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Abstract. Linear conditional expectations and quadratic con- 
ditional variances determine a class of stochastic processes with 
independent increments. Characterizations of the Wiener, Poisson, 
gamma, negative binomial and hyperbolic secant processes are ob- 
tained. Also a result on existence and determination of moments by 
the first two conditional moments for a sequence of random variables 
is proved. 

1. Introduction. Linear conditional expectations and non-random con- 
ditional variances with some additional assumptions on the covariance 
function are a characteristic property of the Gaussian process. It is the main 
result of a series of papers: Plucihska [Ill, Wesolowski [15], Bryc [I]. 
A similar theorem for infinite Gaussian sequences was proved by Bryc and 
Plucinska 131. 

The conditioning applied in these papers was not only given "the 
past" - as in the well-known martingale characterizations - but also given 
the "future" states of the process. This type of conditioning leads to theorems 
on finite-dimensional distributions of the process with uniform assumptions - 
concerning moments and conditional moments of the process only. Conditions 
imposed on trajectories, occurring in each martingale characterization, are 
omitted. 

Since the first results were limited to the Gaussian processes only, 
a natural question has arised of extending this type of characterization to other 
processes. This was done for the Poisson process by Bryc [I], then slightly 
generalized by Wesol.owski 1161 (see also [20]). A simiIar characterization for 
the gamma process is due to Wesolowski [18]. The case of mean-square 
differentiable processes was considered by Szablowski [12]. 

This paper is devoted to a solution of the problem in the case where 
the conditional variance is a quadratic function of the increments and 
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the conditional expectation is linear. Such a result for infinitely integrable 
processes was formulated in [18]. 

It should be stressed that we identify processes only with respect 
to finite-dimensional distributions. Throughout the whole paper we assume 
that the stochastic processes and random variables are real valued and 
are defined on a probability space (Q, P). The equations between random 
variables are assumed to hold with P-probability 1. 

2. Characterization by linear conditiornal expectations and quadratic con- 
ditional variances. Let X = (XJtBo be a square integrable process with 
independent increments and a strictly increasing variance function. Suppose 
that for any 0 < r, < .. .< r, < r < s < t, n = 1, 2, . . ., the conditional expec- 
tation E(X, I Xrl, . .. , X,, X,, XJ is a linear function and the conditional 
variance Var (X, I XY1, . . . , X,,, X,, XJ is a polynomial of the second order in 
Xrl, . . . , Xrn, X,, X,. Observe that then the only possible forms of conditional 
expectations and variances are the following: 

where Y = (X,.,, .. ., X,,) and A,, A,, B,, B,, B,, C,, C,, C, are non-random 
and depend on r, ,  . . . , r,, r, s, t. 

Our aim is to obtain a kind of the converse result. We will prove 
that the conditions (lj(3) imply the independence of increments of the 
process and the relations between C, , C, , C, determine finite-dimensional 
distributions of the process. In this way we get a characterization of 
the processes with independent increments having (these increments) dis- 
tributions from the natural exponential family with quadratic variance 
function - see [lo]. More precisely, they exhaust the infinitely divisible 
laws of this family. The special cases of (1H3) were considered-earlier in [2] 
and C161, C181, C191. 

Let p be an infinitely divisible distribution. We say that a stochastic 
process X is a p (Wiener) type process if it has independent increments Xt-X, 
such that the distribution of some affine function of Xt-X, is p(N(0, @)). 
Now we can formulate our main result. 

THEOREM 1. Let X = (X,),,, (X, = 0) be a square integrable, stochastic 
continuousprocesssuch that for anyO<r, <... <r ,  < r  < s  < t, n = 1, 2, ..., 
E(X,) = m,, cov(X,, X,) = Var(X,) = a: < G: and the conditions (IH3) hold 
with B, B,  # C,. 
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Assume that there are 0 G y, < . . . < r, < r < s < such that for 
Ci = C i ( r l ,  ., . , r,, r ,  s, 2), i = 0 ,  1 ,  2, we have: 

(i) C, = 0 = C,. Then X is a Wiener type process and, for 0 d s < t, x E R, 

E {exp [ix (X, - X J ]  ) = exp [i (m, - rnJ x - (G: - a:) x 2/2] . 
(ii) C, = 0 # C, .  Then X is a Poisson type process and 

