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Abstract. Let Y,, n 3 1 t be a sequence of independent, positive 
random variables, defined on a probability space (a, d ,  P), with the 
common distribution function F. 

Put Y,* = inf(Yi, Y,, .... Ym), m 2 1, and 

The aim of this note is to give the rate of weak convergence of 
IS,,, n 2 l j  to the Brownian motion. Moreover, the mixing limit 
theorem and the random functional limit theorem for the sums S,, n 
2 1, are presented. 

1. Introduction and results. Let 1 Y,, n 2 1) be a sequence of independent, 
positive random variables with the common distribution function F, such 
that 

i i F ( x ) - ~ l x - ' d x < c c  for some b: O < b < m .  
0 

Let us put Y,T = inf(Yl, Y,, ..., Ym), rn 2 1 and write 
n 

S, = 1 Y,*, n 2 2, S, = 0. 
m= 1 

The convergence in probability, almost sure and in law, is established in 
[ 5 ] - [ 8 ]  for sums S, of infima of independent random variables uniformly 
distributed on [ O ,  11. The almost sure invariance principle for them has been 
obtained in [9]. Weak convergence of sums and of random sums of infima of 
independent positive random variables with the common distribution func- 
tion F was investigated in [ l l ]  and [lo], respectively. 



In this paper we examine the relation between the Wiener measure on 
the space (C, gC) and the distribution of sums (S , ,  n 3 I), where C = C < , , >  
is the space of continuous functions on [0, I] with the metric 

Bc is the g-field of Bore1 sets in C, and 

. . 
m= 1 

- Let 2c be the LBvy-Prohorov's distance defined as follows: Let, for 
B E B ~  and E > 0, 

G,IBl = .Ix: VecJc, Y, - = & I 7  

PEE 
I 

where p is the metric on C<,,,>, and let P and Q be two ineasures on 
( C ,  Bc). Then we say that LYC (P, Q) < E iff P (3) 6 Q (G, (B))+ E and 
Q (B) 6 P (G, (3)) + E for all 3 E BC. 

Now, let (Y,,, n 2 I ]  be a sequence of independent, positive random 
variables (i.p.r.vs.1, with the common distribution function F, such that (1) 
holds. Let us define on C(o,,, the random function (Y,(t),  t E (0, 1); as 
follows: 

if t E (tk, tk+ where t, = ~ ~ / c r , - ,  , 1 < k < n- 1, to = 0, and 

Now, we are going to prove the following 
THEOREM 1. Let P,, denote the distribution of {z( t ) ,  t E (0, I}] in the 

space (C, g,-). Then 

(3)' LYc (P,, W) = 0 ((log n) - 'I8), 

whre W is the Wiener measure on C(,,l>. 
From Theorem 1 we immediately obtain 
COROLLARY 1.' conuerges weakly to W 'E 3 W as n -t co. 

Moreover, we can prove the following stronger 
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THEOREM 2. Under the assumptions of Theorem 1 we h e  fn W 
(mixing) as n + m. 

Now, let (N , ,  n 2 1) be a sequence of positive integer-valued random 
variables, defined on the same probability space (a, d,  P). Let us suppose 
that 

where A is a positive random variable which may depend only on finite 
number of Y,, n 2 1, and (a, ,  n 2 1) is a sequence of positive numbers such 
that a, + oo as n + oo. Then we can obtain 

THEOREM 3. Under the assumptions of Theorem 1 we have FNn * W US 

n +my for every ( N , ,  n 3 1) satisfying (4). 

By Theorem 3 and corollaries 5.1 and 5.3 in [I21 (p. 227 and 2301, by 
putting 

h,tx)= sup x ( t ) ,  hz(x)= sup Ix(t)l,' 
t € ( O , l >  t€<Q,  1) 

we get ' 

COROLLARY 2. Under the assumptions of Theorem 3, for each x > 0, 

and 

Let us observe that this paper gives a generalization of the results 
presented in [lo]. 

2. hoofs. In the proof of Theorem 1 we apply some lemmas given by 
Dehkuvels [6j and Hoglund [llj. For the sake of completeness we present 
them in section 3. 

Proof of Theorem 1. Suppose that {X,, n 2 1) is the sequence of 
independent random variables (i.r.vs.) uniformly distributed on [0, 11. (In this 
case b = 1 .) 

