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Abstract. The problem of cstimating the index of stability and 
the spectral measure of multivariate stable distribution is related to 
that of evaluating the risk of stable portfolio of financial assets. We 
show how to solve this problem assuming that the observations are 
taken from theadomain of attraction of a multivariate stable law. Our 
main results concern tests for association, and estimatesof the risk and 
the covariation of a stable portfolio. 

1. Introduction. The problem of estimating multivariate stable distributions 
has received increasing attention in recent years in modelling portfolio of 
financial assets (see [24 Chapter 121, [18] and the references therein). Stable 
laws (with index a < 2) for modelling stock returns were proposed in the 
seminal works of Mandelbrot [I51 and Fama [ll] (see also 181 and [l]). While 
the problem of estimating the parameters of the univariate a-stable law seems 
to have a complete solution (see [8] and [16]), very littIe is known at present 
about the statistical procedures for analyzing multivariate stable random 
samples. Our work was inspired by Press [20], [21] who defined the risk and 
estimated the parameters of portfolios constituted by assets whose prices follow 
a stable law with characteristic function (ch.f.) having the parametric form 

i =  1 

In this paper, prices are assumed to have a distribution from the domain of 
attraction of a stable law with a general spectral measure, and so we need not 
relay on a specific parametric model. The motivation for looking at the domairr 
of attraction rather than the stable law itself comes not only from the reason of 
the natural generality and more robust modelling. In a recent study of various 
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stock returns (cf. 1181) via stable models (among them cl-stable, max-, 
min-stable, random multiplication and their randomized versions), it was 
shown that the best fit is provided by a-stable (1 < a: < 2) and geometrical 
M-stable distributions - both having one and the same domain of attraction. 
Recall that the d-dimensional random vector X has a-stable distribution 
(0 < a < 2) if its ch.f. has the form 

(1.1) Eexp i(X, t) 

= exp {- l(s, t)la(l -isign ((s, t))q(a; s, ~ ) ) ~ ( d s ) + i & ,  t)), t eRd,  
Sd 

0 
where S,, is the unit sphere in Rd, r is a finite Bore1 measure on S,, p € R d ,  and 

tan (xa/2) if ol # 1, 
cpb; s7 0 = 

- 2 / ) l n ( , )  if o r =  1. 

We refer to [30] and [27] for more information on multivariate stable laws. 
A vector Y is geometric stable if the stability property 

is preserved up to a geometric random variable, P ( N ( p )  = k) = p(1-pjk-l, 
k 2 1, representing the moment of an extreme yhange in the fundamentals of 
the portfolio. We can rewrite (1.3) in the form: there exist a, > 0 and b , € R n  
such that 

I n 

and the one-to-one correspondence between the laws of X and Y is given by 

E exp i(Y, t) = 
1 

1 -1ogEexp i(X, t)' 

In (1.3) and (1.41, r s  are independent identically distributed (i.i.d.) random 
vectors viewed as observations on the vector of per share returns on all assets 
in the investment portfolio. The assumption of & being i.i.d. is not too 
restrictive: under some regularity conditions, using the CLT for convergence of 
martingales to a stable limit (cf. 1141 and [23]), the asymptotic results will be 
preserved even if x's are martingale differences. 

The assumption that the vector of returns is in the domain of attraction of 
a multivariate stable (or geometric stable) law gives rise to the following 
questions: 1. How should one measure the dependence between the individual 
returns in the portfolio? 2. What is the value of portfolio risk? 

The notion of association seems to be a very natural measure of 
dependence especialIy when one deals with heavy tailed multivariate dis- 
tributions (see [lo] and [13]). Recall that X = (XI, . . . , X,) has positively 
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associated components if for any functions f, g: Rd + R, nondecreasing in each 
argument, cov( f [X), g(X)) 2 O whenever the covariance exists. Similarly, X has 
negatively associated components (cf. [2]) if for any 1 d k < d, any f :  Rk + R, 
g :  RdUk 4 R, nondecreasing in each argument, cov (f (X'), g(X")) < 0 whenever 
the covariance exists, where X' and X" are any k- and (d-k)-dimensional 
random vectors, respectively, representing a partition of the X-components into 
two subsets of sizes k and d-k accordingly. Pitt [I91 showed that jointly 
normal random variables are associated if and only if their covariances are all 
nonnegative; the corresponding result for negative associated normals was 
proved by Joag-dev and Proschan [12]. If X is E-stable distributed (0 < or < 21, 
then X is associated if and only if the spectral measure r of X (cf. (1.1)) satisfies 
the condition 

where S; = {(sl, . . . , s A E S ~ :  for some i, j~ (1, .. . , d) ,  si > 0 and s, < 0); and 
X is negatively associated if and only if 

