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Abstract. In [12] it was proved that the process of waiting times 
for single server queues is asymptotically stationary if 

(1) a generic process X = (Xk, k 2 1) is asymptotically stationary, 
(2) X satisfies condition AB and 
(3) the two-sided stationary extension X* = {Xt, - m < k < a) 

of the stationary representation of X is such that z;= -.Xj* -C - m ae .  

The paper gives a detailed characterization of condition AB. 
Next, the suficient conditions on the input to a tandem of queues are 
given under which the inputs to the nodes in that tandem satisfy 
conditions (1)-(3). 

1. Introduction. An important problem of queueing networks is their stabil- 
ity meant as an asymptotic stationarity (shortly, AS) of some processes related 
to those networks. This subject is considered here for single server queues 
(nodes) in series with unlimited interstage storage and FIFO discipline of ser- 
vice (see [5]). Units enter the node and after servicing there they immediately 
go to the second node where their service starts if the node is empty; otherwise 
they join the queue and wait for the service. After servicing they go to the next 
node, and so on. In such a case an output from a node is an input to the next 
one. Therefore the problem of an AS of these queueing networks leads to 
finding extra conditions on the output under which an AS of the input gives the 
AS of the output and holding those extra conditions for the output. Notice that 
it is enough to consider this problem for the tandem of two single server 
queues. To formulate this problem let Inl, v 2 ,  ul) = {(ul,k, Vz,k, ulbk), k 2 1) be 
a generic process for a tandem of two single server queues, where viFk is the 
service time of the k-th unit in the i-th system, i = 1 ,  2, and u l ,  is the interar- 
rival time between the k-th and (k + 1)-st units to the first system. Furthermore, 
let w , ,  be the waiting time of the k-th unit in the i-th system, i = 1, 2, and 
tizgp the interarrival time between the k-th and (k+l)-st units to the second 
system. Of course, tiz,, is also the interdeparture time between the k-th and 
(k+l)-st units from the first system and 
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Therefore (n,, v2, rci) is thewgeneric process for the whole system and we call it 
the input to the$rst node while (v,, a,) is the generic process for the second 
node and we call it the input to the second node. Then the problem can 
be formulated as follows: which property of the input to the first node - 
(vl,  v2, a,), jointly with its AS, does imply holding this property for the input 
to the second node - (v,, u,), jointly with its AS? To indicate the main point 
in this consideration let us put 

X i  = {Xi& = v~,k-Ui,ky k 2 I}? 
.. . 

and- let 

X f = { x t k ,  -a < k <  03) 

denote the two-sided stationary extension of a stationary representation of 
X i  (if X i  is asymptotically stationary) and S; (9 = xy=k + , X t j ,  k ( 0, 
i = 1, 2. In [I21 it was shown that if X1 is AS and its stationary representation 
is such that S*_,(l) + -a as n + 00, then ( w l ,  X i )  is AS iff the following 
condition AB holds: 

where So (i) = (I, S,,(1) = x:=, Xivj for k 2 1. Henee and from (1 .1)  it follows that 
if (v,, v,, u i )  is AS and X1 satisfies condition AB and S4;,(1) + - m a.e., then 
(a , ,  u 2 )  is also AS (Lemma 5.1). Therefore the main problem is the following: 
which properties of (v,, a 2 ,  ul) jointly with its AS do guarantee holding con- 
dition AB for X, and X, as well as holding STn(i) + - m a.e. as n + m 
for i = 1, 2? 

The paper gives the answer to the last question. The main results are the 
following. In Section 3, a characterization of condition AB is given. Namely, 
the sufGcient conditions for holding condition AB under different types of AS 
are given for any sequence of random variables X = (X,, k 2 I), where the 
index i related to the label of the node is dropped. For example, X satisfies 
condition AB either if it is strongly AS, ergodic and EX: < 0 (Corollary 3.21, 
where X* = (X: ,  -co < k < m} is the two-sided stationary extension of 
a stationary representation of X or if it is AS in variation, z;=, X j  5 - m and z0 I = - n  X: + - m ae. as n -r m (Corollary 3.3). In Section 4 it is proved that 
n-I w i n  + 0 a.e. if X* satisfies the functional strong law of large numbers with 
EX: < 0, where w* is the two-sided stationary extension of the stationary 
representation of w. In Section 5 the sufficient conditions are given for 
(vl, v 2 ,  ul) under which X i  and X ,  satisfy condition AB. Those conditions 
guarantee the AS of the process of waiting time and a queue length for the 
tandem of queues (Theorem 1 and Corollary 5.1). 

