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: Abstract The purpose. of this-paper is to study the asymptotlc
behav1our of trimmed sums of order statistics

k() ‘ n—r
Y;1=an—1(ZXl:n+ 2 . Xim)_.bmv
i=k i=n+1-r(n}

' where the order statistic X, arises from an i.i.d. sequcnce belonging to
the domain of attraction ofa stable law with index 0 < & < 2. 1f we use
a special representation for X, related to F~ 1(U ) coming from
uniformly distributed random variables U,, ..., U,, then we can’

. prove the convergence in probability or even I'-convergence for Y, in
various cases. 'Special attention is devoted to the convergence of Y, to
one-sided stable laws showing that we may choose min (k (n), r(n)) =
As an example we obtain the lumtmg distribution of student’s t type
statistics. . :

1. Introduction. Let X,, X, ... be an iid. sequence of real valued random
variables lying in the domain of attraction of a stable random variable 'Y with
index o of stab111ty, 0 < & < 2, i.e. there exist coefficients a, > 0 and b,eR such,
that :

(1.1) a7ty X,—b,BY

' . .‘ Ci=1 ‘ :
in distribution as n— co. It was suggested by LePage, Woodroofe and Zinn [7]
that only the extreme order statistics yield a contribution to the limit (1.1).
Recently S. Csorgd, Horvath and Mason [4] have shown that for each'
sequence k(n) such that

(1.2) : k(n)»> o and k(n)/n—0 as n—> o
the sum of the order statistics . -

N k(n) " on
(13) an_l(z Xi:n+ Z Xi:n)_;b;l B)Y

i=1 i=n—k(m+1
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" converges in distribution an n— co. Here X 1:n € X5,y <... < X, denote the
order statistics arising from X, ..., X,. In addition, these authors studied the
behaviour of the trimmed sums

. n—k
(14 at= Y X..—bl.
i=k+1

Their methods heavily rely on a new Brownian bridge approximation. The.
authors remarked that the technic also applies to asymmetric trimmed sums
but they decided to do not carry it out in v1ew of the ensuing addltlonal
technicalities. T
. The purpose of the present paper is to present an elementary approach to
the asymptotic behaviour of (1.3) and (1.4) based on well-known technics for
order statistics. The method also applies to asymmetric trimmed sums and
when (1.2) is violated. Note that for one-sided stable limit distributions Y the
assumption k(n)— oo is not necessary. Among various applications we give
a new probabilistic proof for the sufficiency of conditions (2.1).and (2.2) below
for the convergence of the normalized sums (1.1) to a stable random variable.
The proof is very rapid. Only the investigation of the correct centering
constants needs more effort. In addition we are able to find a probability space
and random variables with the same distribution as in (1.1) such that
convergence in probablhty or even L1-convergence to the stable random
variable Y holds.
" In the sequel we will make use of some results for slowly varying functions,
which can be found in [10].

"2, The behavnour of the central part of the sum. Let X denote a real random
variable with distribution function F. By Feller [5], p. 577, it is well-known
that X belongs to the domain of attraction of a stable law with index «,
0 <a <2, iff there exists a function L varying slowly at 1nfin1ty such that

@1 G(y) = P({|X|>y})—"“L(y) as ytoo
and
(22) _ (1-FO)/GG)»p and F( WGG)—q as yteo

for some pe[O 1, p+q=1.Let G* (s) inf {t: G(t) < s} denote the inverse |
~of G and F~! of F, respectively(! ) ‘Subsequently let us always choose the
normalizing constants a, of (1.1) as .

(2.3) a, = G~1(1/n).

At this stage we recall-a known representation for order statistics (see [2],

(") More precisely: F~! is the inverse distribution function.
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section 13.6). Assume that Y;, Y,,... is an iid. sequence of exponential
distributed random variables. Set - -

24 - r=% Y.

Then it is well-known that the followmg random variables are equal in-
distribution :

T T (F-l- (Cy/Tpii) ,.F-l(rJFn+1))..- |
If we take (2.3) intqiggéount, we see that (2.2) yields —

F ([l Laeid/®) -1
T R A

which suggests that the extreme order statistics yield a major part of the stable
distribution. The next lemma shows that the central part of the sum (1.1)
vanishes asymptotically. Special attention is devoted to the I'-convergence of
the central part which has further applications.