Put 

X:=inf(X,,X ,,..., X,), m 2 1 ,  



and define 

i f  t ~ ( t , , t k + ~ ) ,  O S k d n - 1 ,  where t ,=a~a,- , ,  l < k < n - 1 ,  t o = @  
k 

= 1 (l/m), 2 2. -- 
m=l - 

- Let P, denote the distribution of the random function [%,(t), t E (0, 1)) 
in the space (C, gC). We shall proye that 

(6) Y , - ( F ~ ,  W )  = O((l~gn)-~/ ') .  

Let us put s, = = ,fz, n 2 1, and 

where the random variables U, and T,, n 3 1, are given in section 3 by (3.4) 
and (3.11, respectively ( ~ ( n )  = n-l). 

Let W,") (t), t  E (0, 1 )] be the random function defined as follows: 

if t  €(tk, tk+l), where t,  are as in (5), 0 < k < n-1. 
First we show that 

(7) Yc (P',", W) = 0 ((log n)- 'I8), 

where P'," is the distribution of W,"'(t)f in (C, &-). To do this, it is enough 
to note that the sequence IK',, n 2 11 satisfies the conditions of Theorem 1 
( [3]) .  In fact, we have EVm = 0, m 2 1, 

n- 1 

Write = E IVm13. By (3.6) and (3.7), 

therefore, by Theorem 1 ([3]), we obtain (7). 
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Let us now define WJ2)(t) ,  t E (0, 1)) as follows: 

~ ; ~ ) ( o )  = 0, n 2 1, 

If a, = s j(210g n)'I2 and 

W2)(i) = an WJ1) It)+ bn,k (t)  for f E {tk, tk+ 

, Let P':' denote the distribution of Iw"! in (C, .dC). We arc going to 
show that 

By simple evaluations we obtain 

P [ Q ( ~ ! ~ ) ,  W,")) 2 C(Iog n)-'I4] 

lUk-EUkl  [Ell, - log kj + max 
l S k S n  Sn I S k S n  \ 6 

-By (3.5) there exists a positive constant C, such that 

Thus, by Kolmogorov's inequality and (3.6), we get 

PC max (Uk - EUk( 2 C ,  (1ogn)- 'I4s ,  11 -a,(-'] 
I  S k C n  

2a2 U, (log n)'I2 I 1 - a,l < = 0 ((log n) - 3/2). c; s,2 

Then, by Lemma 1.2 of [13], we get (8). 
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i Now, let us define the random functions (Z,(t), t E (0, 1)): 

Z,,(0) = 0,  n B 1, 

- where S ( z k )  =XT+X$+ ... +X& k 2 1. . 
.. 

By (3.4), (3.11), (3.8) and the fact that t, = 1 as. we obtain 

max IU;-U,J+IS(.r,)-21 2 - ( 1 0 g n ) ~ / ~  
1 6 k Q n  2 1 

hence, by Lemma 1.2 ([13]), we have 

Yc (p'?', Pi2') = 0 ((log 4 - lI4), 

where PL3) denotes the distribution of random function (Z,(t), t E (0, 1)) in 
(C, Bc). 

Now, let $,(t), t E (0, 1)) be the random function given by (5) and let 
P, be the distribution of [z,(t)] in (C, 9,). We observe that 

< P [ max 1Sk - S  (TJ~ L 
l C k $ N ( n )  4 

+P[ mar 
N ( n )  < k S n  4 

where N(n)  is a subsequence of integers. 
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It is easy to see, that if N ( n )  = [logn], then 

c /Z + P P(r,,) B '(lag n)'"] 
8 

ES,,,, + ES b,,,J- " - 
:% 

= 0 ((log, n) (log n) - 'I4), 
L \I L 

(log n) 'I4 
8 .  

n 

where log, n = log (log n), as E S", = C l/(m + 1) and ES(z,J - log a. 
m= 1 

Now we are going to estimate 

max IS, - S (z,)] 3 
# ( n ) < k Q n  4 

I Note that for k 2 Z~ we have,, by definition (3.11, 

in f (X, ,X  ,,..., X r h + i ) < ~ ( k )  for i 2 O .  

In this case we get 

k 

gk = s(T,)+ C Xz and J S " , - S ( T ~ ~  < k ~ ( k )  = 1. 
m = r k +  1 

If k < zk, then, by Lemma 3.7, 

for sufficiently large k. Therefore, by Lemma 3.6, for sufficiently large n we 
have I 

(1 + A) log, k (1 +A) log, k 
< P [  ma. {(Tk-Tk-l) +%-I  - 

N(n)  <k < r k <  n k k 



+- c ,/? 
T k - l  ( I + A ) ( l 0 g ~ k ) ~ ) 2 ~ ( l o g n l ~ l ~ + ( l + ~ ] l ~ ~ N ( n ) ]  

k log, k 
(1 +A)  log, k 

k N(n) < k  C r k S n  

where C ,  is a positive constant such that 

C - , / L  

4 
(log n)'I4 + ( I  + A) log, N (n)  - ( 1  + AI2 (log2 n)' 2 C, (log n)'I4. 