2. Natatim. Most of the notation used here are from [12], and for com- 
pleteness we recall some of them. For a Polish metric space S, let Sm denote 
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the right-sided infinite product of S, and S" the two-sided infinite product 
of S. Any metric space is considered with the Borel c-field, and the finite or 
infinite products of metric spaces are considered with the product topology. On 
the metric spaces we consider 6 types of convergence of probability measures 
p,, to a probability measure p. Namely, putting a = n - ' z ; = ,  pj  we have: 

c l  - weak convergence; 
c, - weak convergence in mean, when p, weakly converges to p; 
c, - strong convergence, when h(3) -+ p(B)  for all Borel sets B; 
c4 - strong convergence in mean, when p,, strongly converges to p; 
c, - .convergence in variation, when llpn- p11 + 0; and 
c, - convergenw in variation in mean, when II,!i,, -pll + 0. 
The asymptotic stationarity is defined in terms of convergence of proba- 

bility measures. Namely, an Slvalued process g = itk, k 2 l), where S is a Pol- 
ish metric space, is said to be asymptotically stationary (shortly, AS) in some 
sense of convergence of probability measures, say c, if the sequence of dis- 
tributions (8 (TnO) converges in the sense c. Here dp (3 denotes the probabii- 
ity distribution of a random element Z, T is the shift: transformation on Sw, i.e. 
T(x) = { x ~ + ~ ,  k 2 1) for x = {xk, k 2 11, and T is the n-th iteration of T If 
(8(Tn<))  converges weakly or strongly or in variation, then we say that is 
weakly AS or strongly AS or AS in variation, respectively. 

Let to = {e:, k 2 1) be an S-valued process with the distribution being 
the limiting distribution of {Y (Tn()) (it is stationary and called the stationary 
representation of c), and let t* = ((2, - m < k < a) be the two-sided infinite 
S-valued process, being the stationary extension of go. 

Let X = {X,, k 2 1) be an R-valued stochastic process which generates 
the stochastic process w = (wk, k 2 1) via 

with wl 2 0 being the initial state of the process w. In the sequel we consider 
also a pair (w, q) of processes w and q = {q,, k 2 1) defined by the process 
(a, u)  = ((vk, uk), k 2 1). Then w is defined by (2.1) with X = v-u, and q, is 
defined as 

In the sequel we make no notational distinction between transformation T on 
Rm, Sm or on other infinite products and we assume that z=,, = 0 when k < n. 

3. A characterization of condition AB Let X = {Xk, k 2 1) be a random 
element of Rw, X0 = {X:, k 2 I] its stationary representation (if it exists), and 
X* = {X;, - w < k < oo) a double infinite stationary extension of XO. For 
X defme a sequence of sums So = 0, Sn = x.=,Xj. For X* define a sequence 
of sums S: = S:,o, n h 0, where S:,, = z=,,+ Xf for n < k, and Si; = 0 for 

4 - PAMS 17.1 
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- o~ < k < a. From (2.1) it follows that 

w ~ , ~  = max(Sk+w,, Sk- min Sj). 
O d j s k  

Were we will use also the following notation: 

We say that X satisfies condition AB or condit;on AB in mean if 

1 "  
lim liminf- C ~ { m a x  (Sl-St-j) < 01 = 1,  
k+qi n+m n l = l  k d j 6 t  

respectively. 
The following lemma, being a little stronger version of Proposition 2 from 

[lo], states that condition AB is necessary for the AS of w. 

LEMMA 3.1. Let X be such that either (i) the sequence ($p(TnX))  is tight or 
(ii) {n- ' xy=, P (TjX)} is tight and all limiting probability measures of all subse- 
quences, say 9(X0) (they may be dgment), be suck that S T ,  -r - co a.e. as 
n -. m. Furthermore, let (9 (w,,)} and {n-' x;=, Y (wj)) be tight in the cases (i) 
and (ii), respectively. Then X satisjies condition AB in the case (i) and condition 
AB in mean in the case (ii). 

