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Abstract, Capacities of quantum mechanical channels are de- 
fined in terms of mutual information quantities. Geometry of the rela- 
tive entropy is used to express capacity as a divergence radius. The 
symmetric quantum spin 1/2 channel and the attenuation channel of 
Boson fields are discussed as examples. 

1. Hmtroductism. A discrete communication system - as modeled by Shan- 
non - is capable of transmitting successively symbols of a finite input alphabet 
(x,, x,, . . ., x,). In the stochastic approach to the communication model it is 
assumed that the input symbols show up with certain probability. Let pji be the 
probability that a symbol xi is sent over the channel and the output symbol 
y j  appears at the destination. The joint distribution pji yields marginal dis- 
tributions (ply p,, .. ., pm) and (q , ,  q,, .. . , qk) on the set of input symbols and 
output symbols, respectively. Shannon introduced the mutual information 

P ji I = zpji log- 
i,i PA j 

in order to measure the amount of information going through the channel. 
The interest in quantum communication channels arose in the late 1960'. 

The scheme of a quantum communication system is not different from a clas- 
sical one, however, zero point fluctuation (noise) cannot be avoided in quantum 
systems. 1mportant recent devices for communication are based on optical fiber 
which is a quantum object. Hence we may assume that the actual signal trans- 
mission is over a quantum mechanical medium which is described in the usual 
Hilbert space formalism of quantum theory. Coding, actual signal transmission 
and decoding (or measurement) are the main components of the communica- 
tion chain. The splitting of the communication chain into these three parts 
C-T-M is somewhat arbitrary. The parts can be investigated individually and 
their capacity can be defined by means of mutual information. 
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Our approach to capacity is based on quantum mutual information which 
is defined in terms of relative entropy (or informational divergence). Therefore, 
relative entropy is the basic tool in the paper. The capacity is not compared 
with performance bounds of classical coding (as in [ 5 ]  and [13]) because we 
are mainly interested in the purely quantum part of the channel. Section 2 con- 
tains some generalities of quantum communication channels, mutual inforrna- 
tion and relative entropy. Kholevo's bound is also discussed and we show that 
it is rarely achievable. In Section 3 our capacities are introduced and the 
quantum mechanical counterpart of Csiszir's information geometry is used to 
realize the pure quantum capacity as the divergence radius of the range. The 
toy example of symmetric quantum spin 1/2 channel is used to demonstrate our 
ideas. We verify that the pure quantum capacity of this channeling transfor- 
mation is the same as the performance bound tiom coding (see [5]). Section 4 
treats an infinite-dimensional example, the attenuation channel of Boson fields. 
The channeling transformation is treated in the abstract Weyl algebra setting 
as well as in Fock representation. It is proved that the capacity of the at- 
tenuation channel is in6niteY however, the transmission of arbitrarily much 
information requires inhite energy. 

2. Genwalities of quantum meclamical cbnrnels. To each input symbol 
xi there corresponds a signal state rpi of the quantum communication system, 
qi functions as the codeword of xi. The signal states pi are mostly pure but 
they can be non-orthogonal. However, we do not make any assumption on 
them at this level of generality. The channeI state is a convex combination 

whose coefficients are the corresponding probabilities, pi is the probability that 
the letter xi should be transmitted over the channel. 

In the mathematical sense the quantum channeling transformation A* is an 
m e  transformation of the state space of the input quantum system into the 
state space of the output quantum system. (The notation A* is used here 
because very often A* is the duaI mapping of a linear transformation of obser- 
vable~.) At the output some sort of detection scheme retrieves the transmitted 
information. To each output symbol yj there corresponds a non-negative ob- 
servable Aj, that is a self-adjoint operator Aj on the Hilbert space #, such that 
L A j  = I. (Some people speak about ejJects, or call (Aj) a generalized measure- 
ment). In terms of the quantum states the transition probabilities are @*pi) (Aj) 
and the probability that xi was sent and yj is read is 

(2.2) Pji = pi (A*yi) (Aj). 