(2.1) LEMMA. Assume (2.1) and (2.2). Let k(n) and r(n) be integers such that
<km<n—rn)<n and

2.6) a7 F (T yTasy) = as noo,

2.7 : Q/(k(n)+1)+p/(r(n)+1)—>0 as n— oo.
(a) There exists d eR such that \
n— r(n) ’
(2.8) Y Xiw—d, 0

i=k(m+1

in probability as n— co.
(b) If in addition

(2.9) (km+1)>1a and  (r(m)+1)> 1o, A’

then the mean
n—r(n)
(2.10)' . ¢, =E(@' Y X ,,)
i= k(n)+1 ;

extsts Under (2.9) we may choose d,=c,in(2.8) and in add:t:on (2.8 tends to
zero in L.

The proof of Lemma (2.1) (a) is elementary whereas part (b) requires further
" calculations. First recall the following well-known lemma for order statistics
which is due to Bickel [1], Theorem (2.1):

(2.2) LEMMA. Assume that E,, ..., E, are i.i.d. random variables with compact
support on R. For each pair 1 <j < k < n the order statistics X;., and Xy., are
non-negative correlated.. ‘ :
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Proof. By [1] the order statistics are positive correlated whenever E; has
a Lebesque density. A ‘weak approximation of the' distribution of E, by
absolutely continuous distributions now yields the resuit.

Proof of Lemma (2.1) (a). Introduce, for & > 0,
(2-11). (E)Xi = Xi 1[—anﬂ,nne] (Xi)+an85"(43"&,w)(Xi)_anE.l(‘cD,ans) (Xi),

whee 1, denotes the indicator function of a set 4. We see that -

2.12) Var(a,,-lz(e>X)<na T Z_dF('x)+

[—&an, ean)

. +aZé? P({[X | > ae})] =:f, (s)

An apphcat1on of Lemma (2.2) for ‘E’X ., OX " ylelds
) L n—r(n) s
(2.13) L Var(a ) (“’X,-;,,) <f, (o).

i= k(n)+1

Frorn [5] p. 579 we recall that

2.149 | x*dF(x) =~ a/2-®)z*G(z) as z— .
[—2,2] . .

Let now ¢,|0 be any sequence such that &,a,— 0. Then, from (2.14) and
G(a,) = 1/n, we obtain
(215)  file) ~ [1+4/2—a)]& G(a,5)/Gla) = & L(a,z,)/L(a)~0 as n—oo,
which is a well-known property of slowly varying functions. Combining (2.13)
and (2.15) we see that

n—r(n) 4
(2 16) an_ ! Z ((e")Xi:n —E ((E")Xi:n)) -0 in Ll .

i=k(m+1 ]
From (2.6) we recall that, for fixed ke N, -
@217 a7 X D—gTi  and a7 Xpyq g DpUeT e

converge in distribution as n— 0.
In view of (2.7) there exists a sequence &,—0 such that a,¢,—» o0 and

(2 18) ' P(A,')-»O as n— oo,
where A, = {Xip+1:n € — 8} U {Xorin = a8}
- Since , S
. n—r(n) o
(2.19) Z X=X, IAc‘ =0
t kin)+1

restricted on the complement Ay of A,,, the assertlons (2 16) and (2 18)
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yield the desired convergence (2.8) and the proof of Lemma (2.1) (a) is complefe.
For the proof of Lemma (2.1) (b) it is not enough to consider (2.18) and
(2.19). We need the following Lemma.

2.3 LEMMA. Assume (2.1), (2.2) and k > 1/a. For each ¢ >0
(2.20) E(a'1 Z X,,.1< w0, ~ean) (Xi:) > — /" I Yy~ (1-H, (k~2))dy

—h(k g), ‘ as n— o,

where H denotes the dzstrlbutzon function of a Poisson random variable wzth .
mean y.. ~ -

Proof Assumption (2.2) implies

where L is a further function varying slowly at zero. The expectatlon (2.20) can'
be expressed by

22 6 S ()1 et (F ) _ikf,-m(x)dx.