. Hence, by a simple evaluation, we obtain 

(1 + A )  log2 k 
max ( T ~ - T ~ - ' )  

k 
2 C1 (log n)'f4 

N(n) < k <rk S n 1 
t k  -tk- 1 C1 (log n)'f4 

2 
N(n) <t <rk ~n (1  +A)  k log2 k (1 +A)' (log, n)2 

where A, = C, (log n ) l t 4 / ( l  + A) (log2 n)'. 

Now, by (3.3) we have 

1 
= 0 ((log n) - 'I4). 

Hence, by (10)-(12) and Lemma 1.2 of 1132, we get 
I 

(1 3) pC (Fn , Pa))  = 0 ((log n) - It4). 
I 

Using (8), (9) and (13) we obtain (6). 
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Now, let {Y,, n 2 1) be a sequence of i.p.r.vs. with the same distribution 
function F satisfying (1) and let, as previously, iX,,, n 2 1) be a sequence of 
i.r.vs. uniformly distributed on [0, I]. 

Put G (t) = i d  {x 3 0: F (x) 3 t) . Then, by [?I, the sequences 1G (X,), n 
3 1) and IF,, n 2 I] are the same in law. Furthermore, the sums 

n 

S , l =  C Y,*, where Y',*=inf(Yl, Y2 ,..., Ym) 
m= 1 

may be represented as .. . . 

n 

f,, = G  (X:), where X: = inf (XI, X,, . . . , X,) . 
. m = l  .. - 

Let us define the random functions [ E(t), t E (0, 1 ): as follows: 

I 
if - t € ( t k ,  tk+l), O < k  G n - 1 ,  n 2 2 ,  where t k=ak /u , - , ,  1 < k < n-1 ,  to  =Oy 
S ,  = 0. 

We shall show that 

where P, denotes the distribution of iY,(t);, in (C, Jc). 
Indeed, 

P [ SUP I ( t )  - d,(t)l 2 c (log n)- ll41 
t € ( O , , )  

1 S k < n  

k k 

max I z 6 , ( ~ ( ~ 3 - b ~ : ) +  ( ~ - s , J ( G ( x ~ - ~ x ~ ) I  
1 S k Q n  ,= I  m =  1 



where 

1 ifX246, 
0 otherwise, O C S  < I .  

With probability 1 all but finitely many 6 ,  are equal to 1, so 

P [ sup Iz(t)-Xn(t)l 2 C(1og n)-'I4] 
t 4 O r l )  

n 

< B [I 6, IG (X:) - bXzI 2 C ,  (log n)'I4], 
m= I 

where C, is a positive constant. Hence, by the Markoff inequality and 
Lemma 3.8, we get (15). Thus, taking into account (9 and (15) we imrnediate- 
ly obtain 2' (F , ,  LV) = O ((log n)-'I8) and the proof d Theorem 1 is comple- 
ted. 

Proof of Theorem 2. At first we assume that {X,, n 3 l] is a 
sequence of i.r.vs. uniformly distributed on [0, 11. We will show that 

where (X,(t), t E (0, 1)) is defined by (5). By Corollary 1 we have 2, * W as 
n 4 co. Putting 

x f ) ( o ) = o ,  n > l ,  

xL') (t) = (gk - log k ) / J G  if t E ( tk ,  tk+ 

0 Q k < n - 1, n 2 5 we immediately obtain 

and 

(X,X+ , -log=! k 

(18) ~ ( l ? , , X ' , l ' )  sup - +O as .  as n + co . 
1 G k G n  d G  

Now, let 

(19) xy)(t)=(gEet ,og9 -tlogn)/J=, t ~ < o , l ) , n > l .  

