomorphisms with trivial kernels of a finite-dimensional
connected-by-finite group are automorphisms.
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FΓ =
∑
{F : F finite and Γ-invariant} ≤

∑
{ker γ : γ ∈ Γ6∼0}

is bounded and ∆-invariant. There are inequivalent δ1, δ2 ∈ ∆
with FΓ ≤ ker(δ1 − δ2). Hence FΓ is finite.

Now FΓ ≤ F∆ by ∆-invariance; equality holds by symmetry.
A = A/F has no non-trivial, finite, Γ- or ∆-invariant subgroup. Γ
and ∆ act by commuting endomorphisms. So finite kernels are
invariant, whence trivial.
Endomorphisms with trivial kernels of a finite-dimensional
connected-by-finite group are automorphisms.
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Linearisation

Definition
Let A be a definable, connected group and Γ a set of definable
endogenies. The group A is Γ-minimal if it has no non-trivial,
proper, connected, Γ-invariant subgroup.

Theorem
In addition to the setting, suppose:
• C#(Γ) = ∆ and C#(∆) = Γ.
• A is Γ-minimal.

Then there is a finite subgroup F ≤ A which is Γ- and
∆-invariant, ∆ is a (possibly skew) field, A/F is a
finite-dimensional ∆-vector space, and Γ = End∆(A/F ).

Notice that these claims reduce to the first, i.e. proving that ∆ is
a definable skew field of automorphisms of A/F .
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Bi-minimality

Definition
Let A be a definable, connected group and Γ and ∆ two sets of
strongly commuting definable endogenies. The group A is
(Γ,∆)-minimal if it has no non-trivial, proper, connected, Γ- and
∆-invariant subgroup.

Even for endomorphisms, little seems to be known about
bi-minimal modules.
However, this appears to be the natural set-up for
model-theoretic linearisation.
At the moment, we have some proofs, but no theorem.
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Thank you !
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