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Abstrrrct. Let (fi) and (g,) be sequences of independent sym- 
metric random variables and { x i )  a sequence of elements from 
a Banach space. We prove thal under certaln assumptiuns tile a.s. 
boundedness of the series Cs,f, implies the a.s. convergence of 
xx,g,  in every Banach space. 

I f f ;  are identically distributed, El51 is finlte, g, are identically 
distributed and non-degenerate, then the above implication fails in c,.  

If are equidistributed and there is a sequence (%) such that 

,I 

a; C + 1 in probability, 
I= 1 

then there is a sequence (xi) in c, such that Exif, is a.s. bounded, 
. but does not converge a.s. 

In particular, if J; are 11-stable wlth EP1"" = c- ' ' ' " ,  then for 
p < I the a.s. boundedness 01 the series irnpliea its a.s, convergence, 
but for p 2 1 it fails. 

The origin of this paper is the following Garling's question: 
Let (qiIiEN be a sequence of y-stable random variables (r.v.1 with 

characteristic fcnction e-lilp, p ~ ( 0 , 2 ) ,  and (x,) a sequence in a Banach 
space E. If the series qixi is a.s. bounded, then is it a.s. convergent? 

i€N 

Some general results are obtained; it turns out that the answer is positive I 

for p ~ ( 0 ,  I )  and negative for p~ [I, 2). 

I. Prelirhinaries. We begin with some known facts. 

1.1. Definit ion.  Let (g,) and (ti) be two sequences of independent 
symmetric .real-valued rev. The sequence (ei) is dominated by (ti) if there 

I 
exist constants IC and L such that for every t and i 

i 
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The forthcoming theorem is an easy corollary to a result stated in [3]. 
The proof in the sequel with a better constant than in 131 is due to 
S. Kwapieri and seems to be new. 

1.2. THEOREM. Let XI, X,, ..., Xn be independent symmetric E-valued r.v. 
Then for every t~ R 

-. - 
P r o  of. We ' can- assume that 0 d a, < . . . < a, = 1. Put a, = .O, 

n 

b, = a,-a,-, for k = 1,2  ,..., n, Sk = X I .  Then 
z = k  

n n n 

n 

Consequently, if 1 1  z a, xiI > t ,  then max /JS,I > t . Therefore we have 
i = l  k 

which completes the proof. 

1.3. THEOREM (E. Rychlik, oral communication). If (ei) is  dominated by 
(ti) with constants K and L ,  where K E N ,  then for every x,, x , ,  ..., X , E  E 
and ~ E R  

Proof.  We may assume without loss of generality that L = 1. Let 
.$: (i = 1,2, ..., n; k = 1 , 2 ,  ..., K )  be r.v. such that . 

(i) P($F = 1) = 1 - P($f = 0) = 1 / K ,  
(ii) $: +.,.+$f = 1 for i = 1, 2 ,  ..., n, 

(iii) $!, ..., $,k, e l ,  ..., en are independent for fixed k. 
We prove that 

I 

p(ll 2 Q i x i l l  > t) G K P ( K  / I  z pi $: xi11 > t )  h 2~ P ( K  1 1  ti x i 1  > I). 
i i 

The first inequality call be rewritten in the form 

Now it is obvious that if the event on the left-hand side takes place, 
then some of K events on the right-hand side must take place. Therefore 
(*) holds. 
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  he‘ second inequality is a .consequence of 1.1. We prove that 

We have 

Th-en it is not hard to see that there are r.v. rpf and 5; on a probability 
space (a', F', P') such that 

(i) Id1 < 1, 
(ii) the sequences (tijisn arid are identically distributed, 
(iii) the sequences-(qi{f)isn and are identically distributed. , 

Let (ei)&,, be a Bernoulli sequence on a probability space (Dl, S", P"). 
Then 

The proof is completed. 
As a simple consequence we obtain 

1.4. THEOREM (Jain and Marcus [2]). If (pi) is dominated by (53,  (xi) c E, 
then the convergence of ti xi in LP for s o m  p E LO, a) implies the convergence 
of Eeix i  in LP. 

1.5. Remark. If (ei) and (ti)  are sequences of i.i.d. r.v. and the assertion 
, of Theorem 1.4 holds for p = 0 and every Banach space E, then (ei) is 

dominated by (ti). 

2. The main result. 

2.1. THEOREM. Assume that (gi) and (ti) satisfy the following ass~mptions: 
(i) (g,) is dominated by (ti)¶ 

(iij for every or > 0 there exist constants. K and L such that (i) holds 
and KL < a .  

Then fop every Banach space E and (x i )  c E the a s .  boundedness of t i x i  
implies the a s .  convergence of gi xi. 