On the basis of these joint probability distributions the classical mutual informa- 
tion (1 .l) is given. Kholevo's theorem provides a fundamental bound for the mu- 
tual information in terms of the quantum von Neumann entropy. Before stating 
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Kholevo's result, we review the simplest entropy quantities used in quantum 
information theory, for details see [lo]. 

The relative entropy of two states is defined (following Umegaki [14], 
Lindblad [8] and Araki [I]) as 

where Dl and D, are the corresponding density operators. (This formula ex- 
tends the Kullback-Leibler information measure.) We shall use a kind of alge- 
braic language and view the states as linear functionals on (operator) algebras. 
The basic.prperty of relative entropy is its monotonicity under channeling 
transformation. More precisely, if a: d + a is a unitial (completely) positive 
mapping between the algebras d and 8, that is, the dual a* is a channeling 
transformation from the state space of a into that of d, then 

Relative entropy (or information gain) is the fundamental information quantity, 
many other information quantities are expressed by it. For example, the von 
Neumann entropy is 

(2.5) S(p) = -Tr(DlogD) = sup{zAjS(cpj, q): x;ljqj = cp, Aj  2 0). 
j j 

Let a: d -,a be positive unitial mapping and q be a state of 33'. So cp is an 
initial state of the channel a*. The quantum mutual entropy is defined after [9] as 

(2.6) I(v; a) = sup(CAjS(qj0a, qoa): CAjqj = p), 
j j 

where the least upper bound is over all orthogonal extremal decompositions. 
(One checks easily that this formula reduces to (1.1) when d = d and 99 
= Cm since in this case the orthogonal extrernal decomposition is unique and 
(PS r P ~ Y  . - - 3 PA = Ci ~ i a i . 1  

THE~REM 2.1. With the above notation the inequality 

holds true. 

Kholevo [6] proved this inequality in 1973 when the concept of quantum 
relative entropy was not well understood yet. Kholevo's upper bound is 

Let Cm, B ( S ) ,  B ( X )  and Ck be operator algebras and consider the mappings 
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So the duals of the positive unitial mappings a, A and B correspond to the 
measurement, quantum state transmission and coding procedures, respectively. 
In this terminology the upper bound is the mutual information I ( p ,  BOA) of 
the quantum channel a with input quantum input state p (where p ((el, c,, . . . , c,,,)) 
= z i p ,  ci) and the classical mutual information I becomes the quantum mutual 
information I ( p ,  P-oAoct) of a composite quantum channel. So Kholevo's theo- 
rem -is read as 

which follows from the monotonicity of the quantum mutual information. For 
the details see [lo], in particular pp. 139-140. It is noteworthy that these ideas 
work in the continuous case as well as it was observed also in [IS], 

Yuen and Ozawa [I51 propose to call Theorem 1 the fwndarnental theorem 
of quantum communication. The theorem bounds the performance of the detec- 
ting scheme. We see that in most cases the bound cannot be achieved. Namely, 
the bound may be achieved in the only case when the output states A* ((pi) have 
commuting densities. 

PROPOSITION 2.2. If the states As(cpi), 1 d i d m, do not commute, then 

I = x pji log& < S (A* ( cp ) )  - pi S (A* (p i ) )  
i . j  Piqj i 

is a strict inequality. 

In the terminology of Chapter 8 of [lo] the equality in Kholevo's theorem 
means that the measurement channel ol is sdtlcient for the states A* ((pi), 1 < i < m, 
and the sufficiency has several characterizations, for example, the existence of 
states oj of the output quantum system such that 

C qi (Aj)  oj = qi for every i. 

