Introduction 00000000 Soluble dimnesional groups

Endogenies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Finite-dimensional Groups

Frank O. Wagner j/w Adrien Deloro

Université Claude Bernard Lyon 1

17 December 2022

Dimension

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Dimension

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

A theory *T* is *finite-dimensional* if there is a dimension function dim from the collection of all interpretable sets in models of *T* to $\{-\infty\} \cup \omega$, satisfying for a formula $\varphi(x, y)$ and interpretable sets *X* and *Y*:

• *Invariance:* If $a \equiv a'$ then dim $(\varphi(x, a)) = \dim(\varphi(x, a'))$.

Dimension

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

- *Invariance:* If $a \equiv a'$ then dim $(\varphi(x, a)) = \dim(\varphi(x, a'))$.
- Algebraicity: dim $(\emptyset) = -\infty$, and dim X = 0 iff X is finite.

Dimension

Endogenies

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

- *Invariance:* If $a \equiv a'$ then dim $(\varphi(x, a)) = \dim(\varphi(x, a'))$.
- Algebraicity: dim(\emptyset) = $-\infty$, and dim X = 0 iff X is finite.
- Union: dim $(X \cup Y) = \max{\dim(X), \dim(Y)}$.

Endogenies

Dimension

Definition

- *Invariance:* If $a \equiv a'$ then dim $(\varphi(x, a)) = \dim(\varphi(x, a'))$.
- Algebraicity: dim $(\emptyset) = -\infty$, and dim X = 0 iff X is finite.
- Union: dim $(X \cup Y) = \max{\dim(X), \dim(Y)}$.
- *Fibration:* Let $f : X \to Y$ be an interpretable map. If $\dim(f^{-1}(y)) \ge d$ for all $y \in Y$, then $\dim(X) \ge \dim(Y) + d$; if $\dim(f^{-1}(y)) \le d$ for all $y \in Y$, then $\dim(X) \le \dim(Y) + d$.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks

Of course, fibration implies that

• If $\dim(f^{-1}(y)) = d$ for all $y \in Y$, then $\dim(X) = \dim(Y) + d$.

Endogenies

(ロ) (同) (三) (三) (三) (三) (○) (○)

Remarks

Of course, fibration implies that

• If $\dim(f^{-1}(y)) = d$ for all $y \in Y$, then $\dim(X) = \dim(Y) + d$.

Note that we do not suppose that the dimension is definable, i.e. that all sets $\{y \in Y : \dim(f^{-1}(y)) = d\}$ are definable.

Introduction 0000000 Soluble dimnesional groups

Endogenies

A D F A 同 F A E F A E F A Q A

Remarks

Of course, fibration implies that

• If $\dim(f^{-1}(y)) = d$ for all $y \in Y$, then $\dim(X) = \dim(Y) + d$.

Note that we do not suppose that the dimension is definable, i.e. that all sets $\{y \in Y : \dim(f^{-1}(y)) = d\}$ are definable.

If dimension is definable, then fibration with = implies the two fibration axioms (with \geq and \leq).

Endogenies

A D F A 同 F A E F A E F A Q A

Remarks

Of course, fibration implies that

• If $\dim(f^{-1}(y)) = d$ for all $y \in Y$, then $\dim(X) = \dim(Y) + d$.

Note that we do not suppose that the dimension is definable, i.e. that all sets $\{y \in Y : \dim(f^{-1}(y)) = d\}$ are definable.

If dimension is definable, then fibration with = implies the two fibration axioms (with \geq and \leq).

In [Wa00] a more general notion of dimension is defined. Our notion of finite-dimensionality would correspond to *fine finite-dimensional with lower fibration*.

Endogenies

Remarks

Of course, fibration implies that

• If $\dim(f^{-1}(y)) = d$ for all $y \in Y$, then $\dim(X) = \dim(Y) + d$.

Note that we do not suppose that the dimension is definable, i.e. that all sets $\{y \in Y : \dim(f^{-1}(y)) = d\}$ are definable.

If dimension is definable, then fibration with = implies the two fibration axioms (with \geq and \leq).

In [Wa00] a more general notion of dimension is defined. Our notion of finite-dimensionality would correspond to *fine finite-dimensional with lower fibration*.

Examples of finite-dimensional theories include theories of finite Lascar rank, finite SU-rank, finite U^{p} -rank and *o*-minimal theories.

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Finite-dimensional groups

Fact

In a finite-dimensional theory, if $f : G \to H$ is a definable homomorphism of definable groups, then

 $\dim G = \dim \inf f + \dim \ker f.$

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Finite-dimensional groups

Fact

In a finite-dimensional theory, if $f : G \to H$ is a definable homomorphism of definable groups, then

 $\dim G = \dim \inf f + \dim \ker f.$

In particular, if $H \leq G$, then

 $\dim G = \dim H + \dim G/H.$

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Finite-dimensional groups

Fact

In a finite-dimensional theory, if $f : G \to H$ is a definable homomorphism of definable groups, then

 $\dim G = \dim \inf f + \dim \ker f.$

In particular, if $H \leq G$, then

 $\dim G = \dim H + \dim G/H.$

So *H* has infinite index in *G* iff dim $H < \dim G$.

