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OF CONCENTRIC SPHERES
FOR TESTING THE DRIFT OF A DIFFUSION PROCESS

BY

V. GENON-CATALOT (Orsav)

Abstract. Consider X, a diffusion process on R", m = 2, with
drift vector 0b(u) depending of an unknown real parameter 6 with
small known variance matrix &o (1). The aim of this paper is testing
0 =0, vs 8 > 6, with 8, > 0 from the observation of the first hitting
times and positions of concentric spheres centered at x = X, with
radii r € R for given R. We obtain the asymptotic behaviour of this
process as ¢ =0 when the trajectory of the corresponding dynamical
system leaves any sphere centered at x within finite time. We then
construct a test on 6 and study its asymptotic properties by means
of contiguity. When 6, > 0, the test is locally asymptotically most
powerful (LAMP). We also consider a test based on the first hitting
times of spheres only. :

Drift estimation for one-dimensional diffusion processes for which only
the first hitting times of increasing levels are observed has been investigated in
[4]. In this paper, we consider drift testing for an m-dimensional diffusion
process (X,);», based on the observation of the first hitting times and
positions of concentric spheres centered at. X . The diffusion (X,) is deﬁned as
the solution of the stochastic differential equation

dX, = 0b(X)dt+ec(X)dW,, X,=x,

where (W) is a standard m-dimensional Brownian motion (m > 2), § a real
unknown parameter, x eR™ & > 0; the m-vector field h(u) and the (m xm)-
matrix. field o(u) are known.

Let T, =inf!t > 0;|X,—x| =) be the first hitting time of the sphere
S(x, r) with center x and radius r. From the observation (X, T),<g, for
given R > 0, we study the testing problem H,: § =8, vs H,: 8 > 08, with
0, = 0 and asymptotic framework & —0.
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Let (x,(t)) be the solution of the deterministic system corresponding to &
= 0. Under the (main) assumption that, for 6 > 0, x,(¢t) leaves any sphere
centered at x within finite time, we obtain a convergence in distribution
theorem as & —0 for the process (Xr, T,) to a Gaussian process (after
suitable centering and normalization). For 6 = 0, the asymptotic behaviour of
the observed process is not Gaussian. We then construct a test &, based on
this observation and study its asymptotic properties as ¢ —0 by means of
contiguity [7]. For 0, > 0, the contiguous alternative is 8,+¢z and &, is
locally asymptotically most powerful (LAMP). For 8, = 0, &, is not LAMP
but the contiguous alternative becomes &?z. We also study a test @, based
on the observation of the hitting times (7)),<z only.

In Section 1 we consider the diffusion X solution of

dX,=b(e, X,)dt+eo(X)dW,, X, =x.

The parameter € is not introduced in this section. The main assumption
is that the solution x(tz) of the deterministic equation corresponding to £ =0
satisfies the inequality (x(t)—x)b(0, x(1))>0 for all t>0. Then, the
function n(t) = |x(t)— x| being increasing, one can define its inverse function
t(r) for 0<r <n(4+o)=N. In Theorem 1 and Corollary 1 we show that

e (Xr,—x2), e (B—t0))osr <n

converges in distribution as ¢ =0 to a continuous Gaussian proces. In
Corollary 2 we obtain that, for smooth ¢,

T,

Dg(9) = f<0(Xs)ds- [ o(Xr)dT,

[0.R)

satisfies ¢! Dg(p) = 0,(1). For b =0 the law of (X, &* T),»0 is indepen-
dent of ¢ (Proposition 1).

In Section 2 we study the statistical model of diffusion with drift b(e, u)
= 0b{(u). The law of the diffusion is denoted by Pj. We assume that the drift
vector b has the form’b = eVV, where e = o (‘e) and VV is the gradient vector
of a function V- R™ — R such that V(x) = 0. In Theorem 2 we show that, for
6o >0 and z >0, 6, = 0, +ez, the distributions (Pg,) and (P) stopped at Ty
are contiguous and that (X1, ,T),<g is asymptotically sufﬁc1ent for 6,. When

6, = 0, the contiguous alternative is 6, = £2z. We then consider the test &,
based on the statistic (estimator of 6)

B,=V(Xgp)/ | v(Xr)dT, with v="VVeVV.