E (exp [ ix(X,  - X J ] )  = exp (ix [(m, - fir,) + 0 ( ~ :  - a:)] + R(ct2 - ~ : ) ( e ' ~ "  - 1) )  , 

0 < s < t, X E R ,  where 

(iii) C, # 0 and fZ: > 4C2C, > 0. Then X is a negative binomial type 
process and 

E {exp [ix(X, - x31 I 
2 2 

= exp(i8, x )  + (1 - p)exp(iO,x)] -@cut exp Lib, - m,)xl, 
0 < s  < t, X E R ,  where 

O I u 2  = [ a f  (a"2b)112]/2, Q = 2/b > 0, 
p = [ l - a ( ~ ~ - 2 b ) - ~ ~ ~ ] / 2 ,  p(1 -p) < 0. 

(iv) C2 # 0 and C: = 4C,C,. Then X is a gamma type process and 
2 2 

E (exp [ x ( X ,  - X,)]) = exp ( ix  [(m, - m,) + 8(a? - n;)])( l -  ix/u) -e(ct -us), 

O < s <  t, X E R ,  where 

8 =  -a/b, Q =2/b>O, a=2/a .  

(v) C2 # 0 and C: < 4C,C,. Then X is a hyperbolic secant type process 
a d  

E {exp Cix (Xt - Xs)l 1 
= exp { ix C(m, - m,) + 8(c$ - a;)]) [&(ax) + iAsh(ax)] -Q(":-ui), 

0 < s < t ,  X E R ,  where 
- .  

0 = -a/b, a = (2b - a2)1/2/2 # 0, 

~ = 2 / b > 0 ,  1 = ~ ( 2 b - a ~ ) - ' / ~ .  

The quantities 

(5)  b = 
2C2 LC2 (mt - mJ2 + C ,  (m, - m,) + C,] 

I (B1 B2 - C2I2 
do not depend on r,, .. ., r,, r ,  s ,  t. 
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Remarks. 1. A characterization of the Wiener process given in [19] 
(Theorem 1) may be easily deduced from the above result. The assumptions 
imply (1H3) with C ,  = C, = 0, m, = 0, a: = t ,  t 2 0. Consequently, the 
condition (i) holds. 

2. As a corollary to Theorem 1 we obtain also a characterization 
of the Poisson, process mentioned in Section 1 (see [Z] and [ld]). 
Indeed, the assumptions in this case yield (1H3) with C, = C,  = 0, 
m, = t, a: = t, t 3 0. Consequently, u = C1/B1 B2 = 1 and the result follows 
from (ii). 

3. Also a characterization of the gamma process obtained in [18] is 
a consequence of our result. In this case we have C, = C ,  = 0 and 
C, = B,B,/(t-r+l). Hence by (iv) we have the result with u = b = 2. 

4. The negative binomial process has been also investigated in other 
papers as an example of a process with independent increments (see [4], 
[13] ,  and IS]). The hyperbolic secant law was considered by Laha and 
Lukacs [7], where its infinite divisibility was proved. This law was thor- 
oughly examined by Harkness and Harkness in [5]. In this paper it was 
established that it is uniquely determined by its moments. The investigations of 
Wang [14] lead, in a natural way, to the notion of the hyperbolic secant 
process. 

5. The case C, # 0, Cf > 4C,C, < 0 is conjectured to be impossible, 
however its treatment in [I71 does not seem to be satisfying. 

The proof of Theorem 1, given in Section 4, is based on a unique 
determination of the moments of the process. The existence of moments of any 
order is investigated in Section 3. 

3. Determination of higher moments by conditional moments of order 
up to two. In this section we give an auxiliary result which will be 
used in the proof of the main result. The theorem on the unique deter- 
mination of the higher moments and conditional moments by conditional 
expectation and conditional variance seems to be also of independent 
interest. - .  

We consider a more general situation. Let (<,),,, be a sequence of 
non-degenerate square integrable random variables. We introduce some 
denotation for k = l , 2 ,  . . .: 

E ~ - I , ~ + I  = E(. 1 50, t l ,  .. ., ti-1, 5k+1), ek = corr(Xk- I ,  Xk). 