Endogenies

A D F A 同 F A E F A E F A Q A

Finite-dimensional groups

Fact

In a finite-dimensional theory, if $f : G \to H$ is a definable homomorphism of definable groups, then

 $\dim G = \dim \inf f + \dim \ker f.$

In particular, if $H \leq G$, then

 $\dim G = \dim H + \dim G/H.$

So H has infinite index in G iff dim $H < \dim G$. This follows immediately from the fibration axiom.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Finite-dimensional groups

Fact

In a finite-dimensional theory, if $f : G \rightarrow H$ is a definable homomorphism of definable groups, then

 $\dim G = \dim \inf f + \dim \ker f.$

In particular, if $H \leq G$, then

 $\dim G = \dim H + \dim G/H.$

So H has infinite index in G iff dim $H < \dim G$.

This follows immediately from the fibration axiom.

It follows that we have a descending and an ascending chain condition on definable subgroups up to finite index.

Finite-dimensional fields

Theorem (W.)

In a finite-dimensional theory:

• An infinite type-definable skew field K is definable and has finite dimension over its centre.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Finite-dimensional fields

Theorem (W.)

- An infinite type-definable skew field K is definable and has finite dimension over its centre.
- A type-definable K-vector space is definable, of finite linear dimension equal to dim V / dim K.

Finite-dimensional fields

Theorem (W.)

- An infinite type-definable skew field K is definable and has finite dimension over its centre.
- A type-definable K-vector space is definable, of finite linear dimension equal to dim V / dim K.
- An invariant domain of bounded dimension is right and left Ore, and its skew field of (right or left) fractions is definable.

Finite-dimensional fields

Theorem (W.)

- An infinite type-definable skew field K is definable and has finite dimension over its centre.
- A type-definable K-vector space is definable, of finite linear dimension equal to dim V / dim K.
- An invariant domain of bounded dimension is right and left Ore, and its skew field of (right or left) fractions is definable.
- A ∧-definable (non-commutative, non-unitary) domain is a definable skew field.

Finite-dimensional fields

Theorem (W.)

In a finite-dimensional theory:

- An infinite type-definable skew field K is definable and has finite dimension over its centre.
- A type-definable K-vector space is definable, of finite linear dimension equal to dim V / dim K.
- An invariant domain of bounded dimension is right and left Ore, and its skew field of (right or left) fractions is definable.
- A ∧-definable (non-commutative, non-unitary) domain is a definable skew field.

 \wedge -definable means that the group is the intersection of definable supergroups.

Finite-dimensional fields

Theorem (W.)

In a finite-dimensional theory:

- An infinite type-definable skew field K is definable and has finite dimension over its centre.
- A type-definable K-vector space is definable, of finite linear dimension equal to dim V / dim K.
- An invariant domain of bounded dimension is right and left Ore, and its skew field of (right or left) fractions is definable.
- A ∧-definable (non-commutative, non-unitary) domain is a definable skew field.

 \wedge -definable means that the group is the intersection of definable supergroups.

The infinitesimals in a non-standard real closed field show that \bigwedge -definability is necessary in the last item.

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Automorphisms

Theorem (W.)

In a finite-dimensional theory:

• A definable endomorphism of a definable skew field is zero or surjective.

Endogenies 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Automorphisms

Theorem (W.)

- A definable endomorphism of a definable skew field is zero or surjective.
- A Ø-definable additively or multiplicatively Ø-connected field contains infinitely many absolutely algebraic elements.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Automorphisms

Theorem (W.)

- A definable endomorphism of a definable skew field is zero or surjective.
- A Ø-definable additively or multiplicatively Ø-connected field contains infinitely many absolutely algebraic elements.
- A definable field with infinitely many absolutely algebraic elements has no infinite type-definable family of definable automorphisms.

Endogenies

Automorphisms

Theorem (W.)

- A definable endomorphism of a definable skew field is zero or surjective.
- A Ø-definable additively or multiplicatively Ø-connected field contains infinitely many absolutely algebraic elements.
- A definable field with infinitely many absolutely algebraic elements has no infinite type-definable family of definable automorphisms.
- A definable automorphism of a Ø-definable, additively or multiplicatively Ø-connected field is acl^{eq}(Ø)-definable.

Introduction 00000000 Soluble dimnesional groups

Endogenies 000000000

(ロ) (同) (三) (三) (三) (○) (○)

Connected components

There is no *a priori* assumption on the existence of connected components (although we usually assume connectednes of *one* of the groups involved). This is a major complication, and much of the proofs is devoted to working around this.

Endogenies

(ロ) (同) (三) (三) (三) (○) (○)

Connected components

There is no *a priori* assumption on the existence of connected components (although we usually assume connectednes of *one* of the groups involved). This is a major complication, and much of the proofs is devoted to working around this.