In particular, if the bound is achieved, the states A* ( p i )  have to commute. 
Suppose that the state A* (qi) has a density Di and let D = zi piDi (which is the 
density of A* (q)). Then the generalized measurement Ai = DiD-l achieves 
Kholevo's bound. (The operator Dill-' is well defined even if D is not invert- 
ible, because the kernel of D is contained in that of Di.) The technicalities of the 
detailed proof depend very much on the level of generality. For finite dimen- 
sion one has to investigate the equality case in the Jensen inequality and this 
was carried out by Kholevo [6]. We consider now the infinite-dimensional case 
but under the restrictive assumption of faithfulness. Since A* does not play any 
role, we skip it from the notation. The proof of the next theorem uses the 
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idea of the paper [12] and the proof presented here is a bit sketchy. (The 
interested reader may consult [12] for the more detailed justifwation of the steps.) 

THEOREM 2.3. Assume that cp = zi pipi and there is a sequence (a,) of gene- 
ralized measurements suck that 

Ifthe limit ispnite and the states pi are faithfil, then the f m i l y  (qi) must commute. 

P r o  of. Since S (c (qi), uz ((P)) < S (qi, q), the assumption implies that 

Let Di, D be the statistical operators of rpi, 50, respectively. In the sequel we 
shall use the relative modular operator technique and we work on the Hilbert 
space X of Hilbert-Schmidt operators. There exists a positive operator A i  such 
that (AD:/': A E B (X)) is a core for At /2 ,  and 

In fact, the relative modular operator A ,  is the extension of the linear operator 
AD:'' wD1/'A defined on a dense linear subspace of X .  In terms of the rela- 
tive modular operator, we have 

0 

Similarly, 

where the probability vector d:!i2 (d,) corresponds to the state a: pi (u,*q) and 

(Note that is the relative modular operator of aXp with respect to ol,* (qi) 
but, due to the simple situation coming from finite dimension and commuta- 
tivity, we may just regard it as a vector.) Since 

(d.1!i2, + t ) -  l a:!:) < (D:12, (Ai+ t)-I D:/2)  for every t > 0 and i ,  

our assumption implies that 

From this we infer that 
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Now we consider the function Fi(z)  = AqDl/2. We know that D:I2 is in 
the domain of A:/'. The range of Af12 contains the operators Dlt2A for a 
bounded A. Since IID-1/2 D!t2 1 1  < p i  lI2, we may choose A = D-'I2 D:t2, and 
infer that ~ ~ ' 1 '  is in the domain of A; l I 2 .  AS a consequence, the function Pi(z) is 
analytic on the strip { z  E C: - 1/2 < Rez < 1/21. We should not gather so 
much with fn,i(z) = S;,id:!:, because it is analytic on the whole complex plain. 

Our next aim is to show that 

if --1/2 < Rez < 1/2 for the contraction KYi defined by 

KPi  (a, d,l!t) = a, (a,,) Dtt2.  

Since we have an analytic function at our disposal, it suffices to prove (2.11) for 
0 c s < 1/2 in place of z. For 0 < s < 1/2 we obtain 

So we may consider in (2.11) a pure imaginary z = it: 

T/,,i (F ,  (it)) = T/,,i(S!,i di/i2) + Ait D!t2 = Dit ')I2 

and 

a,, (at,.) ~ : / 2  + (Dit Drit) ~ i l '  

in the Nilbert-Schmidt norm. The strong operator convergence follows from 
the Hilbert-Schmidt norm convergence and we arrive at 

(2.12) an (a$) + (Dit D; ") (strongly). 

In particular, D"D;" is a unitary group for fixed i, and D and Di must 
commute. is 

3. Capacity of channels. Let 2 and X be the input and output Hilbert 
spaces of a quantum communication system. The channeling transformation 
A*: Z (S') + Z (X )  sends density operators acting on 2 into those acting 
on X.  A pseudo-quantum code is a probability distribution on Z(%) with finite 
support. So { (p i ) ,  (cpi)} is a pseudo-quantum code if (pi) is a probability vector 
and cpi are states of B(H). The quantum states cpi are sent over the quantum 
mechanical media, for example, optical fiber, and yield the output quantum 
states A*cpi. The performance of coding and transmission is measured by the 
mutual information 
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Taking the supremum over certain classes of pseudo-quantum codes, we obtain 
various capacities of the channel. Here we consider one subclass of pseudo- 
-quantum codes. A quantum code is defined by the additional requirement that 
{rp,} is a set of pairwise orthogonal pure states. Correspondingly, we arrive at 
two alternative concepts of capacity: 

