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Abstract. Let (f;) and (g;) be sequences of independent sym-
metric random variables and (x;) a sequence of elements from
a Banach space. We prove that under certain assumptions the as.
boundedness of the scries ) x.f; inplies the as. convergence of
Y.x;g; in every Banach space.

If f; are identically distributed, E|f| is finite, g; are identically
distributed and non-degenerate, then the above implication fails in c,.

If f; are equidistributed and there is a sequence (a,) such that

n

a7t Y Ifi—1 in probability,
i=1

then there is a sequence (x;) in ¢, such that Y x;f; is as. bounded,
. but does not converge a.s. .

In particular, if f; are p-stable with- Ee =g “1" then for
" p < | the as. boundedness of the series 1mphes its a.s. convergence,
but for p = 1 it fails,

The origin of this paper is the following Garlmgs question:

Let (n).y be a sequence of p-stable random. variables (r.v.) with

characteristic function ¢ ", pe(0,2), and (x;) a sequence in a Banach
space- ‘E. If the series ) #;x; is as. bounded; then is it a.s. convergent?

ieN

Some general results are obtained; it turns out that the answer is posmve

for pe(0, 1) and negative for rell,2).

1. Prelithinaries. We begm with some known facts .

1.1. Definition. Let (Ql) and (&) be two sequences of independent
symmetric -real-valued r.v. The. sequence (g;) is dommated by ({ ) if there

exist constants K and L such that for every ¢ and i.

Pl > 1) < KP(LIZI > 1).
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The forthcoming theorem is an easy corollary to a result stated in [3].
The proof in the sequel with a better constant than in [3] is due to
S. Kwapien and seems to be new.

1.2. THEOREM, Let X 1> X2,..., X, be independent symmetric E-valued r.v.
Then for every teR

P( ¥ aX;

>t) < 2P(max |al| Y X > 1).
i i=1

Proof. We' can-assume that 0<a, <..<a, = 1. Put gy, =0,

.bk = ak_ak_l for k = 1,2,..., n, Sk = Z Xi‘ Then '
i=k '

s

aiX,- = Z kak7 Z bk = ]—_.
k=1 k=1

i=1

Consequently, if | ¥ a,X;| > t, then max IS, > t. Therefore we have
=1 :

P(| X aXi| > 1) < Pmax |8, > 1) < 2P (18] > 1),

which completes - the prpbf.

1.3. TuEOREM (E. Rychlik, oral communication). If (o)) is dominated by
(&) with constants K -and L, where KeN, then for every x,,x., ey X,€E
and teR '

P(| ¥ x| > ) < 2KP(KL| ¥ &x] > 1)

Proof. We may assume without ‘loss of generality that L = 1. Let

Wi G=1,2,,.,n k=1,2,...,K) be r.v. such that

i) P} =1) = 1-P@: = 0) = UK,
) Yl YK =1fori=1,2,..,n, .
(i) ¥4, ..., ¥k 0y, ..., 0, are independent for fixed k.
We prove that T

CP(| x| > 9 < KP(K| Yavix| >0 <2KP(K| Y &x| >1).

The first inequality can be rewritten in the form

© P(Tewixr+Towfl >0 < ¥ (IS avinl > £)

Now it is obvious that if the event on the left-hand side takes place,

then some of K events on the right-hand side must take place. Therefore
(*) holds.

Al
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The second inequality is a consequence of 1.1.l We prove that
P(| X eivix| > 1) <2P(| L &ixi] > o)
We have . | . :
Plail > ) = < Pled > 0 < P(I > 1.

. Then it is not hard to see that there are r.v. ¢; and ¢ on a probablhty
space (@', #', P') such that .

0 loil <1,

(i) the sequences (£);<, and (&))<, are ldentlcally distributed,
(iif) the sequences' (¢} <)<, and (¢;¥l)i<, are identically distributed.
Let ()<, be a Bernoulli sequence on a probability space (2", #", P").
Then o :

”ZQ,% x| > t) HZ(p;rs-ffx-”.; )= P'xP"(| Z(p;a,f;x,." > 1)

< 2P x P”(max |(p|||23§x|| > 1) (]]Zilé,-'xi“ >t) .

The proof is completed.‘

As a simple consequence we obtain

1.4. THEOREM (Jain-and Marcus [2]). If (g;) is dominated by (&), (x,) < E,
then the convergence of Y. & x; in I? for some pe[O o0) implies the convergence
of Y eix; in IP. :

1.5. Remark. If (9;) and (&) are sequences of iid. r.v. and the assertion

of Theorem 1.4 holds for p = 0 and every Banach space E, then (Q) is
dommated by (f,)

2. The main result.

2.1. THEOREM. Assume that (g;) and (&) satisfy the following assumptions:

(1) (9;) is dominated by (&),

(ii) for every o > 0 there exist constants K and L such that (1) holds
and KL < a.