Theorem

Let G be a connected group acting on the infinite abelian group A in a finite-dimensional theory. Suppose that A has no infinite G-invariant definable subgroup of smaller dimension, and there is $g \in G$ with (g - 1)A infinite. Then A has a G-invariant G-minimal definable subgroup of finite index.

Endogenies

Connected components

There is no *a priori* assumption on the existence of connected components (although we usually assume connectednes of *one* of the groups involved). This is a major complication, and much of the proofs is devoted to working around this.

Theorem

Let G be a connected group acting on the infinite abelian group A in a finite-dimensional theory. Suppose that A has no infinite G-invariant definable subgroup of smaller dimension, and there is $g \in G$ with (g - 1)A infinite. Then A has a G-invariant G-minimal definable subgroup of finite index.

Theorem

Let G be a finite-dimensional nilpotent connected group. Then G has a definable connected lower central series.

Endogenies

(ロ) (同) (三) (三) (三) (○) (○)

Proof.

Suppose $A^* \leq A$ is a *G*-invariant definable subgroup of finite index. Then $C_G(A/A^*)$ has finite index in *G* and must be the whole of *G*. So $(g - 1)A \leq A^*$; it is contained in every *G*-invariant subgroup of finite index.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof.

Suppose $A^* \leq A$ is a *G*-invariant definable subgroup of finite index. Then $C_G(A/A^*)$ has finite index in *G* and must be the whole of *G*. So $(g - 1)A \leq A^*$; it is contained in every *G*-invariant subgroup of finite index.

Now consider finitely many $g_i \in G$ such that $B = \sum_i (g_i - 1)A$ has maximal dimension possible. As (g - 1)A is infinite for some $g \in G$, the group *B* is infinite; by maximality of dim *B* it must be commensurable with $gB \leq \sum_i [(gg_i - 1)A - (g - 1)A]$ for any $g \in G$.

Endogenies

(ロ) (同) (三) (三) (三) (○) (○)

Proof.

Suppose $A^* \leq A$ is a *G*-invariant definable subgroup of finite index. Then $C_G(A/A^*)$ has finite index in *G* and must be the whole of *G*. So $(g - 1)A \leq A^*$; it is contained in every *G*-invariant subgroup of finite index.

Now consider finitely many $g_i \in G$ such that $B = \sum_i (g_i - 1)A$ has maximal dimension possible. As (g - 1)A is infinite for some $g \in G$, the group *B* is infinite; by maximality of dim *B* it must be commensurable with $gB \leq \sum_i [(gg_i - 1)A - (g - 1)A]$ for any $g \in G$.

By compactness the commensurability is uniform, and by Schlichting's Theorem there is a *G*-invariant definable subgroup B_0 commensurable with *B*.

Endogenies

Proof.

Suppose $A^* \leq A$ is a *G*-invariant definable subgroup of finite index. Then $C_G(A/A^*)$ has finite index in *G* and must be the whole of *G*. So $(g - 1)A \leq A^*$; it is contained in every *G*-invariant subgroup of finite index.

Now consider finitely many $g_i \in G$ such that $B = \sum_i (g_i - 1)A$ has maximal dimension possible. As (g - 1)A is infinite for some $g \in G$, the group *B* is infinite; by maximality of dim *B* it must be commensurable with $gB \leq \sum_i [(gg_i - 1)A - (g - 1)A]$ for any $g \in G$.

By compactness the commensurability is uniform, and by Schlichting's Theorem there is a *G*-invariant definable subgroup B_0 commensurable with *B*.

Then dim $A = \dim B_0 = \dim B$, so there is a maximal sum $A_0 = \sum_j (g_j - 1)A$ of finite index in A. Then A_0 is G-invariant and G-minimal.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Proof.

We use induction on the dimension. If G is abelian, the statement is clear.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

We use induction on the dimension. If G is abelian, the statement is clear.

Otherwise choose $g \in \gamma_{n-1}G \setminus Z(G)$, where *n* is the nilpotency class of *G*. Then $x \mapsto [x, g]$ is a homomorphism from *G* to $\gamma_n G \leq Z(G)$; its image *Z* is definable, connected and infinite.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof.

We use induction on the dimension. If G is abelian, the statement is clear.

Otherwise choose $g \in \gamma_{n-1}G \setminus Z(G)$, where *n* is the nilpotency class of *G*. Then $x \mapsto [x, g]$ is a homomorphism from *G* to $\gamma_n G \leq Z(G)$; its image *Z* is definable, connected and infinite. Since dim $(G/Z) < \dim G$ and $\gamma_k(G)$ is the pre-image of $\gamma_k(G/Z)$ under the canonical projection $G \to G/Z$, we finish by induction.
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Soluble finite-dimensional groups

Theorem

Let M be a connected abelian group acting faithfully on the infinite abelian group A in a finite-dimensional theory. Suppose

- A has no infinite M-invariant definable subgroup of smaller dimension.
- $C_A(M)$ is trivial.