(3.2) C,,(A*) = sup (I((pi) ,  (cpi), A): (Cpi ) ,  (pi)) is a pseudo-quantum code] 
and 

(3.3) C, (A*) = sup { I  ((pi), ( y $ ,  A*): ((pi),  (cpi)) is a quantum code). 
. - 

We can write C,(A*) in a slightly different form by using the notation (2.6): 

(3.4) Cq (A*) = sup { I  (rp, A*): cp is an input state). 

The capacity C,  may be viewed as the characteristic of the purely quantum 
mechanical signal transmission. 

It follows from the definition that 

Cq (-4 *) G Cm (A*) 

holds for every channel. 

EXAMPLE 3.1. Let A* be a channel on the 2 x 2 density matrices such that 

A*: (; 44;; 3. 
Consider the input density matrix 

For i 1/2 the orthogonal extremal decomposition is unique; in fact, 

and we have 

I (D1 ,A*)=O for A#1/2. 

However, I (Dl,,, A*) = log2. Since C ,  (A*) < C,, (A*) < log2, we conclude 
that C, (A*) = C,, (A*) = log2. 

The example shows that the quantity I(cp, A*) may be discontinuous at 
cp when cp has some degeneracy in the spectrum. 

In order to estimate the quantum mutual information, we introduce 
the concept of divergence center. Let {mi: i~ I) be a family of states and 
R > 0. We say that the state w is a divergence center for {mi: i ~ l )  with 



186 M. Ohya et al. 

radius < R if 

S(wi, o) < R for every i ~ 1 .  

In the following discussion about the geometry of relative entropy (or diver- 
gence as it is called in information theory) the ideas d [3] can be recognized 
very well. 

LEMMA 3.2. Let ((pi), (rpi)) be a pseudo-quantum codefor the channel A* and 
w be a divergence center with radius < R for {A*rpi). Then 

.. . .. . 

'(bi), (~i)y A*) < R. 
P r o  of. We assume that the states A*cpi, A*cp = xi pi A4qi and o have 

finite entropy and their densities are denoted by Di, D and D', respectively. 
We have 

- S (A*cpi)- TrD, log D' 6 R, 

and hence 

(3.5) xpiS(A*qi, A*q) = - EpiS(A*qi)-Tr~logD 
i i 

6 R-TrD(1ogD-logD') = R-S(A*rp, o). 

The extra assumption we made holds always in finite dimension. When the 
entropies are not finite but the relative entropies are so, one has to use more 
sophisticated methods for the proof. It is quite clear that inequality (3.5) is close 
to equality if S(A*cp,, o) is about R and CipiA*cpi is about o. 

Let {ai: i ~ 1 )  be a family of states. We say that the state w is an exact 
divergence center with radius R if 

R = inf sup {S (mi, q)) 
i 

and o is a minimizer for the right-hand side. (When R is finite, then there exists 
a minimizer, because q c p ~  sup {S(oiy rp): i E I) is lower semicontinuous with 
compact level sets; cf. Proposition 5.27 in [lo].) 

LEMMA 3.3. Let $o, and o be states of B ( X )  such that the Hilbert space 
X is Jinite dimensional and set 

If S(llro, w )  and S ( $ l ,  w)  are $nite and 
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P r o  of. Let the densities of $, and w be DL and D, respectively. Due to the 
assumption S($n, a>) < 4- co, the kernel of D is smaller than that of D,. The 
function f (A)  = S (cp,, o) is convex on [O, 11 and f (A) 2 f (1) (cf. Proposition 3.1 
in [10]). It follows that f' (1) < 0. Hence we h3ve 

= S($I, ~ - - S ( $ O ,  w ) + S C ~ ~ ,  $ 1 )  4 0. 