Here f;.,(x) denotes the density of U;,, arising from uniformly distributed
iid. random variables U, ..., U,, ie.

(223 fi: ,,(x) ( 11) i- 1(1 —x7h O0<x<l.
An application of the transformation nx = 'y shows that (2.22) equals
@24)  [F7 /)G (U/n) L= oo, - ea (F* (/) X |

n—1.

<% (" 1)(y/n)‘(l— O dy.

i=k—

Thus by (2.2) and (2.21) the mtegrand of (2. 24) tends for fixed y > O to
(_2 25) qllay_lla(l H (k— 2)) lpo, q/e“](y)

We will prove that the dominated convergence theorem of Lebesgue can be
applied.-Note that, for y > 0, ‘

n—1

(n— i n— —'i . -
226) > ( ; )(y/n)‘(l— (17.0) S
i=k-1
Let us now choose é > 0 such that
2.27) o k—1-6-1ju> -1
and K >0 such that F~'(y/n) < —ea, implies y < K umformly in n.
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By (2.21), (2.26) and I[F~1(s)) < G™1(s) the integrand of (2.24) is domi-
nated by '

(228) G (y/m/G ™ (1/m) ¥ 1o, iy 0)
= e 170 Ne 12 L(y/m)/L (1/m)] 110, k3 (v)-
Note that [y Ly/myL (1/n)] 150, (y) is uniformly bounded. This is a con-
sequence of the fact that L (y/n)/L(l/n)—»l uniformly in y on compact sets
C < (0, ) and y:L(y,/ny/L(1/m)—0 as y,l0 (cf. [10]). In view of (2.27)
assertion (2.20) follows which proves Lemma (2.3). w
Proof of Lemma (2.1) (b). Assume (2.7) and (2.9). By Lemma (2. 3) there ,

" exists a sequence &,|0 such that q¢,— 0 and

(2'29) e ar 1 Z X;.,1 (= o0, — Enain) (Xl 20,
‘) . . i=k(m+1
. n—r(n) .
(230) a,,‘l Z Xi:n l(cnan, ao)(Xi:n)—’O’

i=1

both in I! as n— 0.

In accordance with (2.11) we may write
n—r(n) n—r(n)
(231) an ! Z Xi:n = an_l Z (E")Xi:n+

i=k(n)+1 i=k(m+1
n—r(n) .

+a;1 k(z [Xi:n+8nan] 1(—m, —s"an)(Xi:n)+
. i=k(m+1 ' . .

n—r(n)

-|'an_1 Z [Xi:n_enan] l(a,.n,., uo)(Xi.:n)'

i=k(m)+1

If we center (2.31) at the mean, which obviously exists by Lemma (2.3), then
we have convergence to zero in I! as claimed in Lemma (2.1) (b). Note that the

“first term of (2.31) can be treated as in (2.16), whereas the second and the third

term tend in I! to zero by (2.29) and (2.30). Thus the proof is complete.

2.4 Remarks. (@) If k <1/a, then the mean of Xk .» does not exist
whenever g # 0 (use (2.21)).
- -(b) In view of. the convergence (1.1) there ex1sts a b’ eR such that
k(n)

2.32) . I[Z X+ Z Xin]— -b, >

i=rm+1
provided the assumptions of Lemma (2.1) hold. We do not need the assumptlon
k(n)+r(n) = o(n) of [4]. In the special case, where Y is a one-sided stable
distribution, i.e. min (p, g) = 0, we may choose k(n) = 0 or r(n) = 0, which also
seems to be new. . :
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In the next section we give a selfcontained proof of (2.32) without makmg
use of (1.1), which also yields a stronger convergence result.

3. Convergence in probability and I’ to stable type distributions. First we will
introduce new random variables Z; , which are equal to X;., in distribution.
Then we are able to prove convergence in probablhty or I! to Y for the new
random variables.