The following theorem is a substantial extension of the result from [2], 
where a similar general problem was investigated. 
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THEOREM 2. Assume that for the sequence (tkIk, the following conditions 
are fulJilled: 

(6) E k - l ( t k )  ' u k t k - l + f l k ,  

(7) Ek-x,n+~(Sk) = akSk+~+bkSk-~+~k ,  

where the coeficients are such that for k = 1, 2, . . . 

Then 
1" all t b  moments of the sequence (tk)k>o exist; 
2" for any n, k = 1, 2, . . . ,,the conditional moment Ek- ((I) is a polynomial 

of the n-th order in c,-, with coefficients uniquely determined by the constants 
@), (7) and (9). 

Remarks. 1. The above result is a generalization of Proposition 3.1 from 
[2], where 1" was among the assumptions. 

2. A natural conclusion of Theorem 2 is a unique determination of all the 
moments of the sequence (t,Jk,,, by the constants from (6), (7), (9). 

The proof of the above theorem is preceded by an auxiliary result on 
integrability. 

LEMMA. If the random variables X ,  Y and Z = XE(Y IX) are integrable and 
Y is non-negative, then also the product X Y  is integrable. 

Proof. For R,= IXII([XI <n)Y,  n =  1 ,  2 ,  ..., we have R,tIXIY a.s, as 
n + oo. On the other hand, 

E(Rn)=E(IXII(IXI<n)E(YIX))tE(~)<oo as n+m. 

Consequently, from the theorem on monotonous convergence it foIIows that 
the product X Y  is integrable. a 

P r o  of of Theorem 2. Let us assume at first that there is k ,  3 1 such 
that ck, is discrete and takes less than three values. Observe that (10) implies 
mk+l # 0. Since 

from (6) and (7) it follows that each tk is bounded a.s., k 2 1. Hence by (11) the 
result follows from Proposition 3.1 in [2]. 
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Consequently, it suffices to consider the case where for each k the r.v. 5, 
takes at least three values. 

From the identity Ek- l(Sk) = Ek - l(Ek- l ,k+  l(tk)) we obtain the relation 

since 5, is not degenerate. Let us consider now the equation Ek-,((E) 
= Ek - (Ek- l,k + (5;)). Evaluate both sides appIying to the right-hand side the 
formula Ek- ((:+ = Ek- (Ek(5iC Since ck- takes at least three difTerent 
values, the functions (of argument w) 1, t, - and 5:;- are linearly independent. 
Consequently, we obtain 

We will prove that for any .n = 1 , 2 ,  ... the random variable t, is 
n-integrable and the following formula holds: 

(I4) Ek-1(t8 = &c~-r+Pk,n-1(~k-1), 

where Pk,n-l is a polynomial of order n- 1 with coefficients uniquely 
determined by the constants from (6), (7) and (9), k = 1, 2, ... 

We apply induction with respect to n. For n = 1, 2 the formuIa (14) is 
implied by (6) and IS), respectively. Now let us assume that the sequence (tk),,, 
is m-integrable (m 2 2) and the formula (14) is fulfilled for any n = 1, . . . , rn, 
k = 1, 2, . . . The proof of (m + 1)-integrability is divided into seven steps. In the 
first six steps we prove that if tk- is (m+ 1)-integrable, then tk+ has the same 
property. The seventh step proves that 5, and 5, are (m+l)-integrable. 

STEP 1; The random variables 
m - i - 1  (a) T+2(k) = tLti(tk-aktk-l) 3 

(b) Ui+2(k) = t : ~ : ( ~ k + l - a k + l a k t k - l ) m m i i l ~  

(c) &+I@) = < k - ~ t ~ ~ ( < k + i - a k + ~ t k )  m - i - 1  

are integrable for i = 0, 1, . . . , m-2 and k = 2, 3, . . . 
Proof.  We consider only the case (a) (in (b) and (c) the argumentation is 

very similar). 
(i) Let us take i such that m - i - 1 is even. Then by the Lemma it suffices 

to show that Gt2,Ek-1(<k-ak<k-l)m-i-1 is integrable. From the induction 
assumption (14) we have 

where Q is a polynomial of order m-i-2. Consequently, it follows that 
5 t L ? E k -  l(tk-@k<k- 1) m - i - 1  is a polybomial of order m in tk-, and as such is 
integrable. 
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(ii) Now we take i such that m-i- 1 is odd. From the Schwartz inequality 
we have 

It follows from (i) that the right-hand side is finite for i = 1 ,  , , . , m- 3. 
For i = 0, rn is even; then the right-hand side is also finite. For i = m -2 from 
the Jensen inequality we have 

Consequently, cr-:-, E,-ll&-a,~k-ll is integrable and the result follows from 
the Lemma. 