(1.7) r(s,') = o, 

where S: = {[s,, . . . , sa) E Sd:  for some i f j ,  sisj > 0) (see [13]). Extending this 
result for X in the domain of attraction of a-stable random vector leads to test 
for positive and negative association (see Section 2, Theorem 1, the central result 
of our paper). The method we use resembles that developed by Einmahl et al. 
[9] for estimating a multivariate extreme-value distribution. Recall that X is 
assumed only to be in the domain of a-stable vectors, and therefore if in 
modelling portfolio returns X is chosen to be a-stable (0 < u < 2) or geometric 
stable (see (1.1) and (1.5)), then one can perform the test for association we are 
proposing. 

In Section 3 we generalize Press' results (cf. 1201 and [2f]) by estimating 
the risk of a stable portjiolio, the parameters and the spectral measwe r in (1.1), 
assuming only that the observations are in the domain of attraction of a-stable 
vectors. Moreover, our estimators are strongly consistent and, under some 
regularity conditions, asymptotically normal. For completeness of the ex- 
position we collect some technical results in the Appendix. 

2. Test for association of stable random variables. Let X be a-stable random 
vectors with ch.f. (1.1). We consider the bivariate case for the sake of brevity. 
Write then the ch.f. of X = (XI, X,) in the form 
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where 

tan (nu/2) for a # 1, 
@(.I 0, t )  = 

- (2/n) In (Q tcoslt, B)^ 1) for a = 1 ; 

for t = (g cos cg, g sin q), 

cos(t, 0)*: = cos p cos B + sin cp sin 8;  

'and, finally, @ is a distribution function (d.f.1 on LO, 2x1 with total mass T(S,). 
Let now Z, Z,, Z,, ... be i.i.d. random pairs with unknown distribution 
F from the domain of attraction of an a-stable law G with ch.f. (2.1), that is, for 
some a, > 0 and b, E R2, 

We rewrite (2.2) using the polar coordinates d Z (denoted here by Q = IZI and 
@ = 0(2)): 

lim 
P(Q > r x ,  @ < 0,) - @(Bl) = r a- 

X+m P(Q > x, 0 < d2) @(41' 
and for a E (0, 2) the latter is equivalent to 

lim nP(e > ran, 8 < 0) = r-"@(0) 
n+ m 

(see [26], [6], and 1251). 
Let k = k, be a sequence of integers satisfying 1 < k < 42,   EN, and 

k -t co, k/n + 0 as n + CQ. We assume that g has a continuous chf. and let 
(Q~,  0J be the polar coordinates of Zi. Our testi on association of the 
Z-components is based upon the asymptotic properties of the following 
estimates : 

a. estimator for the index of stability ol: 

where gk,, is the k-th order statistic from (el, ..., en); 
b. estimator for the normalized spectral measure q~ (8) = @(8)/@(2x): 

The proof of the main theorem (the test of association) is based on four 
lemmas stated below - for their proofs see the Appendix. 

LEMMA 1. (A) If k/loglog n + co as n 4 co, then a, -t a a.s. 
(B) Ifk/log a + co as n + oo, then qn(8) -, q(8) a.s. for all points 8 E LO, 2x1 

of @-continuity. 
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The next three lemmas concern the asymptotic normality of a, and rpn. Let 
us put 

S ( x ) = P ( e > x ) ,  R=S(e) ,  R i = S ( e J ,  

LEMMA 2. Ij" (2.4) holds at r = 1 unfinnly for B E  10, 2x1, then (Wl,,(8), 
K . ( r ) )  c~nuerges weakly h D[0, 2x1 x D [ 0 ,  31 to (W,(U), W,(r)), which is  
a mean zero Gaussian process with covariance sfructure 

The domain of attraction condition (2.4) gives for 9 = 2n 

(2.10) lim a; ' St (t/n) = t - ' l a  @'/'(27c), 
n - r  m 

where St is the right continuous inverse of S. The latter implies, for all x > 0,  

(2.11) lim (logs' (ux)- log St  (u)) = - 0 1 - l  log x 
u l 0  

and therefore, for some positive function b(t), t > 0, with b(O+) = 0, uniformly 
on XE[+, 241, 

LEMMA 3. Suppose the following strengthening of (2.12) holds: 

(2.13) 

Then 

lim f i  b(k/n) = 0. 
n- w 

01 
f i (an-a )  3 - ( w 2 ( 1 ) - +  log 2 ~ ~ ( 2 ) ) .  