Then.for every Banach space E and (x) c E the as. boundedness of Zg X;
implies the a.s. convergence of Y o :

Proof. Suppose that ) g;x; does not converge as.; then it does not
converge in probability. So we can find « > 0 and 0, <m; < n, <m, < ...
such that P(| Y @ix| > «) > a. Put

npSismy . )
vi=| % &x,

UE'=” Y, aixi|

np<ismy : : k"‘"“mk

= Y &xi, M =sup|S,|.

i<n
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Note that sup U; < 2M. Since M < oo as., there is A such that
k
P(2M < 1) > 0. Hence

0< P(2M SAKPGuwpUig<d)= ﬁ (1-P(U; > 4).
k : : k=1

Therefore Z P(Ui > 1) < oo. By assumptions, (i) holds with K and L such

that «/KL > /1 It is easy to see that K can be chosen_to be natural
Then 1.3 ylelds e

x < P(US >a) 2KP (KLU} > o) < 2KP(U£ > ).

But P(U; > 1)~ 0 as k— o0, a contradiction. Th1s completes the proof.

2.2. Remark. One can prove the following converse:

If (0;) and (,) are sequences of -iid. r.v. and the assertion of Theorem 2.1
holds, then for zvery L > O there exists a constant K such that for every
.t and i

P(led > t) < KP(L|E| > o).

2.3. COROLLARY. Let n,%,,%,,... be iid. symmetric rv. such that
P(pl > t) ~t7? for t > o0, pe(0,1), eg. p-stable rv. Let (x;) < E. Then
the a.s. boundedness of the series ), n;x; implies its a.s. convergence.

Proof. Fix t, such that for t > t, and for some C '

—é—t“’ < P(nl>t) < Ct™2.
If0 < L <1, then for t > t, we have c-lrtr < P(L|11| > 1), whence
CZL"’P(qul > t) > Ct P> Py > t).
So it suffices to take K such that K > C*L~? and KP(L|y| > to) 1, eg.

- = [max (C% C~ t")L‘P]+1
Then KL ~ L'+ ”, whence KL can be made arbitrarily small which
completes the proof. ‘

The following theorem answers Garling’s. problem in the  negative - for
PE (1 s 2) ‘ . :

2.4. THEOREM. Let ¢, 51,'62, ... be iid. symmetric r.v. and let 0,010z, ---
be iid. symmetric with P(¢ = 0) < 1. If E|{| < oo, then there are a Banach

space E and a sequence (x;) = E such that Zé x; is a.s. bounded but Y ¢;x;
is not a.s. convergent.
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Proof. Assume E|¢| = 1 and put

1 n
g = P(—n— 1> 2).

By the weak law of large numbers we have g,—0, so we can choose
n, < n, < ...such that

quéi i

Put m; = n +...+n;and let E = (l,{1 X Iy, X ..)ey DO the set of él-i'sequences
(@) such that _ '
Y la/>0 and @) =suwp ¥ |4l

“";'k—1<i‘5’"k k my_1<ismy

Note that E is isometric to a subspace of ¢;. Put x, = (1/n)e, for
m,_, < k < m;, where -, is the k-th unit vector. If (¢) is a Bernoulli
sequence, then Z g; x; does not converge a.s. because '

Hence, by Theorem 1.4, Y g;x; does not converge a.s. It remains to show
that Y ¢ x; is as. bounded. Let S, be the n-th partial sum, M = sup ||S,].
Then we have "
| > 2)

P(sup [ISil > 2) < P(sup |5 > 2) < 2P (IS,
i<k )

i<my

% 2P ((—1— Y &l > Z)U;..u(i | Y & > 2))
Ny isny My oy <i<my

<2 < .
Sy

Hence P(M > 2) < 4, and then P(M < o) = 1. This completes the
proof. ‘

The following theorem gives a negative answer .to Garling’s question
for p = 1. : . L .

2.5, THEOREM. Let &, ¢&,,&,,... be iid. symmetric r.v. such that

(+2)

E ] Ijjg 1<y oo as t—> O
tP(¢l >1) c

Then there are a Banach space E and a sequence (x;)) — E such that
Z & x; is a.s. bounded but does not converge a.s.
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Proof. If (%) holds, then there is (a,),.y such that

— Z |41 —1 in probability -

n iSn

(cf. [1]). Let E be as in the proof of Theorem 24. Further reasoning is

quite similar: put

n i<n

1
Gn = P(.— Z Iéll > 2)’
choose' n, < n, <':"'such that Zq,, ;,' and put x, = (1/a, )ek for

—1 < k < m,. Tt is clear that Z £ x; is as. bounded but does not converge
a. s since

P(” Z kak”>%)-*1 asi—+oo.

mj— 1 <k<my
This completes the proof.

2.6. Remark. The a.s. boundedness of Z :X;, where &; are 1- stable' I.v., '

implies the convergence of Y &x;, which is in contrast with the case of
p>1.

The author wishes to thank S. Kwapien for strmulatmg discussions.

Added in -proof. Let (X;) be a sequence of independent E- valued r.v.
and (9,) iid. real r.v. Assume that for every i and ¢ > 0 there are
Vi -.-» Yy € E such that

d(s’.(xi),f(; 6;,)) <-s,'

where d is the Prokhorov distance. If the a.s. boundedness of Zx 0,

implies its a.s. convergence, the same holds for Y X, Typlcal examples’
are p-stable or semistable symmetric r.v. if p < 1
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