[0.R)
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The asymptotic properties of &, are stated in Corollaries 3 and 4. For
6o > 0 this test is LAMP. We also construct a test ¢, based on the first
hitting times (7;),<x only, whose asymptotic properties are given in Proposi-
tion 2. Some examples are considered in the last section.

1. ASYMPTOTICS OF THE FIRST HITTING TIMES AND POSITIONS OF
CONCENTRIC SPHERES

1.1. Framework. Let (W),., be a standard m-dimensional Brownian
motion defined on the probability space (2, &, P), adapted to a right-

continuous filtration (#,),55. We consider the dlffl.lSlOIl X¢ solutlon on Q of

the stochastic differential equation (s.d.e.),

W dX; =b(e, X)) dt+ea(X])dW,
5=x, xeR",

where the m-vector field b(e, u) and the (m x m)-matrix field o (u) satisfy the
following conditions: »
(H1) b: [0, +0)xR™ - R™ is C? as a function of (g, u),

o: R" >R"®R™ is C%
(H2) For all u, o(u) is invertible.
(H3) There exists a positive constant K such that, for all ucR™ and ¢ > 0,

|b(e, Wi +]o (W)l* < K(1+(u?)

(/-] denotes the usual Euclidian norm).
In matrix products, m-vectors are identified to the column-matrix of their
components and - denotes the usual inner product. For r = 0 let us define

) LX)=T =inf{t > 0; |Xi—x| =r}.
Under (H1) and (H3), X* is a Markov process with continuous sample

paths uniquely determined on [0, o), P(TF <x)=1 for all r >0 and
P(T3 =Ty, =0) =1, where T, = hm TE, (see eg. [6]).

Let x(¢) and n(t) be defined by

3 . dx(t) = b(0, x(®))dt, x(0)=x
and
(4) n(t) = |x(t)—x|.

The following conditions will be needed:
(H4) V..o (x(®—x)-b(0, x(1) > 0.
(H5)  n'(8) = (x(t)—x)-b(0, x(t))/n(t) has a positive limit when z —0.
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‘hereafter.

N0 40, = ~Q.bV(0, x(O)dt, Qo=1,

Under (H4), the trajectory x(t) will leave any sphere centered at x within
finite time, and n(t) being increasing, one may define its inverse function

(5) () =n"1(), O0<r<n(+wo)=

which is C! on (0, N). Under the additional assumption (HS5), ¢ will be C' on

[0, N) (see § 2.4, examples).
In what follows, we shall use the stochastlc Taylor expansion of X°®
which is available under (H1) up to order two (see [1]) and is recorded

Tueorem A. Under (H1) and (H3) there exist a continuous Gausszan
process (g )0 and processes Ri(t), i =1, 2, such that, for all t >
Xi = x(t)+¢eRj (1)
X2 = x(t)+eg(t)+e> R5 (1)
lirr; P(sup|Ri(s) = k) =0, i=1,2.
- nd s<t

k—++ o

The Gaussian process (g(1)) is defined on Q by

dg(t) = o (x (1)) dW,+ (b(l)(O x(t))q(t)+ % (O x(t)))

(6)
g(0) =

where, for v ="*(u!, ..., u™) in R™, b (0, u) is the following linear mapping:

b0, wyy =3 s

— O, u)y, y='0'...,¥".
i= lau

If Q, is the m xm invertible matrix such that

then the solution of (6) is given by

®) g(=0:" (st (0, x(S))ds+fQ56(X(S))dWs)-

We may now define the one- and m-dimensional Gaussian processes:
G = —(x(t(M)—x) g (t@W(x(r())—x)-b(0, x(t()), r>0
G(0) =
(10) H(r) = g(t(n)+G ()b (0, x(t(r)).
Under (H1){H5) these processes are continuous on [0, N).
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1.2. Limit theorem for the process (X%, T)o<r<ne

THeoReM 1. For all h > 0 and R, R satisfying 0 < Ry, < R < N, we have
under (H1)}-(H4),

() imP( sup |e” (TF—t()—G@ >h) =0,
e—~0 Rp<r<R
(i) limP{ sup |e*(X%e—~x(t())—H () > h) = 0.