Then A is M-minimal, and there is a definable field K such that $A \cong K^+$ and $M \hookrightarrow K^{\times}$.

Soluble finite-dimensional groups

Theorem

Let M be a connected abelian group acting faithfully on the infinite abelian group A in a finite-dimensional theory. Suppose

- A has no infinite M-invariant definable subgroup of smaller dimension.
- C_A(M) is trivial.

Then A is M-minimal, and there is a definable field K such that $A \cong K^+$ and $M \hookrightarrow K^{\times}$.

Theorem

Let G be a nilpotent connected group acting on an infinite abelian group A, in a finite-dimensional theory. Then either the action is nilpotent, or there is a definable centreless 2-soluble section which naturally interprets a field.

Endogenies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proof. Note that any finite *M*-invariant subgroup of *A* is centralised by *M* by connectedness, whence trivial.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. Note that any finite *M*-invariant subgroup of *A* is centralised by *M* by connectedness, whence trivial. Put

 $R = \langle M \rangle \leq \operatorname{End}(A).$

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

Note that any finite M-invariant subgroup of A is centralised by M by connectedness, whence trivial. Put

 $R = \langle M \rangle \leq \operatorname{End}(A).$

For $r \in R$ both ker *r* and im *r* are definable *M*-invariant, whence finite (thus trivial) or of finite index in *A*. If ker *r* has finite index, im *r* is finite, whence trivial, and r = 0. Thus ker $r = \{0\}$ for all $r \in R \setminus \{0\}$, and *R* is an integral domain.

Endogenies

(ロ) (同) (三) (三) (三) (○) (○)

Proof.

Note that any finite M-invariant subgroup of A is centralised by M by connectedness, whence trivial. Put

 $R = \langle M \rangle \leq \operatorname{End}(A).$

For $r \in R$ both ker r and im r are definable M-invariant, whence finite (thus trivial) or of finite index in A. If ker r has finite index, im r is finite, whence trivial, and r = 0. Thus ker $r = \{0\}$ for all $r \in R \setminus \{0\}$, and R is an integral domain. It is easy to see that A is M-minimal, so R acts by automorphisms.

Proof.

Note that any finite M-invariant subgroup of A is centralised by M by connectedness, whence trivial. Put

 $R = \langle M \rangle \leq \operatorname{End}(A).$

For $r \in R$ both ker r and im r are definable M-invariant, whence finite (thus trivial) or of finite index in A. If ker r has finite index, im r is finite, whence trivial, and r = 0. Thus ker $r = \{0\}$ for all $r \in R \setminus \{0\}$, and R is an integral domain. It is easy to see that A is M-minimal, so R acts by automorphisms.

Thus any $r \in R$ is determined by (a, ra) for any non-zero $a \in A$. Hence dim $R \leq 2 \dim A$. It follows that its field of fractions K is definable, and A is a finite-dimensional vector space over K.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof.

Note that any finite M-invariant subgroup of A is centralised by M by connectedness, whence trivial. Put

 $R = \langle M \rangle \leq \operatorname{End}(A).$

For $r \in R$ both ker r and im r are definable M-invariant, whence finite (thus trivial) or of finite index in A. If ker r has finite index, im r is finite, whence trivial, and r = 0. Thus ker $r = \{0\}$ for all $r \in R \setminus \{0\}$, and R is an integral domain. It is easy to see that A is M-minimal, so R acts by automorphisms.

Thus any $r \in R$ is determined by (a, ra) for any non-zero $a \in A$. Hence dim $R \leq 2 \dim A$. It follows that its field of fractions K is definable, and A is a finite-dimensional vector space over K. By minimality of dim A the linear dimension is 1, and $A \cong K^+$; clearly $M \hookrightarrow R^{\times} = K^{\times}$.

Endogenies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof. If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness *G* acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness *G* acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, *A* has no non-trivial finite *G*-invariant subgroups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness G acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, A has no non-trivial finite G-invariant subgroups. G' is connected and definable, and $\dim(G') < \dim(G)$. By induction either a field is naturally definable and we are done, or the action of G' on A is nilpotent and we consider $C_A(G')$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness G acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, A has no non-trivial finite G-invariant subgroups. G' is connected and definable, and $\dim(G') < \dim(G)$. By induction either a field is naturally definable and we are done, or the action of G' on A is nilpotent and we consider $C_A(G')$. Note that G/G' acts on $C_A(G')$ without fixed points, so $C_A(G')$ is infinite.

(日) (日) (日) (日) (日) (日) (日)

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness G acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, A has no non-trivial finite G-invariant subgroups. G' is connected and definable, and $\dim(G') < \dim(G)$. By induction either a field is naturally definable and we are done, or the action of G' on A is nilpotent and we consider $C_A(G')$. Note that G/G' acts on $C_A(G')$ without fixed points, so $C_A(G')$ is infinite.