This is the inequality we had to obtain. 
We note--that in the daerentiation of the function f (A)  the well-known 

formula 

can be used. er 

LEMMA 3.4. LRt (mi: i c I }  be afinite set of states of B ( X )  such that the 
Hilbert space X isfinite dimensional. Then the exact divergence center is unique 
and it is in the convex hull on the states mi. 

Proof, Let K be the (closed) convex hull of the states w l ,  m2, . . . ,0,  and 
let o be an arbitrary state such that S(wi, o) c + m. There is a unique state 
o E X such that S(o',  o) is minimal (where w' runs over K),  see Theorem 5.25 
in [lo]. Then 

~ ( I w ~ + ( l - I Z ) w ' , w ) > S ( w ' , w )  for every O < A < 1  and 1 < i d n .  

It follows from the previous lemma that 

Hence the divergence center of ofs  must be in K. The uniqueness of the exact 
divergence center follows from the fact that the relative entropy functional is 
strictly convex in the second variable. ria 

THEOREM 3.5 .  Let A*: Z(%) -+ C ( X )  be a channel with Jinite-dimension- 
a1 X .  Then the capacity C,,(A*) is the divergence radius of the range of A*. 

Proof. Let ((pi), (cpi))  be a pseudo-quantum code. Then I(Ipi) ,  ( r p i ) ,  A*) is 
at most the divergence radius of {A*qi)  (according to Lemma 3.2), which is 
obviously majorized by the divergence radius of the range of A*. Therefore, the 
capacity does not exceed the divergence radius of the range. 

To prove the converse inequality we assume that the exact divergence ra- 
dius of A* ( E ( S ) )  is larger than ~ E R .  Then we can find rp,, qz, . . . , CP,E Z (A?) 
such that the exact divergence radius R of A* (cp,), . . . , A* (rp,,) is larger than t .  
Lemma 3.4 states that the divergence center w of A* ( c p , ) ,  . . . , A* (q,) lies 
in their convex hull K. By possible reordering of the states rpi  we can achieve 
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that 

Let K' be the convex hull of A* (q,), . . . , A* (rp.). We claim that w E K'; we 
choose o'EK' such that S(rol, w) is minimal (w' is running over K'). Then 

for every ,l . . < i < k and 0 < E < I, due to Lemma 3.3. However, 

for k < i < n and for a small E by a continuity argument. In this way, we 
conclude that there exists a probability distribution Ipl, p,, . . . , p,) such that 

k 

piA'cpi = o, S(A"cpi, o) = R.  
i =  1 

Consider now the pseudo-quantum code ((pi), (cpi)) such that 

So we have found a pseudo-quantum code which has quantum mutual infor- 
mation larger than t. The channel capacity must exceed the entropy radius of 
the range. 

Up to now our discussion has concerned the capacities of coding and 
transmission, which are bounds for the performance of quantum coding and 
quantum transmission. After a measurement is performed, the quantum chan- 
nel becomes classical and Shannon's theory applied. The total capacity (or 
cZassicaZ capacity) of a quantum channel A* is 

where-the supremum is taken over both all pseudo-quantum codes (pi), (qi) and 
all measurements y*. Due to the monotonicity of the mutual information we 
have 

, EXAMPLE 3.6. Consider the Stokes parametrization of 2 x 2 density ma- 
trices : 

D, = 4 ( I  + xlal + xzaz + x3a3), 

where al , a2, 6 3  are the Pauli matrices and (x,, x, , x,) E R3 with x i  + xi + X; < 1. 
For a positive semidefinite (3 x 3)-matrix A the application T* : D, H DAx gives 
a channeling transformation when HA11 G 1. This channel was introduced in 153 
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under the name of symmetric binary quantum channel. We want to compute the 
capacities of r*. Since a unitary conjugation does not obviously change capaci- 
ty, we may assume that A is diagonal with eigenvalues 1 2 A, 2 A, 2 ,I3 2 0, 
The range of T* is visualized as an ellipsoid with (Euclidean) diameter 2R,. It is 
not difficult to see that the trace state z is the exact divergence center of the 
segment connected the states (If lla1)/2, and hence z must be the divergence 
center of the whole range. The divergence radius is 