Now we turn to the asymptotic normality of ~ ( 8 ) .  Combining (2.4) and 
(2.10) we can renormalize Q in (2.4) to get 

(2.14) l i m n P ( ~ > r S ' ( 1 / n ) , B C ~ = ( r @ 1 ~ a ( 2 n ) ) - " @ ( 0 ) = q ( 8 ) r - a ,  
n+ m 

9 - PAMS 14.1 
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or, uniforming the radial component, we write (with R = S(Q)) 

(2.15) lim nP(R d r/n, O < 6)  = rq(8). 
n+m 

LEMMA 4. Suppose the following strengthening of (2.15) holds: for some 
6 ~ ( 0 ,  I), 

(2.16) l i m f i  sup 
n 4  m QdBdZsr 

1 - B S r < l + d  

Then the normalized process cp, conuerges weakly in D[O,  2n] to a Gaussian 
process: 

where A ( @ :  = W,(O) - q(0) W,(1), and K's are defined as in Lemma 2. 

Remark  1. W2 (r) and A(0) are not correlated (cf. Lemma 2) and, 
therefore, the estimators a, and ~ ~ ( 9 )  are asymptotically independent. More- 
over, again by Lemma 2, 

THEOREM 1 (A test for association). Suppose Z is in the domain of attraction 
of u-stable random pair with spectral dlf: q(9) = @(0)/@(2x) (cf. (2.2), (2.4)) and 
suppose the 2-components are associated. Then , 

and if (2.16) holds, then 

(ii) JiT(an(x)-vn(n/2)+ 1 -qU(3r)) 5 ~ ( 0 ,  a:), 

where 

P r o  of. (i) Take (ZJi3 independent copies of 2; then (Z,, .. . , 2,) is an 
associated vector (see, e.g, [3, p. 30]), and so, for a,, > 0, a; x;=, Zi- b, is also 
associated (as the normalized sum is an increasing function on 2,'s). Therefore, 
the a-stable limit X in (2.2) is associated (see, e.g., [24, p. 3011). Theorem 2.1 of 
[I31 now implies that the sprectral measure @ in (2.4) is concentrated on the 
first and third quandrants. 

(ii) From Lemma 4 and the assertion (i) we obtain 

fi(cp,(x)-qn(n/2)+p,(21c)- qn($n)) 5 A(x)-A(n/z)+A(?n)-A(Sn) = : N ,  

where N is normal with mean zero and variance a: defined by (2.19). s 
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Remark  2. Applying the test, we replacz rr, in (2.19) by its empirical 
counterpart 6,: = aqn (cf. (2.17)). To estimate the deviation between N(0 ,  CT;) 

and N(0 ,  8;) : = N(O, 1)B, (N(0 ,  1) and 8, are chosen to be independent), let 
EJX, Y) be the minimal metric w.r.t. the average metric 

-5fP(X, Y) = {EIX - YJPIq, P > 0, q = 1 A (lip), 

that is, IJX ,  Y) = min{5fp(O,(R, 0: 2 h, Y) (see, e.g., [5] and [22, 
Chapter 51). Recall now the well-known upper bound for the Prokhorov metric 
n ( X ,  Y) : = inf {E > 0: P(X€ A) < P ( Y E A ~  + E for all Bore1 A c R): 

Making use of the last inequality we get 
7 E t l + ~ ) i ¶  ( jv (0, fl;), N @ ,  6;)) < lP(N(OY o:), N(0 ,  6;)) 

< (ElN(0, l)lp)q(Elrr,-uqn~p)q =: A, .  

Applying (ii) again we have A, = O(k-pg/2). AS for the uniform metric p between 
the d.f.'s of N (0, c:), N (0, Bz), using Berry-Esseen type smoothing inequalities 
(see [22], Chapter 141) one can get an alternative bound for e = O(k-pq/'). EI 

As in Theorem 1 we readily obtain 

COROLLARY 1 ( A  testfor negative association). Suppose Z is in the domain of 
attraction of a-stable random pair with spectral d.$ q(0)  and suppose the 
2-components are negativejy associated. Then 

a d  if (2.16) holds, then 

where 
t; = cp (x/2) - ql (TC/2y + (p (2 7r) - q (2 ?TI2 - q(x) - qJ ( x ) ~  

3. Estimating the risk of a stable portfolio. Assume that the vector 
X representing the per share returns on all assets in the investment portfolio 
follows a muItivariate stable distribution with ch. f. (1.1). Press [20, Chapter 121 
defined the risk r(c) ,  c E Rd, of a stable portfolio with vector of returns X, having 
ch.f. 