£=0 Ro<rsR

We first prove
LemMma 1. Under (H1)-(H4), for all h> 0 and R€[0, N[,

i P( sup |TF—t(r) > h) = 0.

e—0 0€r<R
To simplify notation, let us omit all superscripts e.
Proof:-Eet Re[0,N[ and h, h;, T > 0 such that t(R+#%,) < T Then

A(h) = {sup|X, —x (1) <h}

t€T

is included in
{'sup [T—t(n)| < w(h)},

-0€rs€R
where

o (i) = sup L) —t@); I —r"| < 2h, 0< ¥, 7" < R+hy).

From the continuity of (t(r)), fix # >0 and h > 0 such that w(h) <7.
Lemma 1 then follows from Theorem A.

Proof of Theorem 1.

(i) From Theorem A, for r > 0, we have

(11) X, —x = %(T)—x+2g(T)+& Ry (T)

and (see (4) and (5)) _

(12) . e (r—n(T)) =r Y x(t(M)—x)-g(t@)+ Y, +o,

with .

13) % =20+a(B) " ((T)=x)-g(B)—r (x(:0)—x) g (1))
and

(149, = (r+ ()" (el (TP + eRy (T)- (2(x(T) = x) 29 (T)-+ 2 Ry (7).
An application of Taylor’s formula yields |
(15) T—t(r) = (n(Y;)—rv)a:’(r)—}-%(n(?;)—-r)2 t"(r*)  with r* €(r, n(T)).
| Thus using (4), (5) and (9), we obtain
(16) e (T—10) = G()+o: ()
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with
(17) 0:(r) = —t' () (@, + V) +e~ H(n(T)—r)*t" (r*)/2.

Fix Ry, R such that 0 <R, < R < N. We now check that g,(r) is
uniformly o,(1) on [Ry, R] as ¢ —0.
Because of Lemma 1, (r+n(T))~! converges uniformly on [R,, R] to
(2r)”! in probability. Let T > 0 be such that 1(R) < T in order to ensure
AmP(T < T) = 1.

g0

On (Ty < T), sup |¢, is bounded from above by a random variable
RgsrsR
which is 0,(1) in view of (14) and Theorem A. Thus sup |[¢@,| =o0,(1).

Rosr<R
" To see that Y, is also uniformly o,(1) on [R,, R], it remains to show
that sup|Z(T)—Z(t(r)), with Z(z)=(x()—x)-g(t), is o0,(1). This is a

r<R
straightforward consequence of Lemma 1 and of the continuity of the process

(Z()). So, in view of (12),
sup & Hn(T)—r)* =o0,(1).
R0$r$r R

Now to see that sup |t (r¥) is bounded in probability, choose k > 0
R0$r$R

such that 0 <t(Ro—k) and again t(R) <T On C={t(Ro—k) < T, Tr
< T}, r* remains in [Ry—k, n(T)] and lim P(C) = 1. Thus

e—0

sup |Ql (r)l = Op(l)s

Ro<r<R

which (see (16) and (17)) achieves the proof of (i).
(i) Formula (11) and a Taylor expansion for x(7;)—x(t(r)) yield that

&7 (Xr, —x(t0) = HO+e20),

where

0200 = b(0, x(:0))0: () +5%" G (T-1 @Ve) +

+g(T)—g(t(r)+eR,(T),
and t} €(t(r), T)).
On (Tz < T), t*€[0, T]. So we proceed as in (i) to get

sup |ex(r)l = 0,(1)

Rg<r<R

and (ii).
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Remark 1. Even when a higher order expansion of X*® in powers of ¢ is
available (e.g. if b, ¢ are C¥ k> 2), it is not possible to improve the
expansion of (77, X’%ﬁ) to within o(e?) becuase g(t) is not differentiable ([2],

p. 59).
Remark 2. A useful consequence of Lemma 1 and Theorem A is that,
for any continuous m-vector field y,

E

TR tR)
[y (XY -aW, 5o | ¥ (x(s)-dW,
o .. 0

which can be checked by the c¢lassical Lenglart inequalities.
The following two corollaries of Theorem 1 are the basement of the
statistical study of Section 2.

