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Abstract. Let X, X,, ... be a sequence of independent symme-
tric Hilbert space valued non-degenerated random variables and let
Ly denote the closed linear span of |X,} in Ly(Q, &, P;H). If Ly is
a locally convex subspace of L,, then Ly is Banach iff Ly does not
contain an isomorphic copy of R™ iff :

supP(X,=0) < 1.

If, moreover, X, are équidistributed and P(X,=0) =0, then

/ 1 \ 1 }
. e
{Y&‘Lx. P(||Y|I > 01 201

is a bounded neighbourhood of zero.

In this note we will investigate the topology of the convergence in
probability for random variables of the form Y a,X,, n=1, 2, ..., where a,
are real numbers, {X,) is a fixed sequence of independent symmetric non-
degenerated Hilbert space valued random variables and the serigs converges
in probability. We denote the linear space of random variables of this form
by L. It is easy to see that L, endowed with the topology 7, of the
convergence in probability is a complete separable linear-metric space.

TueEOREM 1. If (Ly, Tp) is locally convex, then the following conditions are

equivalent:

‘(i) (Ly, Tp) is a Banach space;

(i) Ly does not contain a subspace isomorphic to R*;

(i) supP(X,=0) < 1.

Before proving Theorem 1, we will introduce some notation and prove
some lemmas. We use “:=" as “equal by definition”.
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For n=1,2,... and teR we have Q,(t):= Emin(1, |JtX,]|?). It is easy
to see that @,(0) =0,

lim Qn(t) = I_P(Xu = 0)5

t— oo

Q,(t) =Q,(—1) and, for t; 21, 2 0, Q,(t;) = Q,(t,).
For e>0

Up:=1{Yely: Y=34a,X, and ) Q,(a,) <£‘},
~ = Y= {Yely P(IY|>¢) <s).

Lemma 1. eU, = V,, < Uygg, for 0 <& < 1/400. B

Proof. The inclusions follow directly from the following beautiful
estimates [4]:

(1) if 0 <& <1/200 and P(|[Y a,X,| > ¢) <, then Y Q,(a,) < 200¢;

2 P(X, a,X,|| >¢) <2Y.Q,(a,e™") for every &> 0.

Remark. Propositions (1) and (2) are stated in [4] under the assump-
tion that X,, X,,... are equidistributed real random variables. But those
assumptions are not used in the proof, which can be rewritten (with obvious
changes) in the Hilbert space case.

" Lemma 2. If convU, = U, for some 0 <e¢ <1—supP(X, =0) and n >0,
then

Vs>0drars>o Vaen Viecr  Qa(t) <e=0Q,(rt) <96.

Proof. Let us assume that the implication is false. Then for some é > 0
there exist sequences (n,) and () of positive integers such that

Q, () <e and Q, (%) =90.

Since ¢ < 1—sup P(X, =0), we have

- . VnEN 3t,,>[) Vl‘ >ty Qn (r‘) >&.

Thus the boundedness of (nkj would entail the boundedness of (¢,). But
for (n) and (z,) bounded we would have

lim Q,, (’—") — 0.

k— o k /

Hence we can assume that (n) is strictly increasing.
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Consider the following sequence of elements of conv U,:

Yl =1 ans
1 1

Y, EtZXn2+§t3Xn37
2m~-1 1

Ym— Z “'th"k.
k=m

It is- clear that

2m—1 (rk \) Zm;l (tk) 5
== m 7| = M.
k;n Q"k m kgm Q k k "
This contradicts the assumiption of the lemma that Y, belongs to U,.
LemMma 3. Let ¢, A >0 and let Z = Zb,._Xm n=1,2,..., be an element of
U,. If Q,(b,) <A for every n, then AZ/(A+z¢) is an element of convU,.
Proof. Since Q,(b,) < A, there exist positive integers M and 1 = ny < ny
<ny, <...<ny such that

ny—1

ngl Q"(bn) - 2‘1 < /1 and Qn]_ (bnl) >vl—/‘tla

ny—1
Y Qb)=2<i and Q,,(b,,)=i-1,
n=njy

npr—1
> Qub)=4iy<Ai and Qnpy ) = A=Ay,

LaLIVES
2 0u(b) <4
n=npg
Consequently, random variables

n—1 )
Zy= Y bX,(k=1,2,...,M) and Zy, = Y bX,

n=np—1 r=npag

are elements of Ui such that Z,+Z,+ ... +Zy+Zy+; = Z.
Obviously M+1 <¢/A+1. Thus iZf(i+e)eU;.
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Y P(X,#0) <o,

n=1

Lemma 4. If

then (Ly, tp) is isomorphic to R™.

Proof. We have to prove that:

(a) for every sequence of real numbers (a,) the series ) a,X,,
n=1,2,..., converges in probability;

(b) the sequence '

( 2 an.k Xn)l?;l
n=1

| of elements of Ly converges to zero in probability iff

: lima,, =0 for every n.

k—w

: Both (a) and (b} follow immediately from the Borel-Cantelli Lemma.
| Proof of the Theorem 1. (i) = (ii) is obvious.

~(ii)) = ~(i). Let (n) be an increasing sequence of positive integers
such that P(X, =0)>1- 1/2. By Lemma 4, the closed linear span of (X,,)
is ismorphic to R®. '

(iii)) = (i). It is enough to prove the existence of a bounded neighbor-
hood of zero. Thus, by Lemma 1, it is enough to show that

| 3s>0‘vn>03s>0 SUECU".