LetY,, Y,,..., ¥,, ¥,, ... be two sequences of jointly mdependent random
variables with common exponential distribution with mean 1. As‘in(2:4) define

k
3.1y o F,=7Y )4
i=1

and for ae(0, 2) set, for keN,

(3.2) : T = y’f () = { E(I'y'"  otherwise.

The law of iterated logarithm (LIL) shows that(?)

(3.3) ' A= i (T =7y

k=1

is almost surely convergent (cf. (2.4)). By definition,

6y = 3
=1
is an independent copy of 4,. It turns out (by the arguments below or known
results of the literature) that 4, is a one-sided stable distribution whose Lévy
spectral measure vanishes on (—eo, 0). For « > 1 the random variable 4, is
centered at its mean, whereas the mean does not exist for a < 1.
In the sequel we will introduce, more generally than in (2.5),

k : ,
XY if k < [n/2],

(3.5) rk.n = i=1 k—[n/2] .. B
F[n/2] nt Z Y;|+1 —Jj—nj21 lf k> [n/2]

ji=1

for k=1,...,n, where [ ] denotes the Gaussian bracket. As in (2.5) we see

that for

(2) Elementary computation ylelds

Z lye—k” 1I‘|<°0

The LIL shows |I',— O(\/k\/loglogk), and by the mean value theorem we obtam
Jr,"Me—g~te < KT — k|k Va=1 for k > ko Thus 3.3 follows since « < 2.
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(3.6) v Ziw=F  Tin+1/Tat1,nt1)
equality in distribution ' .
en Xt s Xn) g(zl,'"; v s Zun)
holds. -

(3.1) THEOREM. Assume (2 1)- (2 3) and (2. 7) Let k and r be non-negatwe
integers. .
(a) Then the following assertions hold

kny. o
(3.8). at Y (Zia— di,n) p—q"""(4,— Z (F“”"—v))
i=k+1 i=1
and
B9 al Y (Zy—din) e (4,— 21 (i)
i=nt+1-—r(n) i=

in probability -as n— oo.
The centering constants d; , are equal to

(3'10) di n p—l E(Zi,n) ,.'f 1/“ ..< min (13 n+1_l),
' 0. - otherwise:

(b) Assume in addition that 1jo<k+1<km<n+1—1/a, and
1/oc <n+1—r(n) <n—r <n+1-—1/a, respectively, then the sequence of random
variables (3.8) and (3.9), respectively, converges in I

The proof relies on the following well-known lemma showmg that for
sufﬁc1ent1y large k the expectations of the random varlables of (2. 6) are
convergent to each other.

(3.2) LEMMA. Under (2.1)-(2.3) Wehobtqin',' for k> 1/a,
(3 11) E(Xk:n 1(—00,0)(Xk:n))—’—qllaE(Fk_I/a):
. an_lE(Xk:n 1(0,00)(Xk:n))—)0 dS B—>00. |

Lemma (3.2) c’a.h be deduced from [8] and [9], section, 4.1. Note that 3.11
also_ follows from Lemma (2. 3) The convergence of

(3-12) ' 1E(Xk n 1( 2an, 0) (Xk n))—’ q llaE(Fk 1 1( e, 0)(Fk 1/«))
is obvious. The assertion (2.20) yields that
(3.13) lim supa; " E(Xein L= o - (Xi:1)

becomes arbitrary small for large e. Similar arguments show that the

- expectation of the positive part: of X;., asymptotically vanishes. -
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Proof of Theorem (3.1). As in (2.6) we note that, for fixed i,

(3.14) 7 a7 Zyp—> — gt I e
and for i < [n/2] ’
(3.15) O ' Zyy1-in =0y P (1- F/Fn+1 n+1)—’l71/ar 1

almost surely as n— oo. Note that it is enough to prove (3.8). Assume first that
the conditions of (b) are satisfied. Then it is well-known that the convergence of

the I!-norms and the almost sure convergence(3) show that (3. 14) holds in L1

Consequently,

B16) G Zu—d) g (T 7) 0

in I! as n—oo. Thus there exists a sequence k'(n) k(n) such that
g/ (k'(n)+1)=0 and

Lk
(3.17) Y, [ (Zin— ”.)+q1”‘(1““’“—v)]—’0

i=k+1
in I! as n— 0. On the other hand it is easy to see by Lemma (2.1) (b) that *
k' (n)