Let $A_1 \leq C_A(G')$ be *G*-invariant of minimal dimension possible.

(日) (日) (日) (日) (日) (日) (日)

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness G acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, A has no non-trivial finite G-invariant subgroups. G' is connected and definable, and $\dim(G') < \dim(G)$. By induction either a field is naturally definable and we are done, or the action of G' on A is nilpotent and we consider $C_A(G')$. Note that G/G' acts on $C_A(G')$ without fixed points, so $C_A(G')$ is infinite.

Let $A_1 \leq C_A(G')$ be *G*-invariant of minimal dimension possible. We finish by the field interpretation theorem.

Proof.

If $C_A(G)$ is infinite, dim $(A/C_A(G)) < \dim A$ and we finish by induction.

If $C_A(G)$ is finite, then by connectedness G acts on $A/C_A(G)$ without fixed points, so we may assume $C_A(G) = \{0\}$. In particular, A has no non-trivial finite G-invariant subgroups. G' is connected and definable, and $\dim(G') < \dim(G)$. By induction either a field is naturally definable and we are done, or the action of G' on A is nilpotent and we consider $C_A(G')$. Note that G/G' acts on $C_A(G')$ without fixed points, so $C_A(G')$ is infinite.

Let $A_1 \leq C_A(G')$ be *G*-invariant of minimal dimension possible. We finish by the field interpretation theorem.

Corollary

A connected soluble non-nilpotent finite-dimensional group interprets naturally a field.

Introduction 00000000 Soluble dimnesional groups

Endogenies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Some late theorems

Soluble dimnesional groups $\circ \circ \circ \bullet$

Endogenies 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some late theorems

Theorem

Let G be a connected group acting faithfully on the infinite abelian group A in a finite-dimensional theory. Suppose

- A is G-minimal and $C_A(G) = \{0\}$.
- G has a definable infinite abelian normal subgroup M.

Then there is a definable field K over which A is definably a vector space of finite linear dimension, such that the action of G is K-linear and the action of M scalar (so M is central in G).

Endogenies

Some late theorems

Theorem

Let G be a connected group acting faithfully on the infinite abelian group A in a finite-dimensional theory. Suppose

- A is G-minimal and $C_A(G) = \{0\}$.
- G has a definable infinite abelian normal subgroup M.

Then there is a definable field K over which A is definably a vector space of finite linear dimension, such that the action of G is K-linear and the action of M scalar (so M is central in G).

Corollary

A finite-dimensional connected soluble group has a nilpotent derived subgroup.

Endogenies •oooooooo

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Homogenies

Homogenies are the same as homomorphisms, only that everything is up to finite index, and up to finite subgroups.

(ロ) (同) (三) (三) (三) (○) (○)

Homogenies

Homogenies are the same as homomorphisms, only that everything is up to finite index, and up to finite subgroups. In the finite-dimensional context, they occur naturally.

Endogenies • 00000000

(ロ) (同) (三) (三) (三) (○) (○)

Homogenies

Homogenies are the same as homomorphisms, only that everything is up to finite index, and up to finite subgroups. In the finite-dimensional context, they occur naturally.

Definition

Let *A* and *B* be abelian groups. A *homogeny* from *A* to *B* is a subgroup *H* of $A \times B$ such that

- $\pi_A H$ has finite index in A.
- The *cokernel* coker $H = \{b \in B : (0, b) \in H\}$ is finite.

Thus *H* induces a homorphism $\pi_A H \rightarrow B/\text{coker} H$.

Endogenies • 00000000

Homogenies

Homogenies are the same as homomorphisms, only that everything is up to finite index, and up to finite subgroups. In the finite-dimensional context, they occur naturally.

Definition

Let *A* and *B* be abelian groups. A *homogeny* from *A* to *B* is a subgroup *H* of $A \times B$ such that

- $\pi_A H$ has finite index in A.
- The *cokernel* coker $H = \{b \in B : (0, b) \in H\}$ is finite.

Thus *H* induces a homorphism $\pi_A H \rightarrow B/\text{coker} H$.

If H_1 and H_2 are homogenies, their sum is defined pointwise, as

$$H_1 + H_2 = \{(a, b_1 + b_2) \in A \times B : (a, b_1) \in H \text{ and } (a, b_2) \in H_2\}.$$

Endogenies • 00000000

Homogenies

Homogenies are the same as homomorphisms, only that everything is up to finite index, and up to finite subgroups. In the finite-dimensional context, they occur naturally.

Definition

Let *A* and *B* be abelian groups. A *homogeny* from *A* to *B* is a subgroup *H* of $A \times B$ such that

- $\pi_A H$ has finite index in A.
- The *cokernel* coker $H = \{b \in B : (0, b) \in H\}$ is finite.

Thus *H* induces a homorphism $\pi_A H \rightarrow B/\text{coker} H$.