This gives the capacity C,,(r*) according to Theorem 3.5. Inequality (3.7) 
states that the capacity C,(T*) cannot exceed this value. On the other hand, 

and we have C,, (r*) = C,  (P). 
Shannon's communication theory is largely of asymptotic character, the 

message length N is supposed to be very large. So we consider the N-fold 
tensor product of the input and output Hilbert spaces &' and X, 

N N 

HN=@c@, x N = @ x  
i=  1 i =  1 

Note that 
N N 

B(%N)=@B(wy 3(sN)=@3(x) .  
i=  1 i =  1 

The (multi-) channeling transformation is a mapping 

The main example is the rnemoryless channel, which is the tensor product of the 
same single site channels: 

The sequences C ,  (A;) and C,, (A;) of capacities are defined as above for a sin- 
gle channel. 

For a memoryless channel the sequences C,, (A;) and C,(AX) are superad- 
ditive. Indeed, if ((pi), (qi)) and ((qj), ($j))  are (pseude) quantum codes of order 
N and M, then ((pi, qj)' ( q ~ ~ @ $ ~ ) )  is a (pseudo-) quantum code of order N + M and 

follows from the additivity of relative entropy under taking tensor product. 
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One can check that if the initial codes are (pseudo-) quantum, then the product 
code is (pseudo-) quantum as well. After taking the supremum, the additivity 
(3.8) yields the superadditivity of the sequences C,,(A$) and C,(A$), So the 
folIowing limits exist and they are well known to coincide with the suprema: 

1 1 1 
(3.9) cz = hz C,, (AX), C: = lim - C,(A,$), Cz = limN CGl(A$. N 

(For multiple channels with some memory effect, one may take the limsup in 
(3.9) to get a good concept of capacity per single use.) We have 

for the capacities per single use. 

EXAMFLE 3.7. In the case of the memoryless symmetric binary channel we 
have 

c; (r*) = C; (r*) = log2 - ((1 + 412) - v((i - 4/2), 

that is the capacity of the single channel coincides with the capacity per single 
use for the multiple channel. 

The proof consists in checking that the trace state remains the divergence 
center of certain states in the range. Since z = (rp, + q2)/2 for certain output 
states cp,, cp2 such that S(cpi, T) is the capacity, we have 

Due to symmetry, the trace state is the divergence center, the exact divergence 
radius is n times S ( q i ,  z) according to the additivity of the relative entropy. 
This implies that the entropy C,", equals the single site one. The argument for 
C," is similar to the single site case. 

The work [5] deals with C,, (A*) in detail, and, among other things, 
a coding theorem relates C,*i to the code rate of a sequence of pseudo-quantum 
codes and measurements with asymptotically vanishing average error probabil- 
ity. The picture looks rather similar to Shannon's coding theorem. (Note that 
in [53 our capacity C,, was called pseudo-capacity because the authors were 
interested in the classical capacity.) 

The relations among C,,, C, and C,, form an important problem, worthy 
of study. For a noiseless channel, CC1 = logn was obtained in [5] ,  where n is the 
dimension of the output Hilbert space (actually identical to the input one). 
Since the trace state is the exact divergence center of all density matrices, we 
have C,, = logn and also C, = logn. We expect that C, < C,, for "truly quan- 
tum mechanical channels" but C z  = CG = CT must hold for a large class of 
memoryless channels. 

In the case of the binary symmetric channel, all the three capacities coin- 
cide as computed in Example 3.7 and in 151. 
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4. The rattepllaation charnel. First we discuss the attenuation channel in the 
context of the Weyl algebra in a representation free way. It will turn out 
somewhat later that what we are describing is identical to the attenuation 
channel defined in terms of the bosonic Fock space in 191. 