0 
(with matrices Zi > 0 and ,u E Rd), as the scaled parameter of the law of X, 
that is, 
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The reason for such a definition of the risk comes frbm the normal case: 
for a = 2, r(c) is an increasing function of the covariances. Similar arguments 
lead to the following generalization of (3.2) (assuming an arbitrary a-stable law 
of returns (1.1)): 

13.3) r(c):= J I(s, c)lar(ds), C E P F I + .  
Sa 

Press [20, p. 3441 wrote that to permit positive and negative price changes to 
0 

be weighted in the same way, X - p should be "symmetric", which in the more 
0 

recent terminology means that X - p  follows a (strictly) a-stable law with ch.f. 

(3.4) Eexp(t, X)  = expi- j l(t, s)lar(ds)+(r, ;I). 
Sd 

In this case, for a scalar variable v 0 and t = vceR$, the right-hand side of 
(3.4) becomes exp { - lvIar(c) + v(c  , p]), motivating the choice of (3.3) as the 
scalar parameter in the distribution of the return on the portfolio. 

To estimate r(c) we need only an estimator for the spectral measure. To 
this end we assume that the i.i.d. observations Z, Z,, Z,, . . . are taken from the 
normal domain of attraction of the a-stable vector X, that is 

Without loss of generality we may and do assume that the scaling parameter 
1 = 1. Note that, in the most interesting cases of Z being a-stable (Z 4 X with 
ch.f. (1.1)) or a-geometric stable (Z A Y with ch.f. (IS)), the limit relation (3.5) 
holds with IZ = 1. As in Section 2 we consider the case d = 2 for the sake of 
simplicity. 

Using the same notation as in Section 2'define the following estimator for 
dye): 

In (3.6), rp, is determined by (2.6) and for @,(2n) we invoke the a-estimator (2.5) 
and d e h e  

(3.7) @,(24 = (k/n)(en-k:n)&. 

The next lemma deals with the asymptotic normality of an. Recall first 
that from (2.4) we obtain 

lim nS(rnl/") = @(2n)r-' 
n+ co 

and inverting the latter we get 

k (St (kin))" lim - = 1. 
n+oon @(27c) 
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LEMMA 5. Suppose that, together with the assumptions (2.13) land (2.16) in 
Lemmas 3 and 4, respectively, the following strengthening of (3.8) holds: 

Then, in D[O,  2n], the normalized weakly converges to  a degenerate ~ a u i s i a n  
process with zero mean, namely 

3 .  

where N is normal with zero mean and variance (log2)-'. 

Proof. We shall prove that @, converges to @ with a rate that is slower 
than that in q, % rp. This together ,with Lemma 4 leads to (3.10). 

CLAIM. Assuming (2.131, as in Lemma 3, and (3.9), we have 

Proof of the  Claim. By (2.13) we obtain 

InvokingLemma 3, observe that $(an - a )  4 aN. Combining the above two 
limit relations with (3.9) we determine the asymptotic behavior of @,(2n): 

= [ l  + ~ ( l / f i ) ]  [l + O(l/&)lan exp ((or,, -m) log S'(k/n)) 

= Cl + ~ ( ~ / J i r ) l [ l  + ( ~ / J ~ ) ( l o g ( n / k ) + O ( l ) ) I ,  

where the last equality follows from the relation 

log S'(k/n) = log (n/k)'IQ + a - 'log @ (24 + 0 (I/&). 

This proves the Claim. 

Recall now kmma 4: under (2.161, $(rpn - q) % A (the convergence is in 
D[O, 2 ~ 1 ) .  The latter rate is faster than that in (3.10) and, therefore, the rate in 
cP, 3 qQ(2.n) will be determined by that in (3.11). In fact, with 8 = q Q ( 2 4 ,  

as desired in (3.11). H 
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Lemma 5 provides the asymptotic normality of the following estimator 
for r (c) : 

2n 

(3.12) r , ( ~ ) =  J l ( ~ , ~ ) a , d @ ~ ( e ) ,  ~ E R ; ,  
0 

where ( ( c ,  8):= Icl lcos(c, 8)"l. 