If H_1 and H_2 are homogenies, their sum is defined pointwise, as

$$H_1 + H_2 = \{(a, b_1 + b_2) \in A \times B : (a, b_1) \in H \text{ and } (a, b_2) \in H_2\}.$$

$$\pi_A(H_1+H_2) = \pi_A H_1 \cap \pi_A H_2, \operatorname{coker}(H_1+H_2) = \operatorname{coker} H_1 + \operatorname{coker} H_2.$$

Endogenies

Endogenies

If A = B, we speak of *endogenies* rathen than homogenies.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Endogenies

If A = B, we speak of *endogenies* rathen than homogenies.

Under addition and composition, the endogenies of *A* form a *prering*, where only left distributivity fails.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Endogenies

If A = B, we speak of *endogenies* rathen than homogenies.

Under addition and composition, the endogenies of *A* form a *prering*, where only left distributivity fails.

We call two homogenies H_1 and H_2 equivalent if $H_1 - H_2$ has finite image. Equivalence is preserved under sum and product, and left distributivity holds modulo equivalence. Hence the pre-ring of endogenies modulo equivalence is a ring.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Endogenies

If A = B, we speak of *endogenies* rathen than homogenies.

Under addition and composition, the endogenies of *A* form a *prering*, where only left distributivity fails.

We call two homogenies H_1 and H_2 equivalent if $H_1 - H_2$ has finite image. Equivalence is preserved under sum and product, and left distributivity holds modulo equivalence. Hence the pre-ring of endogenies modulo equivalence is a ring.

We shall call a pre-ring of endogenies *essentially* infinite/ unbounded, if it is infinite/unbounded modulo equivalence.

Endogenies

Endogenies

If A = B, we speak of *endogenies* rathen than homogenies.

Under addition and composition, the endogenies of *A* form a *prering*, where only left distributivity fails.

We call two homogenies H_1 and H_2 equivalent if $H_1 - H_2$ has finite image. Equivalence is preserved under sum and product, and left distributivity holds modulo equivalence. Hence the pre-ring of endogenies modulo equivalence is a ring.

We shall call a pre-ring of endogenies *essentially* infinite/ unbounded, if it is infinite/unbounded modulo equivalence.

In our context *A* will be connected, and endogenies will be total. We shall use Greek letters to denote an endogeny of *A*. Introduction 00000000 Soluble dimnesional groups

Endogenies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Strong commutation

Definition Two endogenies γ and δ of *A commute strongly* if

 $\operatorname{im}(\gamma\delta - \delta\gamma) = \operatorname{coker}\gamma + \operatorname{coker}\delta.$

The strong centralizer of γ is denoted $C^{\#}(\gamma)$.

Introduction 00000000 Soluble dimnesional groups

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Strong commutation

Definition Two endogenies γ and δ of *A commute strongly* if

 $\operatorname{im}(\gamma\delta - \delta\gamma) = \operatorname{coker}\gamma + \operatorname{coker}\delta.$

The strong centralizer of γ is denoted $C^{\#}(\gamma)$.

This is much stronger than requiring $\gamma\delta$ and $\delta\gamma$ to be equivalent.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Strong commutation

Definition Two endogenies γ and δ of *A commute strongly* if

 $\operatorname{im}(\gamma\delta - \delta\gamma) = \operatorname{coker}\gamma + \operatorname{coker}\delta.$

The strong centralizer of γ is denoted $C^{\#}(\gamma)$.

This is much stronger than requiring $\gamma \delta$ and $\delta \gamma$ to be equivalent. Note that γ need not commute with itself.

Endogenies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Strong commutation

Definition Two endogenies γ and δ of *A commute strongly* if

 $\operatorname{im}(\gamma\delta - \delta\gamma) = \operatorname{coker}\gamma + \operatorname{coker}\delta.$

The strong centralizer of γ is denoted $C^{\#}(\gamma)$.

This is much stronger than requiring $\gamma \delta$ and $\delta \gamma$ to be equivalent. Note that γ need not commute with itself.

Lemma

- If γ and δ commute strongly, then $\delta[\operatorname{coker} \gamma] \leq \operatorname{coker} \gamma + \operatorname{coker} \delta$.
- $C^{\#}(\gamma)$ is a prering, i.e. is closed under +, and \circ .

Invariance

Definition A subgroup $B \le A$ is γ -invariant if $\gamma[B] \le B + \operatorname{coker} \gamma$. Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のへで

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Invariance

Definition

A subgroup $B \leq A$ is γ -invariant if $\gamma[B] \leq B + \operatorname{coker}\gamma$.

The sum of two γ -invariant subgroups is γ -invariant. However, the intersection of two γ -invariant subgroups need not be γ -invariant, unless one of them contains coker γ .

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Invariance

Definition

A subgroup $B \leq A$ is γ -invariant if $\gamma[B] \leq B + \operatorname{coker}\gamma$.