We shall estimate Q(X',~), XL2)). Write eln) = exp(t log n), t E (0, I ) ,  n > 1. 
We have 

1 e (xii', X1;") < max sup { I ~ ~ ~ $ - S ~ I  +It log n- log kl) 
,/5&2 l s k < " t ~ < t ~ ~ t k + ' )  
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1 
max sup { rnax (&Ejn)l - gk, Sk - Sce$n+) + ' J3&i?sr<.t.~~s+,, 

1 
rnax (mar (S - fk, 4 + ' ,J"1<kCn + 1 

(n) - 
- 1 [ 4 k  + 1' 

rnax -( X: + rnax (ak + (log n/an - ,) - log k, ' , / ! i & i l r k c n  (n) 
m=[etk I +  1 

(d (n) 

1 retk+ 11 Cetk + 11 C Xz+ rnax C Xz)+ 
NIn) 'k -=n (H) 

nr=[etk I +  1 

1 
max rnax [(a, + - log k) (log n/an - + 

+ ~ ~ l < k < ~  

+log k (log n/a,- - I), (log k - a,) (log n/aJ + log k (1 - log n/a,- 

by Lemma 3.7. 
We observe that 

as n + oo, because, by Lemma 3.3, 

and t,(,) + , log n - log N (n). 
Moreover, 

[n) 
1 Ietk+l l  ( l + A ) l o g , m  

rnax C 
N (I] m 

m=[et, I +  1 

9 - Probability VoL 10, Fast. 1 



1 < max (1 + A) (log, el,"), ,) (log ej;:, - log el;') 
'C /- N n ,  < k  

( I +  A)log, n *k < man (F log n - - log n ,/% R{n)-=k<n u,, 

as n + co. Thus 

Now, let us put X$,,,) = inf(X,, ,, X ,,,, . . ., X,) for m > 1, and define 
{X(,3)(t), t E (0, 1); by 

1 [e"~s "1 

(22) XL3,(t) = ( C X,*,,n),, - t log n), f E (0, 1 ), 
t& m = r n n l + I  

where N ( n )  = [log n ] .  
By Lemma 3 ([lo]), X;,,) 2 X,, m > I ,  and the sum ~(X$,,-X:), m 

= I+  1, 1 + 2, . . ., converges almost surely. Moreover, one can note that the 
random variable Xa ,,), m = l +  1, 1 + 2, . . . , N, is independent of 
XI,  X,, . . ., X, for all 1 > 1 and N > I. By definitions (19), (22), Lemma 3.3 
and Lemma 3 ([lo]) we obtain 

(23) 
1 n 

(XL2), xi3)) < 
/% + C (X&(n1,rn) - X3)  +O a.~.,  n + 00, 

t r n = N ( n ) +  1 

Let do be the field of cylinders which consists of sets of the form 
( a :  (XI (a),  X 2  (a), . . . , Xk (w)) E H), with k 2 1 and H E R ~ .  Then, for any 
E E .do, by the definition (22) and relation (24) we obtain that P [(Xi3) E A) 
n E ]  -, W(A) P(E) ,  n 4 ao, for every W-continuity set A, so that xL3) =. W 
(mixing) as n +a, and, by (17), (18), (20) and (23), also 

2, => W (mixing) as n +a. 

Now, let {Y,, n 2 1) be a sequence of i.p.r.vs., with the common 
distribution function F,  such that (1) holds for some b (0 < b < m), and let 

( f  ( t ) ,  t ~ ( 0 ,  1)) be defined by (14). By (15) we see that @(c, 8 3  5 0  as 
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n 4 m, so, by (25), we immediately obtain that % - W (mixing) as n +a. 
Thus the proof of Theorem 2 is completed. , 
Proof of T h e o r e m  3. Let INfl, n 2 11 be a sequence of positive 

integer-valued random variables satisfying (3). To prove Theorem 3 it is 
enough to show that the random elements (z,(t), t E (0, l)j, given by (5) ,  
satisfy the generalized Anscombe condition with the norrning sequence {k, 
= n, n 3 I ) ,  i.e. 

for some. 6 > 0, where D,(S) = ii: (1  -6) n < i < (1 +6)  n )  , (See Theorem 3 
([4]) and the relation (16).) 

By (18), (20) and (23) 'we can only to estimate max @[x13), xi3)). 
ieD,(d? 

Observe that 

1 - - 1 ,  - + rnax - I ,,!log i - ./log nl $ rnax sup -- (S[eji)l - S1.!41 + 
i tD , , t d )  , ' 2  ;ED,(@ C E  < 0 , 1 )  ,!2log i 

1 < rnax I max sup (g[eldl - SEep,), , '210g n (1 - 6) ( 1 - S ) n 6 i < n i ~ ( O , l )  

max sup - q,!n])  + S,, ( 1 - 
n 6 i  <(I  + S ) n t c ( o . l )  ~ 2 1 0 g  n (1 - 6) ,i210g n (1 + 6) 

By Lemma 3.3 we see that 

Putting t ~ ( , )  = log N(n)/logn, where N(n) = [logn], by Lemma 3.7 we 
get 

1 
(n) 