CoroLrAry 1. Under (H1)-(H4) and the additional assumption (HS) the
result of Theorem 1 remains true with Ry =0,

Proof. Under (HS5), the processes (G (r)) and (H (r)) are right-continuous
and nul at 0. Since this is also true in probability for 7;, Corollary 1 follows.

Corotrary 2. Let ¢: R™ >R be C% For Re[0, N[, let

£

TR
Di(p) = [ ¢(X)ds— | @(X734dT;,

[0,R)

where the previous integral is a stochastic integral with respect to the increas-
ing left-continuous process (T7). Under (H1)-(HS), ¢~ * D (¢) — 0 in probability
as ¢ ~0. _

Let us fix R e[0, N[, and omit the superscripts ¢ for the following proofs.

First we prove

Lemma 2. Assume (H1)-(HS).
(i) Let (f(r, w)o<r<r be a random continuous function adapted to
('ﬁt(r))OSrSR' Then ‘

. .
[ fOAT =5 f f(r)dtir) in probability.

[0,R)

(i) If f is C*, then

{ f AT —dt () =0 Q f (r)dG (r) in probability,
[0,R)

where the above limit is a stochastic mtegral with respect to the continuous
semi-martingale (G (r)).

3 — Probability Vol. 10, Fasc. 1
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’ Proof. (i) Consider .
| ' [2"R]

? fur) = kgo f@7k) 1(2_"k=.<hr<2_"(k+1)/\R)'

By Lemma 1
R

[ £()dT, +=5>[ f,(r)dt(r) in probability.
0 .

[0,R)
Now, on (T < T) with t(R) < T,
| | LT —dte)] <2To(f, 27+ | LO)ET—di@),
[0.R) [0,R)
where (f, 8) = sup {|f () —f (*); Ir—r| <6, 0<r, ' <R}.
Result (i) follows from the continuity of f and Lemma 1.
(ii) Since f is C!, by Theorem 1 and Corollary 1,

R

el [ fOET—dt) =& (f (R(Te—t(R)— [ f' ()T —t () dr)

[0,R) 0
.converges in probability to
R R
FRGR)~[f'()G(r)dr = [ f(r)dG(r)
0 0

because the integration by parts formula is also valid for the semi-martingale
G(r). '

Proof of Corollary 2. The random variable Dg () may be written as
Dgr(¢) = A+B+C with

A= p()(d0)-dT),

[0.R)
TR
B = § ((p(Xt(r))_(p(XT,,))dT;’ C = f (D(Xs)ds
[0,R) HR)

_ An application of Taylor’s formula to (p(X,(,,)—go(x(t(r))) and ¢(X7)
—(p(x (t (r))) yields, by (10), '

(18) ' e lA= —?q)(x(t(r)))dG(r)+op(1)
! 0 ‘ '
and
(19) & 1B = —?V(p(x(t(r)))-c(r)b(o, x (¢ (7)) dt (1) +o0,(1),

0
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when Vg is the gradient vector of ¢. Also
(20) £71C = p(x(t(R))G(R)+0,(1).