Gt Y (Ziw—din)
a=k+1
is a Cauchy sequence m L. Hence (3.17) and the almost sure convergence in
(3.3) imply that . : -
k' (n) .
318) - at Y (Zu—diw)— —q”“( Z (F‘”“—v))

i=k+1 i=1

in I! as n— . If we now observe -that, by Lemma (2 1) (b),
~.. k{n)

(3.19) a; Y, (Zia— ,,,.)—>0
i=km+1 ,
in I! as n— oo, then the desired I}-convergence of (3.8) follows from (3.18).
"In the situation of Theorem (3.1) (a) we remark that for k<i<1/u
assertion (3 14) remains true, which proves the convergence in probability of
(3.8) in the general case. Hence the proof of Theorem (3.1) is finished.:
(3.3) Discussion. Theorem “(3.1) has various applications which ‘are
mentioned below. Let us keep in mind that for each index set I<{l,...,n}we
obtain by (3. 7) the equallty in distribution. of .
(3.20) L Y Xi= Z Z;,

iel iel

‘and recall the definition of the centering constants d; , (cf. (3.10)).

(®) The assertion is known to be Vitali’s theorem.
(%) Note that f, is a Cauchy sequence in I iff f, —f i )—>0 for all sequences j(n)— o0, j(n) < n.
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(a) If we choose k(n) =n—r(n) with min(k(n), r(n))— co, then

B21) ;' Y @m—di)>—q Y (7 Ve—y)+

i=k+1 i=k+1

PE S ) =W,

i=r+1

in probability as n— oo and in I! whenever

(322 l/oc<k+1 and 1lax<r+1.

‘Note that W, , is a stable distribution. Thus we have convergence to
Wo o in I! for a> 1.
(b) Assume that k(n) and r(n) satisfy (2, 7) Then we conclude that

k(n) n—r
(323) _1 [ Z (Zl n’ 1 n . 2 (Zi,n""di,n)] - ka,r
i=k+1 ci=n+1-—r(n) .

in probability as n — oo and in I! if (3.22) holds. Note that for p = 0 the random
variable W, , is one-sided stable and we may choose r(n) = 0. In this case we
can substitute I' ,.; in the definition of Z, , by I', (2.4).

(c) If we-are not interested in the explicit form of the centering constants b,
in (1.1), then the proof above becomes quite simple and we-obtain a short

‘probabilistic proof for the sufficiency of conditions (2.1) and (2.2) for the

convergence to a stable random variable (1.1). Let us sketch the proof.

‘From (3.14) and (3.15) we conclude that there are k’ (n) and # (n) such that

min (k' (n), r (n))—»oo and

k' (n) n :
(249 > (@ 'z, ,,+q1/“1" 1/°‘)+ Y @'z, —p”“F 1/“) — 0
i=1 i=n+1-r'()

in probablllty If we now use Lemma (2.1) (a), and the almost sure convergence
of (3.3), then there exists a b, such that (1.1) holds. '

Let sign(x) denote the sign of a real x.

Under the assumptions of Theorem (3.1) we obtain the subsequent result.

(34) COROLLARY. Assume o < f. (a) We have

. P kin). _ ... 0.

(3.25) a? ¥ sign(Zi,,.)IZi,»,,Iﬁ?—qﬂ’f S it
i=k+1 i=k+1

and

(3.26) D Y Sign(Z:;n)lZi,nI”?P”/“ Yy ;e
i=nt+1-—r(n) i=k+1

in probability as n— 0.
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(b) Assume in addition fjo < k+1 <k(n) <n+1—p/o,and Blo < n+1—r(n)
<n—r<n+1-§/a, respectwely Then the sequence of random variables (3.25)
and (3.26), respectively, converges in L.

Proof. Define .
(3.27) ' X, =sign(X)|X|?

having the inverse distribution function
(3.28) , F~1(s) = sign(F~'(s)) [F 1 (s)|%.