STEP 2. The random variables 
(a) w+z(k) = ~ ~ ~ ~ ~ k " ~ i - 2 ( ~ k + 1 - a k + l a k < k - 1 ) ,  

i+2  m - i - 2  (b)Zi+2(k)=ch--14.~ Itk-ukCk-l), 
(c) c k  - 1 t k < r ~ i ~ ( < E +  1 - ak + It$ 

are integrable for i = 0, 1, ..., rn-2 and k = 2,  3 ,  ... 
Proof. It is a consequence of Step 1 and the relations 

STEP 3. The random variables 
(a> S k -  1 S?;:(ck+ 1 - Uk + 1 Uk t k -  1)2, 

(b) c k -  1 cr-2(tk-akck- 
are integrable for k = 2, 3,  . . . 

Proof. Step 2 (c) implies the integrability of 

where v is an integrable random variable, and 

2 x = ak-ak+18k, y = ak+ak+lakak-ak+lbk-2ak+1akak- 

To obtain (15) we make use of the assumptions (7), (9) and the relations (12) 
and (13). Now from (1 1) we get (a). 
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The part (b) is a consequence of (a). It sufXces to apply the induc- 
I tion assumption (14) to the integrable random variable tk- E ~ [ T T F ~ ~ I ~ ~ +  
I -ak+1ak~5k-1)21* 
! STEP 4. The ~tzdorn variables Wl(k) and Zl (k) are integrable for any 
i k = 2, 3, ... 

Proof. This in an immediate consequence of Steps 2 and 3 and the 
relations 

wl(k) = t , - 1 5 F T ? ( 5 k + 1 - ~ k + 1 ~ k < k - 1 ) ~ + ~ k t 1 ~ ~ ~ 2 ( ~ ) ,  

zl(k) = ~k-1~~-2(~k-ffk5R-1)2 +akz2(k)- 

STBP 5. The random uariable W,(k) is integrable for any k = 2, 3, . . . 
Proof. From Step 4 we infer that the random variable 

Skt;t--:(tt+l -ak+ltk) is integrable for k = 2, 3, . . . Hence, as in Step 3 (see the 
equation (15)), we get the integrability of the random variable 

t~~l~(~k+l~k-l,k+1(<&-ak+lEk-l,k+l(c~)) 

m-1 
= ~ 5 k + 1  ( ~ k + ~ - a k + i a k ~ k - ~ ) ~ + ~ ~ l ( k ) ~ ~ .  

Hence tk";ll(tk+ - ak + aktk- 1)2 is integrable and, finally, the integrability of 
W,(k) follows from the relation 

STEP 6. If tk- is (m+ 1)-integrable, then tk+ is  also (rn + 1)-integrable, 
k = 2 , 3 ,  ... 

Proof. From Steps 2 (a), 4 and 5 it follows that the random variable 

is integrable. The result follows now from the identity 

t k + l  = (Sk+l - ~ k + l a k t k - l ) + a k + l f f k c k - l .  

STEP 7. The random variables t1 and 5, are (m + 1)-integrable. 

P r  o of. The random variable Z1(2) is equal to [, 5?-l(t2 -a1 [,). From 
Step 4 we get the integrability of 

where v is an integrable random variable. Consequently, t2 is (m+ 1)-integra- 
ble. Now we will show that <?(t2 -a,tl) is integrable. By the Lemma, to this 
end it sufEces to prove the integrability of 5?Eo,2152 -ar2tl(. And this is 
a consequence of the Jensen inequality 
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where c is a constant and v is an integrable random variable. Hence 
5, = a; l -(g2 -a2 t,)] is (mi- 1)-integrable. 

Steps 6 and 7 imply the (m + 1)-integrability of the sequence (I& O. 

In the second part of the induction argumentation we prove (14) for 
n = m + l .  