In the three above equalities we have used Theorem A, Theorem 1 and
Corollary 1, and Lemma 2 to see that the remainder terms are o,(1). Now,

do (x(t (1)) = Vo (x(t () b(0, x(t(r))dt (r)

and

R .

o (x(t(R))G(R) = E[m(x (¢())dG (r)+;fc(r) do(x (t(;))).‘

together with (18)-(20), achieve the proof of Corollary 2.
Thus under (HI1){H5) we have obtained an asymptotically Gaussian
behaviour with rate ¢ for the process (X%¢, 7)) and the main consequence of

this result is, in view of Corollary 2, that the whole information carried (on
the drift vector b) by the observation (X%, s < T§) will be contained in -
(X%, Tosr<r s is seen in Section 2. For the purpose of testing b =0

from the observation (X‘*Tg, TF), we also need to specify its behaviour under
this hypothesis. '

ProrositioN 1. Let b=0 in (1) and assume (H1)-(H3).
The distribution of the process (X7, &2 T",», is independent of e. (This

law is on the space of left-continuous with right-hand limits function on
[0, + o), taking values in R™ x[0, +o0) endowed with the Skorokhod
Borel c-algebra).

Proof. The process B = ¢W _, is a standard Brownian motion and ¥/
= X!, satisfies

I3
¥ = x+ [0 (¥7)dB;.
0

Thus the law of Y*® does not depend on &. Since
2 T, (X9 =inf{t > 0; |¥2—x| =r} = T,(Y?)

€ —_ £ . ) . .
and XT,(XE) = YT,(YE)’ we obtain the result of Proposition 1.

2. CONTIGUITY PROPERTIES AND APPLICATIONS TO DRIFT TESTING

2.1. Assumptions and notations. We now assume that the drift b(e, v)
= 0b(u) does not depend on ¢ and depends on an unknown linear parameter
0 [0, +o0). Let (C, €, (€30 (X )20, P5) be the canonical diffusion solu-
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tion of the s.d.e. (1) with drift 6b(u), where C = C(R™, R™), (X,) are the
canonical coordinates of C,
=%, @=-0cX.s<n %=\ 4.
s>t - t=20
Let T,(X) = T;, (x4(t)) be the solution of x(t) = 0b(xy (1)), x,(0) = x and

ng () = |xo(t)—x|.

We assume
(K1)  For all §>0, the functlons Ob(u), a(u) and x,(t) satisfy (H1)-(HS).
(K2) b =eVY, where ¢ =0o(o), V: R" -R is C? and V(x) =

_ Clearly,
(21) xg(t) = x(01),  ny(t) = n(61),
where x(t) = x, (1) and n(t) = n, (t) correspond to 0 =1.
Thus, for 6 > 0,
(22) n,,(+oo)_n(+oo) N, t,() =071t

with t,=n, ' t=n"1, r <N and x,(te(r)) = x(¢(r)-

Let (G, (r)) and (H,(r)) be the processes defined in (9) and (10), associated
to the drift 8b(u) (0 > 0). They are continuous centered (because db/dc = 0)
Gaussian processes and the covariance function of (G,(r)) has, in view of (6)
<9), the following form:

Cov(Gy(r), Go(r)) =073 y(r, r).
From Section 1, under P, 6 >0, '
SupIT;‘_G (r)l £—=0 9 O<R<N9
r<R .
and :
(e YT =071 t(M), e~ (Xr, —x(t (™)) 750> (Go (). Ho (1))

in the Skorokhod space D([0, N[).
Let us define:

a(r) = V( ( (r))) r<N,
v(u) = tVV(u)e(u)VI/( ), ucR™

(Note that o' (r) = v(x(t (M)t (r

2.2. Testing 0 from the observation (X1,» T)o<r<r- For given R €[0, N[,
the first hitting times and positions of the spheres § (x, r) with r <R are
observed. We are concerned with the testing problem:

H0: 9=90 VS Hl: 9>90 Wlth 9020.

(23) -
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Under (K1){(K2), for all § > 0, the distributions Pg/%r, and Pg/%;, are
equivalent and the likelihood of (X <ry is given by

(24) (dP3/dP3)/ %y, = Ly, (0)

with

(25) Ly, (0) = exp [a- 2 ( 0 sz VV(X)-dX, *g Tf{ v(X,) ds)].
We set: ’ i

(26 05 8o) = 108 (L (0)/Lr, (80)),

27) Ar(O0) =& (V(Xr)—00 [ v(Xr)dT).