The sum of two γ -invariant subgroups is γ -invariant. However, the intersection of two γ -invariant subgroups need not be γ -invariant, unless one of them contains coker γ .

Lemma

Suppose γ and δ are commuting strongly.

- $\operatorname{coker}\gamma$ is δ -invariant.
- If $B \leq A$ is γ -invariant, so is $\delta[B]$.
- If ker γ is connected-by-finite, $(\ker \gamma)^0$ is δ -invariant.
Endogenies

Invariance

Definition

A subgroup $B \leq A$ is γ -invariant if $\gamma[B] \leq B + \operatorname{coker}\gamma$.

The sum of two γ -invariant subgroups is γ -invariant. However, the intersection of two γ -invariant subgroups need not be γ -invariant, unless one of them contains coker γ .

Lemma

Suppose γ and δ are commuting strongly.

- $\operatorname{coker}\gamma$ is δ -invariant.
- If $B \leq A$ is γ -invariant, so is $\delta[B]$.
- If ker γ is connected-by-finite, (ker γ)⁰ is δ -invariant.

However,

- ker γ need not be δ -invariant, unless γ is a homomorphism.
- Even if δ is invertible, δ^{-1} need not commute strongly with γ .

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The setting

- *T* is finite-dimensional.
- A is a definable, connected, abelian group.
- Γ and △ are two invariant prerings of definable endogenies of A.
- Γ and Δ commute strongly.
- Both Γ and Δ are essentially infinite.
- At least one of Γ or Δ is essentially unbounded.

Endogenies

The setting

- *T* is finite-dimensional.
- A is a definable, connected, abelian group.
- Γ and △ are two invariant prerings of definable endogenies of A.
- Γ and Δ commute strongly.
- Both Γ and Δ are essentially infinite.
- At least one of Γ or Δ is essentially unbounded.

Theorem

If moreover every endogeny from Γ and Δ has a finite kernel, then there is a finite $F \leq A$ which is both Γ - and Δ -invariant, and such that on A/F, both Γ and Δ act by automorphisms.

Endogenies

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ -invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ -invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ -invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists. If Γ is essentially bounded, Δ is not, so F_{Δ} exists. Then coker $\gamma \leq F_{\Delta}$ for each $\gamma \in \Gamma$, and Γ is outright bounded.

Endogenies

(日) (日) (日) (日) (日) (日) (日)

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ-invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists. If Γ is essentially bounded, Δ is not, so F_{Δ} exists. Then coker $\gamma \leq F_{\Delta}$ for each $\gamma \in \Gamma$, and Γ is outright bounded. For finite Γ -invariant F there is $\gamma \in \Gamma^{\neq 0}$ with $F \leq \ker \gamma$, so $F_{\Gamma} = \sum \{F : F \text{ finite and } \Gamma \text{-invariant}\} \le \sum \{\ker \gamma : \gamma \in \Gamma^{\neq 0}\}$ is bounded and Δ -invariant. There are inequivalent $\delta_1, \delta_2 \in \Delta$ with $F_{\Gamma} \leq \ker(\delta_1 - \delta_2)$. Hence F_{Γ} is finite.

Endogenies

(日) (日) (日) (日) (日) (日) (日)

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ-invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists. If Γ is essentially bounded, Δ is not, so F_{Δ} exists. Then coker $\gamma < F_{\Lambda}$ for each $\gamma \in \Gamma$, and Γ is outright bounded. For finite Γ -invariant F there is $\gamma \in \Gamma^{\neq 0}$ with $F \leq \ker \gamma$, so $F_{\Gamma} = \sum \{F : F \text{ finite and } \Gamma \text{-invariant}\} \le \sum \{\ker \gamma : \gamma \in \Gamma^{\neq 0}\}$ is bounded and Δ -invariant. There are inequivalent $\delta_1, \delta_2 \in \Delta$ with $F_{\Gamma} < \ker(\delta_1 - \delta_2)$. Hence F_{Γ} is finite. Now $F_{\Gamma} < F_{\Lambda}$ by Δ -invariance; equality holds by symmetry.

Endogenies

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ-invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists. If Γ is essentially bounded, Δ is not, so F_{Δ} exists. Then coker $\gamma \leq F_{\Lambda}$ for each $\gamma \in \Gamma$, and Γ is outright bounded. For finite Γ -invariant F there is $\gamma \in \Gamma^{\neq 0}$ with $F \leq \ker \gamma$, so $F_{\Gamma} = \sum \{F : F \text{ finite and } \Gamma \text{-invariant}\} \le \sum \{\ker \gamma : \gamma \in \Gamma^{\neq 0}\}$ is bounded and Δ -invariant. There are inequivalent $\delta_1, \delta_2 \in \Delta$ with $F_{\Gamma} \leq \ker(\delta_1 - \delta_2)$. Hence F_{Γ} is finite. Now $F_{\Gamma} < F_{\Lambda}$ by Δ -invariance; equality holds by symmetry. $\overline{A} = A/F$ has no non-trivial, finite, Γ - or Δ -invariant subgroup. Γ and Δ act by commuting endomorphisms. So finite kernels are invariant, whence trivial.