Thus Lemma (2.1) applies to sign(Z; ,)|Z; ,|?. Assume first that the condi- - -

tions of (b) are satisfied. As in (3.17) we obtain a sequence k' (1) = min (k ), q (n)),
where g(n)—> o0 as n— o0 and

e :
(3.29) Y. (@ fsign(Z; )Z, P+ 475 77> 0.

i=k+1

On the other hand Lemma 2 1) yields

(330) o Y (sien(@sn 2.7~ Esign 2, Zoi) -0 i I

i=k'(n+1

From [6], section 5, we recall that, for B/ate<1, ¢>0 and i> fa,
(3 31) an_ﬁE(IZx nlﬁ 1( w©, O)(Z! n)) Cl Pate

uniformly in n. Applying a similar formula for |Z,,+1 inl? L0, 0) (Znt 1 -i.n) WE
see that, for 0 < g < 1,
k(n)
(3.32) ot Y KZ, M)*o as n—oo.
i=k'{n)+1 g

A monotomclty argument shows the same result for g=0 or g —1
Combining (3.29)(3.32), we obtain as in the proof of Theorem (3.1) the result,
which completes the proof of Corollary (3.4).

- 4. Asymptotic independence. As an application of Theorem (3.1) we will
establish an asymptotic independence result for sums of truncated random
variables. Observe that under the assumptions of Theorem (3.1) (a) the random
variables

k(n)

(4.1) ety Xiw—dy)
i=1

and

@2 Gt Y Kee—dy)

i=n+1-rn)
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are asymptotically independent with a joint distribution
4.3) | - (=q'"4,, p'* 4,).

It turns out that instead of the random variables (4.1) and (4.2) the
investigation of truncated random variables yields the same result. We
generalize results of [117, [4] and [3], which proved, for certain centering
constants C{’(j =1, 2), the asymptotic independence of

(4.4) | Car z X7 —c),
i=1 .

ghd-

45 . '1( Z Xt —CP)

with the same joint distribution as in (4.3). Hcre we write X i = max(X,, 0) and
X; = min(X;, 0). Theorem (4.1) is an immediate consequence of Theorem (3.1).

(4.1) THEOREM. Assume that conditions (2.1)~(2.3) are satisfi ed Let e,—0 and
&, —0. We introduce the centermq constants :

(46) C(l)_ E(Xx nl( ooa,.a,,)(X; ,.)) lf 1/0(<l<n+1_1/a
. SR (U R " otherwise,
and L
(4 7) . C(Z) — E'(Xi:n l(en.an, uo)(Xi;n)) if 1/0( <1 < n+1_ l/a,
. ” 0 otherwise.
Then

(48) ( Z [X (1( o, e,.a,.)(X) C(l)] a_l Z [X l(ena,. oo)(X) C(Z)])

i=1 =1,
converges in distribution to- _
4.9) (— q”“A plldA ) as n—oo.

i Proof. Without Testrictions we may assume that g, >0 and g, < 0 since
the variance of the central portlon Vanlshes ie. o '

@ 10) Var( 'S XL o oo (X )) na; [ [ x2dFx)]-0 "
i=1 - —|en|an, [enlan]
(cf. (2.14) and (2.15)). :
Note that (4.10) also holds whenever a |s | remains bounded since na, *— 0.
Recall from section 3 that '

4.11) Y Xilpa oy XD 2 Y Zin s (Zi).

i=1 . - i=1



Extreme order statistics 217

Turning to the random variables Z; ,, it suffices to prove the convergence in
probability for each component of (4 8). Assume first that ¢, = ¢, = 0 for each n.
In this case we write

4.12) Y™ and A7
for the centering coefficients (4.6) and (4.7). By Discussion (3.3) (b) we obtain

“.13) . 21 [Ziw+ Zin— ™ — "1 > — g 4, +p" 4,

. i=
in probability as n— oo.. Assume p #0. Then X; lies in the domain of
attraction of the one-sided stable law p'* 4, and, similarly, we obtain

@149 a1 Y [ZE,— @] ppted,.

i=1.