Let a be a non-degenerate syrnplectic form on a linear space H. Typically, 
2 is a complex Hilbert space and a(f, g) = -1m { f, g). The Weyl algebra 
CCR (A?) is generated by unitaries ( W (f ): f E 2') satisfying the Weyl form of 
the canonical commutation relation: 

(4.1) . - 
W(f W(8) = d"u'e' W (f + g) (A  g E *. 

Since the linear hull of the unitaries W(f) is dense in CCR(X), any state is 
determined uniquely by its values taken on the Weyl unitaries. The most im- 
portant state of the Weyl algebra is the Fock state which is given as 

The GNS Hilbert space corresponding to the Fock state is called the (bosonic) 
Fock space r ( H )  and the cyclic vector 9 is said to be a vacuum. The states 

are called coherent states and they are induced by the coherent vectors 

in the Fock representation R F .  We have 

(4.4) <@,, Qg) = rp (W(f )* W(g)) = exp (-311g-f 11 2 }  ~ X P  1 -io(fl g)) 

= expi-*(llf 1 1 2 +  llsl12)+<fl g)}, 
and 

The field operators are obtained as the generators of the unitary groups 
t H RF (W(tf)) in the Fock representation. In other words, B (f) is an unboun- 
ded self-adjoint operator on r (2)  such that 

with an appropriate domain. The creation and annihilation operators are de- 
fined as 

a*(f)=i(Btif)-iB(f)), atf)=4(B(if)+iBtf)). 

The positive self-adjoint operator N (f) = a* (f) a (f) has spectrum Z +  
and it is called the particle number operator (for the "f-mode"). 



192 . M. Ohva et al. 

Let T be a symplectic transformation of to 8 $ X ,  i.e., u(f, g) 
= c (Tf, Tg). Then there is a homomorphism 

a ~ :  CCR(H) + C C R ( 2  8 X )  
such that 

We may regard the Weyl algebra CCR (Z $ X )  as CCR(%) @3 CCR(Z) and, 
given a state y$ on..-CCR(&'), a channeling transformation arises as 

where the input state o is an arbitrary state of CCR (#) and A E  CCW (X). (In 
the language of optical communication, i,b is called a noise state.) To see a con- 
crete example discussed in [9], we choose Sf' = X ,  t,h = y and 

If la12+ lb12 = 1 holds for the numbers a and b, this S is an isometry and 
a symplectic transformation, and we arrive at the channeling transformation 

In order to have an alternative description of A* in terms of density operators 
acting on r ( H )  we introduce the linear operator V r ( H )  + r ( X ) @ T ( X )  
defined by 

V z F  (A) @ = zF (aT (A)) @ @I @ . 
We have 

and hence 

LEMMA 4.1. Let w be a state of CCR ( X )  which has density D in the Fock 
representation. Then the output state A*w of the attenuation channel has density 
Tr2 VDV* in the Fock representation. 

Proof. Since we work only in the Fock representation, we skip % in the 
formulas. First we show that 

for every f EZ. (This can be done by computing the quadratic form of both 
operators on coherent vectors.) Now we proceed as follows: 
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which is nothing else but ( A * w ) ( ~ ( f ) )  due to (4.9). ra 

The lemma states that A* is really the same (attenuation) channel discus- 
sed in [9] or [lo], p. 305. 

We note that A is a so-called quasi-free completely positive mapping of 
CCR (a?')- given as 

(4.12) . - A (w(f 1) = w ( a f  exP ( - fr  11 bf 11 =I 
(cf. 141 or Chapter 8 of [ll]). 

PROPOSITION 4.2. I f  $ is a regular state of CCR(X), that is t H $(W(t f ) )  
is a continuous function on R for every f E 8, then (A*)" ($) 4 cp pointwise. 
(q denotes the Fock state.) 