Applying (7), (9) and the induction assumption (14) in the identities 

we obtain the following system of linear equations: 

with x = Ek-, (tF+ l), y = E,- ,(trl,l) and the determinant det = arLf(a, 
-ak+ lak) # 0 (from (10) and (ll)), where Pk,, and Qk,, are polynomials of 
order rn and of uniquely determined coeficients, k = 2, 3,. . . We solve this 
system and get 

x = d e t - ' 0 1 ~ ~ f a r - ~ [ a ~ ( ~ k +  1a,bk~.~k)-ak+lak~,bd lr:l1 +Pk,rn(Sk-l). 

Applying in this equation the relations (12) and (13) we get (14) for 
n = m + l .  a 

4. Proof of the main resdt. Without loss of generality we may assume that 
m, = 0, t 2 0. Let (sk),>, be a strictly increasing sequence with so = 0. Let us 
put tk = X,,, k = 0, 1,  . . . The sequence (E,),,, is square integrable. Observe 
that the conditions (6), (7) and (9) hold by (1)-(3) with 

(rl =sO,r2  =sly ..., r , , = s ~ - ~ , r = ~ k - ~ , ~ = s ~ , t = s ~ + ~ ) , k =  1, 2, ... It isnot 
dacult to evaluate the constants involved: 

BO = 0, Q? = (B; + C Z ) d  + (BI +2B1 Bz - C2)u: + C,. 

Hence (10) follows from the relation @it , = ak/a,k+, , k = 1,2,  . . . , and (11) is 
I 

a consequence of the assumption BIB2 # C,. 
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To prove (8) consider two equations 

EIX; I K X,) = E(E fX: I I: X,, x,> I K X,), 
E(X,E(X, I Y, X,, X$ I Y, X,) = E(E(X, I I: X,, XJX, I Y, X,). 

The application of (1H3) to these formulas leads to 

(18) E(X: I X,) = X : + C ~ ( B ~ B ~ - C ~ ) - ~  

for any 0 6 r, < . . . 6 r, < r c s < t. Consequently, the equation (8) also 
follows with yk = L T ~  - s,2. 

Now by Theorem 2 we conclude that for any pn = 1, 2, . . . the process X is 
m-integrable and the conditional moments E((X, - X,)" I Y, X,) are uniquely 
determined by ( D ; ) , , ~  and the coefficients frcnn (1H3). 

Observe that the processes defined in the parts (iHv) of Theorem 1 fuKl 
the conditions ( l j ( 3 )  with a and b given in (4) and (5). Also each of conditional 
distributions of an increment for these processes is uniquely determined by the 
sequence of moments of the increment. Consequently, the uniqueness obtained 
in the first part of the proof yields that to prove our theorem it suffices to show 
that a and b dehed  by (4) and (5) do not depend on r , ,  . . ., r,, r ,  s ,  t ,  n 2 1. 
(Hence a and b are constant for the whole process and determine exactly one of 
the conditions (i)-(v) for the process not only for some r l ,  .. ., rn, r ,  8 ,  t.) 

To this end observe that, by (18), 

Now apply (1)-(3) and (18) to 

After some computations we get 

Observe that, on the other hand, by 

for any t > 0 we have 

E(X:)LT;~ = a = const. 

Now (19) implies u = C, (B, B, - C2)- = a by definition. Also, by (19), from 
the equations 

E(XrX:) = E(E(Xr I XJX:) = E(XrE(X: I Xr)) 

for any t > 0 we have 

(20) E(X:)O; - 3 ~ , 2  = P = const. 
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Consider once again a pair of equations 

E(X*EIX? I Y, X,, X,) I x X,) = E(E(X, I Y, X,, X,)X: I I: X,), 
E(XiE(X? I Y, X,, XJ I Y, X,) = E ( E W  I I: X,, XJX? I K X,). 

By (1)-(3), (18) and (19) applied to the above formulas we evaluate the 
conditional moment of the fourth order: 

Hence (20) implies P = a2 +2C,C,(B, 3, - C,)-' and by the definition (5) we 
get b = b-a2 = const. H 

Remark. The general recurrence formula for the conditional moments of 
the increments was obtained in [17]. 

Acknowledgement. I am greatly indebted to Professor T. Bojdecki for 
many valuable remarks, especially for pointing out a mistake in the first draft 
of the paper. Also discussions with M. Rutkowski are highIy appreciated. 
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