Proof. First notice that 

(3.2) max (Sn-Sn-j) = S n - S n - k + ~ n - k + l  (X ) .  
k Q j d n  

By the assumption dealing with tightness, we infer that for any e > 0 there 
exists a positive number a such that for all n 

in the case (i), and 

in the case (ii). Hence for any b > 0 we get 



. Asymptotic stationarity of tandem of querres 51 

Using (3.3) and (3.2) we have 

(3.4) lim liminf P ( max (S, - S, - j )  < b) 
k n k d  j 4 n  

Since E and b were arbitrary, X satisfies condition AB in the case (i). In (3.4) we 
have used the Prokhorov theorem which states that for Polish metric spaces 
the tightness is equivalent to the relative compactness. 

The proof of the second assertion runs in a similar way to the above one 
with the obvious modifications of considering convergence in mean instead of 
ordinary convergence in (3.3) and (3.4). H 

In the sequel under different types of AS we will find sufficient conditions 
under which X satisfies condition AB. 

LEMMA 3.2. Let X be either (i) weakly AS or (ii) weakly AS in mean and 
SFn + -ao a.e. as n+ m. Then there exists cs nondecreasing sequence 
{ I , ) ,  2, -+ a, 1,Jn -P 0, such that 

(3,5) lim liminf P ( max (S, - Sn - j) < 0) = 1 
k - r m n - + m  k < j < l ,  

in the case (i), and 

1 "  
(3.6) lim liminf- C P ( max (Si - Si - j) < 0) = 1 

k - r m  n-a ,  ni=k k S j S l i  

in the case (ii). 

P r o  of. For any k < E ,  n 2 1, let us put 

Because X* is a two-sided stationary extension of XO, we get 

(3.7) ~ ~ , ~ = P ( ~ y a :  . j . l i=~- j+l  C Xf,+ i<O)=P(  sup S:<O) .  
- 1 C j S - k  

Since the function X H  m w C  j g f ~ j  for x = {xj, j 2 1) E Rm is continuous on Rm 
and X is either (i) weakly AS or (ii) weakly AS in mean, then for any k < I we 
have liminf,ak,,,, 2 akVl in the case (i), and liminf,n-lzy=,ak,bi 2 ak,, in the 
case (ii). Moreover, by (3.7), for any k, liminfi,,ak,l 2 ak. Hence, by Lernma 5 
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in [8], there exists a nondecreasing sequence 1, + KJ, I,Jn 40, such that 
liminf,,ak,zn,n 2 uk in the case (i) and liminf,n-I zy=, Z ak in the case (ii). 
Since ST, + - m a.e., we have ak + 1, which implies limk limn a,,,,, = 1 and 
completes the proof in the case (i). To end the proof in the case (ii) notice that 
ak,h,i 2 a k , ~ , ,  for 1 < i 4 n, which together with the above gives 

lim lim infl ok,li,i 2 lim lim infl = lim a, = 1. 
~r n,,l  k rr ni , l  k 

.This completes the proof. cr 

Now we prove the following technical lemma: 

LEMMA 3.3. Let {Z,+,  n ,  k 2 1 )  be a sequence of random variables defined 
on a common probability space such that, for each n,  k 2 1, Znnk 6 Zn,k+ and, 
for each I c ,  Zn,k 3 - t~ as n + a. Then there exists a nondecreasing sequence 

P (En) tending to infinity such that 1,Jn -t 0 and Z,,l, - cn as n -. co. 

P r o  of. Let (E~) be a sequence of nonincreasing positive numbers tending 
to 0 and let {ai) be a nondecreasing sequence of numbers tending to co. Since, 
for each k 2 1, Zn,k f: - m as n -+ CO, it follows that for each k 3 1 there exists 
an increasing sequence {n,  (k), i 2 1) tending to oo such that a (k) < q+ (k) 
and 

Moreover, by < Zn,, + we have ni (k) < ni ( k  + 1). Let ni = ni (i), i 2 1, and 

Since for i 2 k we have ni = ni(i) 2 ni(k), we obtain bi,n 2 6i,k 2 1 - g i .  Hence, 
for each k 2 1, bit + 1 as i + CQ. Therefore, using Lemma 5 from 181, we infer 
that there exists a nondecreasing sequence {k,) ,  tending to co and such that 
k,li -t 0 and bi+, + 1. Define the sequence (1,) as follows: I ,  = ki for 