Let us take 6 > 0. Local convexity of (Ly, 7p) and Lemma 1 imply
the existence of an & >0 such that convU, = U;. We can assume that
, g<1—supP(X,=0). :
| Let us fix an # > 0 and let us take a 4 > 0 such that convU,; = U,;,. By
Lemma 2 there exists an r = r(y4/2¢) such that

A
VneN VIER Qu (r) <e= QM ("f) < %_'
' &
We claim that .

' . (1 4
(+) - sU, c U, for s =min (—r-, m)

Let Y=Y a,X, be an element of U,. Let N; = {neN: Q,(a,) > 4}.

n=1

Since Q,(a,) <e we have Q,(ra,) < ni/2¢. Obviously card N; < ¢/A. Hence

neN;

Y Qufra) <2
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On the other hand, by Lemma 3, we have

A
a,X,econvU, < U,,.
Ate ﬂﬁZNz , g 2

Thus
Y. Q.(sa) <n,
n=1

qed.- - o
As a corollary we get.

TueoreM 2. If X, X,, ... are equidistributed and (Ly, tp) is locally
convex, then '

(@) E||X,]|? < o0, for every 0 <p <1

(b) if, moreover, P(X, =0) =0, then

1 1]
{YGLX. P(||YH >—2—OI)<§(E$

' ’ is a bounded neighbourhood of zero in (Lx, Tp).

Proof. (a) From Theorem 1 we know that (Ly, Tp) is a Banach space.
Thus, by a theorem of Nikishin ([5], Theorem 1)(*) there exists an 4 €.7,
P(A) >4, such that E||X,||” x4 < ¢,. Since X, are equidistributed and inde-
pendent, it follows that E|[X,||? < oo for every 0 <p < 1. ‘

(b) In view of Lemma 1 it is enough to prove that

200
V,>0k>o sU,cU, where ¢= 201"
Let us fix # >0 and let us take A > 0 such that convU, < U,,. Since
Q. =Q,=... and lim Q,(r) = 1, there exists an r > 0 such that
A
0.() <e=0Q,(r1) <g—£.

Now we can rewrite the part of the previous proof starting from (x).

Remarks. The case of H =R and X;, X,, ... equidistributed symme-
tric random variables is better known.

1. It is proved in [1] that, for equidistributed real symmetric random
variables, “locally convex” and “Banach” is the same for (Ly, ) (see also [2]
for a survey of results).

(Y) It is stated for H = R and Q = [0, 1] but, again, the proof can be just re-written to get
what we want.
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2. The case of X, X,, ... real symmetric equidistributed, with P (X,
=1)=P(X, = —1) =3, shows that {YeL,: P(||Y]| >3 <4} is not, in ge-
neral, a bounded neighbourhood for a locally convex t,. However, in this
real case 3—e& works for every & > 0. The last statement follows from the
following estimate (obtained from Inequality II, p. 6, in [3] and from [6]):

for every 0 <1 <4, if P(Y a,X,| > 0) <4, then

2
42
G <

3. For every 1< p < 2 there exists a sequence X, X,, ... of equidistribu-
ted symmetric independent real r.v.’s such that E|X,|? < oo, but (Ly, tp) is not

locally convex (?).
Indeed, let () be an increasing sequence of positive integers such that

’ o l'—l 2/p
(%) | Zh@r)i“<w,m=1
=1

i i

A+io
(g =2 ", c>pl2—p). |
We put a; = (li_l/li)z iz, i= 1, 2, fee Then

Lal'? < 0.

s

()

I

i=1

Let g4, g5, ... be a séquence of independent symmetric random variables
with distribution

1 1 '
a; =§_5P(gi =0)

P(g;=1)=P(g;= —1)

and let (g;1)2 1, (9:2)21, ... be independent copies of the sequence (g,)2,. We
put
XJ = .Zl gij'

It follows from (#) that E|X,? < co.
Let T

(*) We owe this remark to S. Kwapien.
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For 0 <& <1 we have

kg
P4 S, x> 9 < PA Y § 0l >3
= j=1s=i
ki j—1
(|A Z Z gs_] —)=I+II,
) j=1s=1
L7 © oM
j=1s=i ‘o
((+) implies that } a, < Ma; for some constant M),
T l i—1
() El4 Y Y o = APk zzz )
j=1s=1
4 4 M .
_Az (lez ls) ?MlAlzkl[lz_ﬂl =5_2—li"+0

i—1
((») implies that ) [2,s*>< M,I2 , for some constant M,).
s=1
Thus for every 0 < < 1 there exists an i such that -

|A Z >0 <

On the other hand, for every i we have

. 2k; ik
' 1
([AZX+A Y o Xit...+4 Y X,-|>§>

Jj=ki+1 J=G—-1)k;+1

i i ik; 1
=r(FE 0125 (10> 5)

1 A; 1 1 ik
B_P — i'>— =*1— 1_21 t
4 (12’1)?% l'gj 5) 4( ( a)")
1 — 2iajk; 1
>_l_ i (1_p—2 >-
2 )=3—c )4,

which shows that (Ly, tp) is not locally convex.
4. In this case we can give a simple sufficient condition to have (Ly, tp)
locally convex, namely, for ¢ > to, tP(|X,| > t) is decreasing.

It can be obtained by the calculating derivative of Q (x)/x. This condition -
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is sufficient for Q(x)/x to be decreasing in some small neighbourhood of zero,
so that Q can be replaced by an equivalent convex function Q.
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