Combining (4.13) and (4.14) we conclude

(4.15) et Z [Zin—ca 19 —4'" 4,
i=1
Note that for p = 0 assertion (4.15) follows from Discussion (3.3) (b) which
then yields (4.14). Assume now that ¢, > 0 with ¢,—0. Then

(416) arrl Z [Zl nl(e,.a,. oo)(Zl n) C(Z) Z:n+6$?tz+]

i=1

=67 [ Zinloumas Zon)—E@inlorna Zun) +

i=1
+ Z ) E(Zi.n 1(0,(—:,.a,,] (Zi,n))]'
n+l-1lfasi<n
By the same arguments as in (4.10) we see that (4.16) converges to zero in
probability as n—co. Hence the proof of Theorem (4.1) is complete.
Finally we will prove an asymptotic result for self-norming sums(®) or
t-statistics (see [7] and references therein) of the type

(4.17) (X X)X IX e
ji=1 i=1
In [7] it is proved that (4.17) converges in distribution if X; belongs to the
domain of attraction of a stable law with index o < min (2, r), where X, is
assumed to be symmetric or o < 1.
Here is an example yielding convergence in probability for a more general
class of distributions.

(%) For a recent discussion of selt-normalized sums cf. M. Cs6rgd and L. H orvath, Asymptotic
- representation of self-normalized sums, Prob. Math. Statistics 9 (1988), p. 15-27 [added in proof].

4 — Probability 10.2




218 . A. Janssen

(4.2) Example. Assume (2.1)2.3) and let Z; , and d, » be as in Theorem
(3.1). Fora<r

(4.18) [Z (Zin—di) N Z |1Z: ol ") oW, o/( Z (q"“‘F—'/‘"+P""F_”"))1"
i=1
in'probablhty as n—oo. Here W, o denotes the stable law defined in (3.21).

Note that the convergence in probability of the denominator of (4. 18) can
be seen as follows. Write

(4 19) . m_’ Z |Zl nl” _a_r Z [Z:‘;+|Zl nl]

i=1 i=1
. Then we can apply (3.26) to Zl+ , instead of Z; , showing that we can define
r(n)=n and r =0. Thus, by Corollary 3. 4)

(4.20) 0t S (Zhy >0 S Fioe.
i=1 . i=1 }
" In the case o < 1 the centering constants can be cancelled out. Note that
- then W, o must be substituted by Wy o+d, where d is a suitable shift.

5. Absolutely trimmed sums. In this section we will treat another trimmed
partial sum where the k largest absolute values are neglected. For references
concerning this problem cf. [4] and references therein. In the case k = 0 we
obtain a representation for stable random variables of the type introduced by
LePage, Woodroofe and Zinn [7]. It turns out that for the special random
variables Z; , the trimmed sums are convergent in probability. Subsequently we
study the trimmed sums

(51) ) Z Zi,n; Z 5i,n I/i,m

. where ¥, , denotes the order statistic with the index n+v_1‘—i of the absolute

values |Z; .|, i=1, ..., n. For each neN let 6, = (Gyp, ... » Gny) be a rTandom
permutation such that o
(52) : Vin = 1Z gy nl-

>T>henA define

5.3) : : 0;,n = sign(Z,,, »)-

Note that theré may exist different §, satisfying (5.2). This leads to different
random variables (5.1) and (5.3). In all cases we obtain the same asymptotic
result. Next we similarly treat the limiting model. Consider the sequence

(54) (_qlla Fl— I/a, pllaf"l—l/zz’ _qlla 1-'2— l/a, pl/a f%,‘a’ B ) :
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Let V; denote the i-th largest absolute value of the vector (5.4) and let J;,
similarly as above, be the sign of the component of (5.4) which contributes to V.
Note that in this case the random variables J; are uniquely defined with
probability 1.

Before we can prove our main result we need some preparations. Let ¢,
denote the one-point measure at x.