< n < n i + ,  . Then (1,) is nondecreasing and ZJn < kilni < kdi + 0 as n + m. 
Now for a given a > 0 there exists i such that a, > a and we have the following 
inequalities : 

infP(Z < - a ) >  i n f P ( Z n , l n <  -ai)=inf inf P(Zn, ,n< -ai) 
n 2 n i  n b n i  j b i n j b n < n j + l  

Hence P ( Z , ,  < -a)  2 1 - E ~  t 1 as i + a, which completes the proof. 
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LEMMA 3.4. Let X be such that S, 5 - m. Then there exists a nondecreasing 
sequence (k,) tending to a, such that n-k, + a, kJn + 1, and 

Proof. The proof follows by using Lemma 3.3 with Z,,, = S, -in&, j,kSj, 
n, k 2 1. Then k, = n-I,,. This completes the proof. 

In the sequel we will use the following remark, which is a slight modifica- 
tion of Lemma 2 from 141, p. 67. 

P Remark 3.1. Let Z,, n 2 1, be random variables. Then 2, + -a, as 
n 4 co $ every subsequence of {Z, ) ,  say {Z,#), has itseIf a subsequence, say 
{Z,,), converging to - a, with probability 1. Furthermore, ink) can be chosen in 
such a way that Z,,+i + -a, with probability 1, as k + oo for a11 positive 
integers i, 

P r o  of. The convergence Z,  5 - m is equivalent to the statement that for 
any E > 0, a > 0, there exists no such that. 

Let E~ = 1/2k and ak + m, ak < ah+,. Then for any k 2 1 there exists nk such 
that 

i d  P (Z ,  < -ak) > 1 - 1/2k. 
nbnk 

Let A, be the complement of the set (Z, ,  < -ak). Then 

so P {limsupk A,} = 0. For a given a > 0, there exists k such that a < ak and we 
have the following inequalities: 

m 

P (sup Z,, < - a) 2 P (sup Z,, < - ak) = P ( {Zn, < -ak)) 
i 2 k  i B k  i=k 

Hence and by the finiteness of x, P (Ak) we have lim, P (supi3 Z,, < -a) = 1 
for any a > 0, which means that Z,, + - a, a.e. Notice that from the above 
consideration we also infer that Z,,+i + - oo a.e. for any positive integer i 2 1. 
This completes the proof. rn 
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LEMMA 3.5. LRt X be either (i) weakIy AS or (ii) weakly AS in mean and let 
P(X EB) = P(XO E B) for all invariant sets B in Rm. Furthermore, kt SE, + - m 
a.e. as n + oo. Then for any nondecreasing sequence I ,  tending to infinity such 
that 1, < n we have 

in the ease (i), and 

in the case (ii). 

Proof. For fixed nondecreasing subsequences (nil and (1,) tending to 
infinity such that 1, < n, let us define A c R m  as the set of elements x E Rm such 
that for any positive integer k the following holds: 

limsup max 2 X ~ + ~ = - C O .  
i L,djQnrr=nr-j+l 

Of course, A is the invariant set in Rm. Using definition (3.1) we get 

max (Sn-S,-j) = S , -S , -~ ,+W, -~~+~(X) .  
I.SjSn 

Since S f ,  -, - oo a.e. as n + m, by Borovkov's result the sequence {wk(XO),  
k 2 1 )  weakly converges. Furthermore, for any sequence (I,) described above 
we have (S: - S,O- in) 5 - m, which implies 

(3.10) P max (S,O-S,O-j) = S~-S,O-L+wn-in+l(XO) -, -00. 
LS jSr 

Hence any sequence (n') contains a subsequence {nil, ni + m, such that 

(3.1 1) Sn, o - Sn, o - l,, + w,, - I,, + I (XO)  + - 

The sequence {nil can be chosen in such a way that (3.11) holds also for the 
sequence 4 = ni+ k with any positive integer k (see Remark 3.1). This means 
that P ( X O €  A)  = 1, where A is defined for the sequence {nil chosen in (3.11). 
Hence and by P ( X  E B )  = P ( X O  E B )  for all invariant sets B in Rm we have 
P ( X E  A )  = 1. Now using Remark 3.1 we get (3.8). 