[0.R)

THEOREM 2. Assume (K1)-(K2).
(i) For 85 >0, z>0, 0, = 0,+¢z, under Py, as ¢ =0, we have

(28) 1(6,, 0) = 24 (00)— 05 ' 2 (R) 2%/2+0,(1)
with
(29) Ag(B) 2 A (0, 05 L a(R)).

So, the distributions (P; ) and (Pg,), considered on €r,, are contiguous as

e —0.
_ (i) For 6, =0, z >0, 0, = ¢z, under P}, the distribution of 1(8,, 0) is
independent of €. The distributions (Ph) and (Pg,), considered on 6, are

contiguous as ¢ —0.
Proof. (i) Let

TR .
(30 Ag(Bo) =¢e~1 | VV (X)) -(dX,—0,e(X) VV(X,)ds).
0
“From (25)«(26) we get
TR
(1) 1(0,, o) = z4g (00)—(2%/2) | v(X,)ds.
.. 0]
An application of Ito’s formula yields
TR TR
(32 Ar(B0) = Ag(O0)+ 0o~ ( | v(Xr)dT,— [ v(X)ds)+e | h(X)ds,
: [0,R) 0 0
where
. 1 2 )
h(u) = Els;jsmaui—auj“jl)eij(u)'
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. By Theorem 1 and its corollaries we get
(33) AR (B0)— Ax(85) = 0,(1) under P~ as & —0.
By remark 2 (at the end of Theorem 1),

-1
PG 6o t(R)

Ar(60) —28» (! VV(x(Oos))-a(x(Gos))dVI{,,

which is a centered Gaussian varlable with varlance (see (23))

00 t(R)
i | o (x(005) VV (x (6o S))' ds =051 cx(R).
o ,
Moreover, f v(X)ds and | v(X T,)‘”: converge in P -probability to
ce ' [O'R)
o0 1z(R)

(34) f (x(Bos))ds—E)Ol |u( (t(r))dt(r) = 05 a(R).

0

In view of (30)-(32) we obtain the first part of (i). The contiguity fol]ows
from the fact that

1(0” 00) 540 '/1/‘( 6222/2 O' Z

with ¢ = 65! a(R) under Pj  (see [7], chap. I).
(i) When 6, = &2z, we have ‘
TR TR

(35) 18, 0) =z(V(Xr)—& [ h(X,)ds)—(z2*/2) fu(X)ds
0

[ E
TR

= 2 (V (Vi) ~ { h(EYds)=(z3/2) [ o(¥)ds,

“where Y =X _,, 1k = Tr(Y?) = g2 Tr (X).

Under Pf,, the law of Y* is 1ndependent of ¢ (see the proof of
Proposition 1), which yields (ii).

Theorem 2 leads us to consider the followmg estimator 6, of 8 and the
test of level a, 0 < a <1, based on 8,:

(36) O.=V(Xrg) | v(Xr)dT,
[0,R)
(37 ' é&: =A1(5£>Es(a,00)) +7%:(a, 6o) 1(§£=Ee(a,00))a

where ¢, (a, 6,) and 7,(a, 0,) are determined by the equality Eg, 55 =a. (We
denote by .#7(x) the distribution function of the normal law .4 (0, ).
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COROLLARY 3. Let 6,>0,z>0, 0, = 0y+¢z and assume (K1)(K2). For
testing 0o vs 6 > 0y, @, is locally asymptotically most powerful (LAMP) of
level a, ie., for any other %y -measurable test function @, of level a,

im inf E;P,—E;d, =0
&0 90 <@ <60+ez

(see e.g. [5], Def. 14.1, p. 17).
Moreover,

(38) C.(a, Bo) = Bo+e(8pa (R)™)2 4" (a)+0(e)
and '

(39 lim Ej &, = A" (z(05* a(R)*+ 4"~ (a).
e—0
Proof. From (34) and (36) we infer that
(40) g7 (B~ o) = 6,0(R)" ! Ag(B)+0,(1) under Pj.