(5.1) LEmMMA. () (6,)icn is an i.i.d. sequence with common distribution
pe; +qé—;-

(b) The infinite vectors (6 Jien and (V)iey are stochastzcally independent of
each other. -

(c) V; and T, are equal in distribution for each i > 1

(d) The random variable

M™s

(5.5 Ir= (61'1/1'_-(1,’_“1) )

i=1

is almost surely convergent.
(¢) There exists a constant y such that

(5.6) - —q'* A +p*A, =T +y

almost surely.
Proof. (a) For fixed ieN and n > 2i consider

(57) an (Zl,nr ey Zi,m Zn,n’ e Zn+1—i,n)
which converges by (3.14) and (3.15) almost surely to
(58) (—qllari_llaa L] _qI/aIﬂi—I/a’ pllafl_l/aa ---.7 pllafi_llm)'

Thus we see that _
59 V.oV, and 8,,-9,

almost surely as n— co. Thus assertions (a) and (b) immediately follow from the
asymptotic independence result of [7], Lemma 1. Note that also (c) is
a consequence of (5.9).
In order to prove (d)} and (e) note that
[np]

n [rg]
(5.10) y=lim[(p—q) ¥ v+a'™ ¥ v—p'" ¥ ]
n—w i=1 i=1 i=1
. exists. We will only sketch the proof of the existence of y. It is well-known that
for a <1

(5.11) | T 3 < 0.

i=1
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Thus we may restrict ourselves to the case o > 1. Then it is well- known that
(5.12) JTrLy (-7

We will show that y is the limit of a Cauchy sequence (5.10). Consider
n <m. By (5.12) we obtain

m [mp] m—1 ([mp]+ 1)/P
613y p Y v—p'"™ Y w<pl | x"Mdx— | ‘”“dx]
i=n+1 i=[np]l+1 n—1 (Inp1+1)/p

“which becomes arbitrary small if n, m > n, are large enough. The rest of the
proof of (5.10) follows the same line. Without restrictions assume that
0 < p < 1. Define

(5.14) M@m=Y 14,6) and N(n)=n—M).
i=1
Thus M (n) is binomial distributed at sample size n with parameter p. Note
that

i N(n) M@
(5.15) Y 6V, = —q'* Y IyYeqplin Y [t
i=1 - i=1 i=1
Since
N M@y .
(5.16) Y, (F71*—y)>4, and ¥ ([7'~y)-4,
i=1 i=1

almost surely as n— oo, it suffices to prove that
" N@m) N(n)

(5.17) q'* X v—p" Y = =9 Y, v~y
i=1 i=1 i=1
almost surely. Thus by (5.10) it remains to prove the almost sure con-
vergence of
' (np] M)

(5.18) X n— 2 %—0.

i=1 i=1

) This assertion will be proved by a standard argument applymg LIL to
M (n). Note that (5.18) is bounded above by

(5.19) ([np] — min([np], M (n)) (M (m)—1)~1* -0
almost surely as n— oo since
(5.20) [np] — M(n) = O((nloglog n)'1?).

The other inequalities are treated similarly and Lemma (5.1) is proved.
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’

(5.2) THEOREM. Assume (2.1}2.3) and (2.7) and let k = 0 be an integér. For
the random variables Z; , and the centering constants d; ,, (3.6) and (3.10) we have

k(n) n
G21) @ '[Y Zip—did+ Y  (Zia—din)—
i=1 i=n+1-r(n)

—251,,1/,,,]—»1" 25

i=1 i=1

x

in probability as n— 0.
Proof. Assume first that k(n) =n— r(n) Then

(5:22) Gt Y @a—di) g a4, e 4
=1
in probability. By (5.9)
| ) )
(5.23) Z o Y 8,

i=1

in probability as n— co. Combining (5.22j and (5.23) we obtain the result from

Lemma (5.1) (e). If k(n) < n—r(n), then we may apply Lemma (2.1) showing
that the central part tends in probability to zero. Thus the proof of Theorem
(5.2) is complete.

Concluding remarks. Assume above that k = 0 and k(n) = n—r (n). Then, by

Theorem (5.2),

(524) _1 Z (5111 iin— 1n) = Z (Zi,n_di,n)?r'l_'y

i=1 i=1
in probability. Note that

n n

.(5.25)7 Y. 0inVin = 2 X

i=1 i=1

The random variable I" is up to the centering constants of the same type as
the random variable S* in [7], Theorem 1.
For o > 1 the results of section 3 show that (5.24) converges in I}.
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