Proof. It is enough to look at the fonnula 

and the statement is concluded, H 

It is worth noting that the singular state 

is an invariant state of CCR (S). On the other hand, the proposition applies to 
states with density operator in the Fock representation. Therefore, we have 

COROLLARY 4.3. A* regarded as a channel of B (r(#)) has a unique in- 
variant state, the Fock state, and correspondingly A is ergodic. 

A ~ i s  not only ergodic but it is completely dissipative in the sense that 

(4.1 3) A (A* A) = A (A*) A (A) 

may happen only in the trivial case when A is a multiple of the identity. The 
authors are grateful to M. Fannes and A. Verbeure for this information (private 
communication). In fact, 

where as is given by (4.6) and (4.8), and o ( ~ ( f ) )  = exp{- llbf 112} is a quasi- 
-free state. Here id @ w is just a conditional expectation which leaves invariant 
a separating product state. 

LEMMA 4.4. Let A* be the attenuation channei. Then 

13 - PAMS 17.1 
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when t h  supremum is taken over all pseudo-quantum codes ((pi);= 1 , (qna)B= 1) 

applying n coherent states. 

Proof. We know that A*qf = cp,,, so the output {A*pflll, . . . , A*.cpf(nI,,) 
consists of n pure states. The corresponding vectors of r(* span a Hilbert 
space of dimension k < n. Since the trace state an that Hilbert space is a diver- 
gence center with radius < log k < log n, log n is always a bound for the mutual 
information according to Lemma 3.2. 

In order to show that the bound logn is really achieved we choose the 
vectors f (k) such that 

f (k) = Lkf (1 G k < n), 

where f~ 2 is a fixed non-zero vector. Then in the limit 1 -, co the states 
pxck) become orthogonal, since 

whenever k # rn. In the limit 1 + oo the trace state (of a subspace) becomes the 
exact divergence center and we have 

This proves the lemma. rn 

The next theorem follows directly from the previous lemma. 

THEOREM 4.5. The capacity C,, of the attenuation channel is injinite. 

Some remarks are in order. Since the argument of the proof of Lemma 4.4 
works for any quasi-free channel, we can conclude C,, = oo also in that more 
general case. Another remark concerns the classical capacity Ccl. Since the 
states q ~ ( , ,  used in the proof of Lemma 4.4 commute in the limit 1 -, m, the 
total capacity Ccl is infinite as well. C,, = m follows also from the proof of the 
next theorem. 

THEOREM 4.6. The capacity C, of the attenuation channel is infinite. 

Proof. We follow the strategy of the proof of the previous theorem, but 
we use the number states in place of the coherent ones. The attenuation chan- 
nel sends the number state In) (nl into the binomial mixture of the number 
states 

10) <OI = @, 11) (11, - - * ,  In) <nl. 
Hence the commuting family of convex combination of number states is in- 
variant under the attenuation channel, and the channel restricted to those 
states is classical with obviously infinite capacity. Since C, (as well as C,,) 
cannot have a smaller value, the claim follows. H 

Let us make some comments on the previous results. The theorems mean 
that arbitrarily large amount of information can go through the attenuation 
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channel, however the theorems do not say anything about the price for it. The 
expectation value of the number of particles needed in the pseudo-quantum 
code of Lemma 4.4 tends to infinity. Indeed, 

which increases rapidly with n (here N denotes the number operator). Hence 
the good question is to ask for the capacity of the attenuation channel when 
some energy constraint is posed: 

(To be more precise, we have posed a bound on the average energy, different 
constraints are also possible, cf. [2].) Since A ( N )  = a2N for the number op- 
erator N, we have 

The solution of this problem is the same as that of 

and the well-known maximizer of this problem is a so-called Gibbs state. There- 
fore, we have 

(4.18) C (E,) < a2E,  -k log (a2Eo + 1). 

This value can be realized as a classical capacity if the number states can be 
output states of the attenuation channel. 
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