Endogenies

Proof.

Suppose Γ is essentially unbounded. If there is no greatest Γ -invariant finite subgroup F_{Γ} , take an infinite $G = \sum_{n < \omega} F_n$. By essential unboundedness, there are inequivalent $\gamma_1, \gamma_2 \in \Gamma$ with the same action on *G*, whence $G \leq \ker(\gamma_1 - \gamma_2)$, a contradiction to kernel finiteness. So F_{Γ} exists. If Γ is essentially bounded, Δ is not, so F_{Δ} exists. Then coker $\gamma \leq F_{\Delta}$ for each $\gamma \in \Gamma$, and Γ is outright bounded. For finite Γ -invariant F there is $\gamma \in \Gamma^{\neq 0}$ with $F \leq \ker \gamma$, so $F_{\Gamma} = \sum \{F : F \text{ finite and } \Gamma \text{-invariant}\} \le \sum \{\ker \gamma : \gamma \in \Gamma^{\neq 0}\}$ is bounded and Δ -invariant. There are inequivalent $\delta_1, \delta_2 \in \Delta$ with $F_{\Gamma} < \ker(\delta_1 - \delta_2)$. Hence F_{Γ} is finite. Now $F_{\Gamma} \leq F_{\Delta}$ by Δ -invariance; equality holds by symmetry. $\overline{A} = A/F$ has no non-trivial, finite, Γ - or Δ -invariant subgroup. Γ and Δ act by commuting endomorphisms. So finite kernels are invariant, whence trivial.

Endomorphisms with trivial kernels of a finite-dimensional connected-by-finite group are automorphisms.

Soluble dimnesional groups

Linearisation

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let *A* be a definable, connected group and Γ a set of definable endogenies. The group *A* is Γ -minimal if it has no non-trivial, proper, connected, Γ -invariant subgroup.

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linearisation

Definition

Let *A* be a definable, connected group and Γ a set of definable endogenies. The group *A* is Γ -minimal if it has no non-trivial, proper, connected, Γ -invariant subgroup.

Theorem

In addition to the setting, suppose:

- $C^{\#}(\Gamma) = \Delta$ and $C^{\#}(\Delta) = \Gamma$.
- A is Γ-minimal.

Then there is a finite subgroup $F \le A$ which is Γ - and Δ -invariant, Δ is a (possibly skew) field, A/F is a finite-dimensional Δ -vector space, and $\Gamma = \text{End}_{\Delta}(A/F)$.

Endogenies

Linearisation

Definition

Let *A* be a definable, connected group and Γ a set of definable endogenies. The group *A* is Γ -minimal if it has no non-trivial, proper, connected, Γ -invariant subgroup.

Theorem

In addition to the setting, suppose:

- $C^{\#}(\Gamma) = \Delta$ and $C^{\#}(\Delta) = \Gamma$.
- A is Γ-minimal.

Then there is a finite subgroup $F \le A$ which is Γ - and Δ -invariant, Δ is a (possibly skew) field, A/F is a finite-dimensional Δ -vector space, and $\Gamma = \text{End}_{\Delta}(A/F)$.

Notice that these claims reduce to the first, i.e. proving that Δ is a definable skew field of automorphisms of A/F.

Soluble dimnesional groups

Bi-minimality

Endogenies

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

Let *A* be a definable, connected group and Γ and Δ two sets of strongly commuting definable endogenies. The group *A* is (Γ, Δ) -minimal if it has no non-trivial, proper, connected, Γ - and Δ -invariant subgroup.

Soluble dimnesional groups

Bi-minimality

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let *A* be a definable, connected group and Γ and Δ two sets of strongly commuting definable endogenies. The group *A* is (Γ, Δ) -minimal if it has no non-trivial, proper, connected, Γ - and Δ -invariant subgroup.

Even for endomorphisms, little seems to be known about bi-minimal modules.

Soluble dimnesional groups

Bi-minimality

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let *A* be a definable, connected group and Γ and Δ two sets of strongly commuting definable endogenies. The group *A* is (Γ, Δ) -minimal if it has no non-trivial, proper, connected, Γ - and Δ -invariant subgroup.

Even for endomorphisms, little seems to be known about bi-minimal modules.

However, this appears to be the natural set-up for model-theoretic linearisation.

Soluble dimnesional groups

Bi-minimality

Endogenies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let *A* be a definable, connected group and Γ and Δ two sets of strongly commuting definable endogenies. The group *A* is (Γ, Δ) -minimal if it has no non-trivial, proper, connected, Γ - and Δ -invariant subgroup.

Even for endomorphisms, little seems to be known about bi-minimal modules.

However, this appears to be the natural set-up for model-theoretic linearisation.

At the moment, we have some proofs, but no theorem.

Soluble dimnesional groups

Endogenies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you !