THEOREM 2. Under the regularity assumptions (2.131, (2.16) and (3.9), 

f i  (3.13) - r(c1 
1% ~n/k) (rn(c)-r(c))b~(0,(-)), log 2 CER:, or n + m .  

P r o  of. From Lemmas 3 and 5 we obtain 

Jk (Qn-@j 4 N @ ,  ( a  N and - 
1% (n/k) 

where N is normal with mean zero and variance (l0g2)-~. Since the second 
limit relation has a slower rate, it will play a dominant role in the convergence 
of p.,(c) to r(c). Indeed, as n 4 m, 

and therefore 

as desired. rn 

Remark  3. The moment estimators for the risk r(c) (in the form (3.2)) 
proposed by Press [20], [21] have different structures (6. (3.12) and [20, 
Section 12.6.11) and cannot be used in our general framework. 

Remark  4. With estimates for the index ol and the spectral distribution 
function @(%), the only parameter left to be estimated in (2.1) is the shift i. Since 
the assumption that a > 1 is in general agreement with the empirical evidence 
(see [20, p. 3441, and especially [I], where a's for 200 stocks are estimated), the 

0 
vector of sample means p, = n- zy=, Zi (cf. (3.5)) is the most plausible estimator 
for this finite mean case. Nevertheless, the problem of estimating for 0 < a < 2 
from observations in the domain of attraction of a-stable law is of interest. 
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Remark 5. In the stable portfolio analysis the problem of optimization 
of efficient portfolios consists of minimizing the risk subject to the restriction 
that the fractions of funds allocated to each asset must total unity [20, 
p. 3501. Having estimated the risk (Theorem 2) the problem is reduced to the 
following: 

Find CE@+ such that r,(c) is minimal on the simplex cTe = 1. 

Here e stands for the vector of ones in Rd. 

Remark 6. Suppose the portfolio consists of only two stocks, and the 
return X = (X,, X,) follows a bivariate symmetric a-stable distribution 
(1 < a < 2), that is, 

where r is a symmetric finite measure on S,. In this case, as an alternative 
notion of risk one can use the conariation of XI, X,, defined as 

where sCP> : = IslPsigns. Indeed, if the ch.f, of X is gven by (3.4), we define the 
0 0 0 

covariation as [XI-p, X,-p],, and we can assume further that h =  0, 
We list some of the covariation properties (see Samorodnitsky and Taqqu 

[27] for their proofs and more facts on covariation): 

(PI) 1x1, x21, = icov(X1, X2). 

(P2) If (X,, X S ,  Y) are jointly symmetric a-stable, then [XI +X,, I.7, 
= [XI, flu+ [X,, Yla; note, however, that the covariation is not additive in 
the second argument. 

(P3) [a,, bX,], = u~(" -~) [X, ,  X,],. 

(P4) If X, and X, are independent, then [XI, X,], = 0; however, for 
1 < a < 2, it is possible that [X,, X,], = 0 for dependent Xl and X,. 

(P5) [XI, X,], = 0 if and only if X, is James orthogonal to XI ,  i.e. for 
every A > 0, 

To estimate the covariation [XI, X,] of X, having observations Z ,  , Z, ,  . . . 
from the normal domain of attraction of X, we shall use again Lemmas 3 
and 5. Define the following estimator for [XI, X,],: 
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THEOREM 3. Under the regularity assumptions (2.131, (2.16) and (3.9) and 
assuming (3.141, 

as n - t c o .  ra 

The proof is similar to that of Theorem 2 and thus omitted. 

P roo f  of Lemma 1 .  
(A) We start with the following result from [29]. 

I 
I . CLAIM 1. If nb,/loglogn -t a, b, 10 and Fn is the empirical d$ based upon 
1 a random sample of n uniforms, then a,$. 

lim sup F,(t)/t = lim sup t/F,(t) = 1 
b , < t B l  b " < t S l  

From the Claim and the assumptions on k = k, and g we have 

R2k:n = S(@Zk:n) -) 0 and Rk:n/R2k:a 

,Therefore, applying (2.11) we get 

as desired in (A). 