Eet I (0 
tet 1 

rnax [ rnax sup X:, max sup X:] 
J210g n (1 - 6) I - i ~ ,  n < i  < n ( l  +a)  ~ E < o , I )  (n) 

m = [ q  ] + 1  m=[eg ] + I  



I r.ln'i re?)] < max ( max ( sup C X:+ sup C X;), 
,/21og fl(1 - 6) ( 1 - A ] n < i  < n  I E { O , ~ ~ ( ~ ) )  [ i )  r ~ < t h ' ( ~ ) ,  1 ) (i) 

m=Ier l C 1  m - [ e r  ] + I  

( i )  
let I (0 

[et 1 
rnax ( sup C Xz+ sup C X a )  a s .  

n < i  < n ( l  +d) i ~ < O , r ~ ( , ) )  
rn=[e )" ) ]+  1 

L ~ ( L ~ ( n P 1 )  [$n)]+ 

1 
(4 

["f (1+ A ) @ ,  rn 
- < + max sup 

,/210g n (1 - 6) 1 - i  ,  > 11) - -  
I m 

.. . m = [ e t  1+1 

( i )  
(1+A)Iog2m 

max &,ci) + max sup C 
n d i < n ( l + d )  IN(") n < i < n ( l + @ t ~ ( t ~ ( ~ ) , l )  I,,) - - - Y I 1  

m=[et  1+1 

(1 + A )  log, n 
rnax sup t (log n - log i), 

+,jmrnax ' ( ~ - ~ ) n < i < n r ~ < t ~ ( m , . ~ >  

rnax sup t (log i-log n)) + O  as., n + m, 
n C i  < n ( l  + 8)  tt(thyn),1) 

by Lemmas 3.3 and 3.7. Then 

max Q (Xi3) ,  xi3))fI 0, n + co 
isD,(d) 

Hence, taking into account the relation given above, we have (26), so 
that the generalized Anscombe condition holds, in this case. 

Now, let {I.',(t), t E (0, 1)) be given by (14). By simple evaluation and 
Lemma 3.8 we get 

1  + 41 

max Q(%, f i )  < I G ( x : ) - ~ x : ~ ~ o ,  
ieD,,(J) b d m  . = I  

as n +a, Hence, by (26), we obtain 

rnax Q(x, C)$O as n +m. 
i ~ D d d )  

Thus by Theorem 3 of [4] the .proof of Theorem 3 is completed. 

3. Lemmas. In this section we present some lemmas we needed in the 
proofs of Theorems 1-3. 

Let { ~ ( n ) ,  n 2 1)- be a sequence of positive real numbers strictly de- 
creasing to zero. 
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By (T, = r (~(n)), n 2 1 ) we denote the sequence of random variables 
such that 

(3.1) r,, = inf{m: inf(X,, X,, . . ., X,,J 6 e ( n ) ) ,  

where {x,, n 2 1 )  is a sequence of independent random variables uniformly 
distributed on [0, I]. 

LEMMA 3.1. The sequence iz,, n 3 1 )  increases with probability 1, and 
2, +CO as. as n  4x1. 

LEMMA 3.2. The random variables T, - z,,- , ,  n 2 2, are independent, and if 
~ ( n )  = n - l ,  then -. 

(3.31 P [ T , , + ~  -z,, 3 r ]  = - for any r > 0. 
n +  1 

Let 

n- l 11- 1 

(3.4) ~ , = C ( z - m + , - ~ m ) ~ ( m ) ,  U : , = C (  T",+ 1 - r rn )~ (m+ 11, 
m =  1 m =  1 

where ~ ( n )  = n - l .  Then 

where b, = O(1) denotes that the sequence {b, ,  n 2 1)- is bounded as n + m. 

LEMMA 3.3. We have 

3, 
+ 1 as., - --+I as., n + m ,  

log n log n 

where 
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LEMMA 3.4. Let ti,, Uk be given b y  (3.4). Then 

LEMMA 3.5, For all A > 0 

for suificiently large n, where log, x = log (log,-, x), p 2 2, log, x = log x. 

- LEMMA 3.6. We have 
.. . 

lim supzn/n log, n = 1 a s . .  
n - m  

LEMMA 3.7. For all A > 0 

(nlognlogzn  log log,^)^'*)-^ < X,* 

< (log2 n -t log, n + . . . + (1 + A) log, n)/n a.s. 

jb:' sufficiently large n. 

LEMMA 3.8. Under the assumptions of 7heorem 1 

as n -, oo, and 

where 
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