Proof.  Suppose that e i x i  does not: converge as.; then it does not 
converge in probability. So we can find o: > 0 and n, < m, < n, < m, < ... 
such that P ( I I  ~ ~ x ~ l /  > or) > a. Put 

n k S i < m k  
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Note that sup U j  < 2M. Since M < oo a.s., there is L such that 
k 

P(2M < A) > 0.  Hence 

  here fore C P (Ui > A) < oo. By assumptions, (i) holds with K and L such 
k 

that a / K L  > 11. It is easy to see that K can be chosen-to be natural. 
Then 1.3 yields -- - - . - 

a < P ( U p  > a) d 2K P ( K L U i  > a) < 2KP(U$. > A). 

But P(u$ > A) + 0 as k + a, a contradiction. This completes the proof. 

2.2. Remark. One can prove the following converse: 
If (0,) and (Ci) are sequences of i.i.d, r.0. and the assertion of Theorem 2.1 

holds, then for .wry L > 0 there exists a constant K such that for every 
. t ~ n d  i 

2.3. COROLLARY. Let q ,  q, ,  q , ,  ... be i.i.d. symmetric r.u. such that 
P(Jq1 > t )  - t - P  for t -r oo , p ~ ( 0 ,  I ) ,  e.g. pstable r.v. Let (xi) c E .  Then 
the a.s. boundedness of the series qixi implies its a.s. convergence. 

Proof. Fix to such that for t > to and for some C 

If 0 < L d 1 ,  then for t > to we have C - l ~ ~ t - ~  <.P(Llql > t ) ,  whence 

C 2 ~ - ' ~ ( ~ 1 q I  > t) $ 2 P(IqI > t). 

So it suffices to take K such that K g C2 L-P and K P ( L  lql > to)  2 1, e.g. 

- . -- - K = [max (C2, C- ' tg)L-P] + 1 .  

Then KL - Lt;P, whence K L  can be made arbitrarily small, which 
completes the proof. 

The following theorem answers Garling's problem in the  negative for 
P E ~ ,  2). 

2.4. THEOREM. Let t ,  tl, r2 ,  ... be i.i.d. symmetric r.v. and let Q, Q , ,  Q,, ... 
be i.i.d. symmetric with P ( Q  = 0) < 1. If E < a, then there are a Birnach 
space E and a sequence (.xi) c E such that ti xi is a.s. bounded 5ut ei xi 
is not a.s. convergent. 



1 Proof. Assume E (51 = 1 and put 

By the weak law of large numbers we have q, + 0, so we can choose 
la, < n, < ... such that 

Put mi = n, + . . . + ni and let E = ( I : ,  x 1;, x . . .Ic, be the set of all sequences 
(a,)suchthat . 

!ail + 0 and Il(ai)ll = SUP IaiI. 
r n t - ,  < i < m k  k  m k - l < i S m k  

Note that E is isometric to a subspace of r;. Put x, = ( l /n i )e ,  for 
t 1 7 ~ - ~  < k < mi, where -ek is the k-th unit vector. If (ei) is a Bernoulli 
sequence, then c i x i  does not converge a.s, because 

Hence, by Theorem 1.4, &xi does not converge a.s. It remains to show 
that Cixi is a.s. bounded. Lzt S ,  be the n-th partial sum, A4 = sup IlS.ll. 
Then we have R 

Hence P (M > 2) < 4, and then P (M < ao) = I. This completes the 
proof. 

The following theorem gives a negative answer to Garling's question 
for p = 1 .  

2.5. THEOREM. Let <, 1 1 ,  r2, ... be i.i.d. symmetric r.v. such that 

Then there are a Banach space E and a sequence (x i )  c E such that 
C Sixi  is a.s. bounded but does not converge as. 
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Proof. If (*a) holds, then there is (a,,),,, such that 

1 
- C ltil + 1 in probability 
an i d n  

(cf. [I]). Let E be as in the proof of Theorem 2.4. Further reasonin8 is 
quite similar: put 

. . 
choose n, c n, < .i: ; - such that q., < 4, and put x, = ( 1 4 , )  4 for 

mi- i k G m i .  It is clear that 1 t i x i  is a.s. bounded, but does not converge 
a.s. since -. 

This completes the proof. , 

2.6. Remark. The a.s boundedness of x i ,  where & are l-stable r.v., 
implies the convergence of &,xi, which is in contrast with the case of 
p > 1. 

I 

The author wishes to thank S. Kwapien for stimulating discussions. 

Added in proof, Let ( X i )  be a sequence of independent E-valued r.v. 
and (0)  i d .  real r.v. Assume that for every i and E > 0 there are 
y,, . . . , y, E E such that 

where d is the Prokhorov distance. If the as. boundedness of z x i B i  
impliep its a.s. convergence, the same holds for x Typical examples 
are p-stable or semistable symmetric r.v. if p < 1. 
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