This equality together with Theorem 2 (i) yield that @, is LAMP
according to Theorem 14.1, p. 18, of [5]. It also implies that, under Pf,o,

1 (0.~ 80) %> (0, Boa (R)™Y).
Thus (Z.(a, 00)—0o)e™ ! (2 (R)/6o)”''* must converge to A"~ 1 (@) because

@, has the level a, whereas P?,O(O = Z,(a, 8y)) »0 as ¢ =0, yielding (38)

~ Using (28) and (40), we get that (/(6,, 0,), & ~1(@,—0,)) converges under
P;, to the degenerate two-dimensional Gaussian law :

v ((—2295(;05(1()/2), (22 0o ;“(R) 90/;(R)>>.

By the cont1gu1ty, it follows that
_1(9 ~0o) %> /V(Z 8o/ (R))
under the contiguous alternative Py (see [7], Chap. 1, Theorem 7.2) which

by (38) leads to (39). :

Remark 3. The locally asymptotlcally normal representatlon (28) of the
loglikelihood ratio shows that the observation (X7, T,),<r is asymptotically
sufficient for 6, when 6, > 0. By Corollary 2, this is also true for general drift
b(6, u) depending on an unknown parameter 6 €R* if b(f, u) satisfies (H1)-
(H5) and smoothness assumptions with respect to (6, u). )

CoroLiary 4. Let 0,=0, z>0, 6, =g2z
The distribution ‘of ¢ 28, under P% and Py, is independent of &.

- Proof. It is a consequence of Proposition 1 and Theorem 2 (ii).
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Thué, 5; can be used for testing § = 0 vs 0 > 0, with ¢,(a, 0) = &%c(a),
7:(a, 0) = y(a) and the power Ej @, at the contiguous alternative 6, = gtz is

independent of &. The optimality properties' of &, are lost, but the separating
rate ¢ of Hy and H, is improved.

2.3. Testing 0 from the observation (T))o<,<x- From (22), the limit x(z(r))
of Xr is independent of the unknown 6. Replacing X, by its limit in (36),

we define

41) 0, = a(R)/ f v(x(t(r)))dT

[0,R)
and the test of 6, vs 0 > 0,, based on §,,
= Lig, > za.00) T 7 (a5 00) g, —cg(a 6y With Eg, ®, = a.

PROPOSITION 2. Assume (K1)-(K2).
() Let 6,>0, z>0 and 6, =0,+ez. There exists a J(R) >0, ¢(R)e
[—1, 1], not depending on 0, such that

42) Z,(a, 00) = 0o +¢ (6, J (R +0(e)
and
43) lim E5, &, = 4" [20(R) (05 * 2 (R)/2 +.4* (a)].

The test @, is LAMP iff o(R) = 1.
(i) Let 0o =0, z >0, 0, = &*z. The distribution of ¢~ *8, under Py and Pj
is independent of .
Proof. Let
(44) Ag(0o) =e" 10, | v(x(t())(6; " de(r)—dT,). -
. [0,R) :

By Theorem 1, its Corollaries and Lemma 2, we have (see (30)),

“under P,

80 LR

(45) (AR (6o), A_R (90)) T—giT’( f VV(X (6o S)) : a‘(x (6o S)) AW, —

0
e e e N R

—0, (j) o (x(()) 4G, (1)),

where (G, () is the limiting process of (T,—8; ' £(r)). From (41) and the fact
that

I o(x(tO)T; 7005 «(R)

[0,R)
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under P;, (see (23) and Lemma 2), we get

(46) e™1(0:—0o) = O, (R) ™ Ag (Bg) +0,(1).
We have already obtained (see (28) and (33))
(47) 10, 80) = 24 (0) — 05 ' a(R) 22/2+0,(1).

Formulae (45){47) yield that (1(8,, 8)+6; ' a(R)z%/2, ¢ *(f,—06,)) con-
verges in distribution to a centered Gaussian vector with covariance matrix

(2205 a(R) zC(R)
( 2C(R)  0,J(R)) ~

where

o R
(48) J(R) = a(R)™*Var([u(x (t(r))) (03 Gy, (1))
and

06 1t(R)

@) C(R =a® 'Cov(/8, | VV(x(ens))-a(x(eos))dm—
| .