(B) Recall that Ri = S(qJ, where (ei,  8,) are the polar coordinates of the 
random sample Zi = ( Z i l ,  Z,,), i = 1 ,  . . ., n. Recall also the definition of 

and its corresponding empirical counterpart F,(0, r) (cf. (2.7)). Then 
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Put en = (n/k)Rk,, and let us show that Fn(6, e,J + q(6) = @(0)/8(2x) a.s. It is 
enough to see that 

D l , , =  sup IFn(~,s3-F,(Q,s,)l and Dz,.=IEi,(~,e,J-d~)l  
O S 8 $ 2 s  
O d s 6 2  

vanish as n 4 m. To estimate D l ,  we use the following multivariate analogue 
of the exponential bounds in [29]. 

CLAIM 2 (Einmahl (1987)). Let (Zi)i=,,...,n be a random sample from 
a probability law C on R2, and C, the empirical counterpart of C .  LRt d be the 
ring of rectangles (a,, b, ]  x (a,, b,] c R'. Take A E ~  with 0 < C(A)  < $ and 
0 < 6 < 1. T h r e  exists a function $(A) > 0 with $(A) 1 as R 10  such that for all 
R > O  

where K(6)  is an absohte positive constant. 
From Claim 2 for any E > 0 we obtain 

P ( D l , n > r ) = P (  0 6 8 8 2 n  SUP ,,hIii n i = l  I ( @  4 8 ,  R i < - s  n 
O S s 6 2  

= K - exp --$(&/2) < n-l, ( )  { XgZ } 
where A = (0 < ,2x ,  R d 2kln). As for Dz,,, we use (2.14) and that en 1 a.s., 
and so D2,++0 as n + m .  

P r o  of  o f  Lemma 2. To check the convergence of the finite dimensional 
distributions take u,, .. ., u,, v,, ..., u, real, Q,, .. ., 8, from LO, 2 4  and 
rl, .. ., rl from 10, 31. Set 
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Observe that A, ,  i = 1, . . . , a, are identically distributed and independent of 
each other with zero mean: 

and E 1 Ail3 = 0 (k/n). Then the Lyapunov condition holds: 

The proof of the tightness of the marginal processes (W1,,),> is based on the 
weak compactness criterion in D[O,  2n] and D[O,  31, respectively (see [4, 
Theorem 15.21, for details we refer to [9]). hs 

Proof  of Lemma 3. Recall that a, = l 0 g 2 / ( l 0 g @ ~ - ~ + ~ : ~ - l 0 g @ ~ - ~ ~ + ~ : ~ ) ~  
and Ri = S(ei). From (2.8) we obtain 

1 
log S ' (RIkrl:,) -log S' (k) = --log @ ( r ~ ~ ~ ) + o ( k - 1 / 2 )  - 

and since Rckrl,,/(rk/n) % 1, we get 

~ ( l ~ ~ S ' ( R ~ ~ ~ ~ : ~ ) - l o g S ~ ( k / n ) + a ~ ~ l o g r )  

The last limit relation follows from Lemma 2. In fact, from Lemma 2 and the 
Skorokhod-Dudley theorem (see 17, Theorem 11.7.11) there exist a probability 
space and a sequence of processes w2,, W,,,, w2 g W,, such that 

Invoking [28] we see that the last limit relation implies 



Test for association of random variables 

Combining the above bounds, we obtain 

$(:-I) = &((. log S'(Rk:n) log - log 2 S' (R,,:,) -9 
P r o of of Lemma 4. Recall the definition of 

n 

p,(O) = F,(O, en) = k-I C 118, < 8, Ri < R,:,); 
i =  1 

cf. (2.6) and (2.7). 

CLAIM. AS n -+ co, 

,,k(mn(e) -(n/k)~(@ $ 8, R c R,:.)) % W1 (0) in D [0, 2x1. 

..* +. Proof of the  Claim. From Lemma 2 we obtain Wl,, % W,. Let us show 
that 

(and so (b) implies P(kAI4(e,- 1) 2 1) < E for n large). 
For (a), using Claim 2 m the proof of Lemma 1, we get the bound 

I 
i 

< P (  sup I...I > E)+P( sup I...[ >&)=:Al+A2, 
O < B < 2 x  OdOd2rr 

1<r<l+k-'/4 l - k - 1 1 4 < r < l  

where, as n + m, A,  < const exp( - c2 k;l4 $(&/const k 3 )  + 0, and similarly 
A 2 +  0. I I 

For (b) we use Lemma 2 and [28]. In a similar fashion as in the proof of 
Lemma 3 we get 

which completes the proof of the Claim. 

By the Claim and en -+ 1 a.s., we obtain 
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the second term vanishes as n 4 co due to our assumption (2.16). Using 
Lemma 2, we now have 
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