R -

ol ) (632 Gy ).

0

Introducing the standard Brownian motion Bf 0= \/@; W 1, we dedu-
ce from (7)«9), with b(e, u) replaced by b(u),

1(r) :
(50) 032 Gy, (r) = —L () Qi I Q.0 (x(u)dB.?,

where Q, satisfies dQ, = —Q, bV (x(t))dt, Qo = I, and the first random va-
riable appearing in C(R) is equal to :

tR) ,
(51) [ VV{(x(u) o (x(w)dB,°.

0

So J(R) and C(R) do not depend on 8,. Let

2(R) = C(R)/(J (R)a(R))""? |

be the limiting correlation coefficient. Since

&~ 1(0,—00) vZ> N[0, 6o J (R)]

under Pg, and Ej, @, = a, we get (42). The previous joint convergence in
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distribution yields

7' (0.~ 00) 25> 4 (20 (R)(J (R)a (R))'2, 6] (R))
under the contiguous alternative Py ([7], Theorem 7.2, Chap. 1) from which
(43) is obtained, together with the fact that &, is LAMP iff o(R) = 1. (ii) is a
consequence of Proposition 1 and Theorem 2 (ii).

Remark 4. The limiting variance and correlation coefficient J(R) and
0(R) can be calculated using definitions (6)«9) and formulae (48)(51), but no

- simple expressions are available unless ¢(R) = 1. The limiting distribution of

¢~ 1(8,—0,) under-P;, 0, = O5+¢z, can also be obtained by Theorem 1 with
bis, u) = 6,b(w).
2.4. Examples
2.4.1. Brownian motion with dnft

The model X, = @it +&W, stopped at Tx has been studled in [3] In this
case, the last observation (X, Tg) is (exactly) sufficient and has an exphmtly

known distribution. The test based on .§£'= R/Ty is LAMP.

2.4.2. Linear drift. : : _
For the model, dX;=0Xjdt+edW,, Xo=x, i=1,..,m 'x
=x' ..., x™#0 0> 0, we have:

_ x(t)—xexp(t),_
t(r) = log(1+[x"'n),  0<r<+w =N,

x(t(r) = x(L+1x 7',

' ".‘g,,(t)'= iEexp(ﬁ(t—s))dW

Thus, G,(r) = Z(0~"(r)) with
Zy(t) = —07 ! x [exp(—0Os) dW,/|x|*.
. 0 ’ To.
- The statistics 5 and 0, aré given by':

——(IXTRIZ XY [ 1Xp?dT,

{0.R) .

=§((Ix|+R)2_|x‘|2)/ } (|x|'+r)2dT,,

[0.R)

In this-case, as (G4 (r)) is a Gaussian martingale, easy computations yield |
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¢'(0,—8,) = 0,(1) under P, ,>0 as ¢ —0. Both tests &, and &, are
LAMP. ’

The model dX; = —0X.idt+edW,, X\, = x',i=1,...,m'x ="(x', ..., xM
#0, 8 >0 leads to:

x(r) = xexp(—1),
t(r)= —0"'log(1—[x|"'r) for 0<r <|x|=N.

For R < |x|, the tests 55 and @, based on the observation (Xr,» T)r<g OT
(T)),<gr are also LAMP. B

2.4.3: Bilinear diffusion.

Consider:

dX{=0X[dt+eX{dW}, X, =x', i=1,...m 0>0.

When x* >0,i=1,...,m X' >0forallt>0as.fori=1,..., m Thus
(X)) =diag(X,,i=1, ..., m
is a.s. invertible and we can define
V(X) =) log(Xi/x).
i=1
We obtain:
Golr) = Zo(07" £(r) with Zy(t) = —6" x72 . () W,

i=1

0,=Y log (X /x')/ mTy,
i=1

8, =1og(1+|x"'R)/Tx and o(R) = |x|?/{} (x)*}/2.

- i=1
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