In the case (ii) we also have P ( X O ~  A )  = 1, so by the assumptions and 
Remark 3.1 we have P ( X E A )  = 1, which implies (3.9). This completes the 
proof. s 

Note  1. The assumption P(X E 3) = P (XO E B) for all invariant sets B c R" 
could be restricted to d l  invariant sets A defined in the proof of Lemma 3.5. 
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LEMMA 3.6. Let rY be either (i) AS in variation or (ii) AS in uariation in mean, 
and let S t ,  4 - m a.e. as n + co. Then for any sequence ( I , )  such that 1, + m 
and n - En -+ oo we have 

(3.12) limliminfP( max (S,-Sn-j) < 0) = I 
k n k S j S l n  

in the case (i), and 

(3.13) 
1 "  

!inn lim inf - C P ( rnax (Si - Si- j )  < 0) = 1 
k k S j 4 1 ,  

in the c u e  (ii). 

Proof. By Theorems 4.3.2 and 4.3.3 from [I], p. 96, it follows that there 
exist random elements and go defined on a common probability space such 

P 
that 8 = X, 8' 2 XO, and 

1 "  
(3.14) P ( T ~ R # T " R O ) + O ~ I I ( ~ )  and - C P ( T ' R # T ' R O ) - , O ~ ~ ( ~ ~ ) .  

n i , l  

Now notice that maxkGj6r,(Sn- S,- j)  depends only on ( S j ,  j 2 n- 1, + 1). So 
B 9 

putting S,, = s=, xj, S? = x:, 8; and using 9 = X, 8' = XO, and (3.14) 
I 1. 

we get 

2 P( max (&-,9n-j) < 0,  T,-I~R = T~-I~RO) 
k S j S l n  

= rnax ( 9 ~ - ~ - j ) < ~ , ~ - ' n R = ~ n - ' n R 0 )  
p(k<*Sin  

2 P ( rnax (9; - gz- < 0) - P (T-'" 8 # 7'"-'" 
k $ j d l ,  

go) 

= P (  rnax ST<O)-o(1). 
-lndj< -k 

Now passing to infinity in the above first with n and next with k and using 
S?, + - ao a.e. we get (3.12). 

The proof of the convergence (3.13) runs in a similar way to that of (3.12) 
with the obvious modifications of considering convergence in mean instead of 
ordinary convergence in (3.15). This completes the proof. 

Now using 

(3.16) max (Sn - Sn - j )  = max ( rnax (S, - Sn - J, max (S, - S, -I)) 
k $ j < n  k S j G 1 ,  InSj-<n 

and Lemmas 3.2-3.6 we get the following coroIIaries: 
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COROLLARY 3.1. Let X be either (i) weakly AS or (ii) weakly AS in mean, 
and Jet P ( X E B )  = P ( X o ~ B )  for all invariant sets B in Rm. Furthermore, let 
S*, -+ -a a.e. as n + m. Then X satisJies condition A 3  in the case (i) and 
condition AB in mean in the case (ii). 

COROLLARY 3.2. Let X be either (i) strongly AS or (ii) strongly AS in mean, 
and let X* be ergodic and n 2 EX: c 0. Then X satisftes condition AB in the 
case (i) and condition AB in mean in the case (ii). 

CORQLLARY 3.3. Let X be either (i) AS in variation or (ii) AS in variation in 
P 

mean such that S, + - CQ, and ST, 4 - m a.e+ as n + m. Then X satisfies 
condition AB in the case (i) and condition AB  in mean in the case (ii). 

Corollary 3.1 foIlows from (3.16) by using Lemma 3.2 to the first term of 
(3.16) and Lemma 3.5 to the second term. Since the strong AS implies the weak 
AS, Corollary 3.2 follows from Corollary 3.1 by using Proposition 1 from [7]. 
Corollary 3.3 follows from (3.16) by using Lemma 3.4 to the second term of 
(3.16) with 1, = k,, where (k,) is given in Lemma 3.4, and by using Lemma 3.6 
to the first term of (3.16). In view of Note 1 the class of all invariant sets in 
Corollary 3.1 could be restricted. 

Remark 3.2. AEE the above Iernmas and Corollaries 3.1-3.3 are true in the 
case when X is a random element of Rmsm = (Rm)" and w = {w,, k 2 1 )  is dejined 
by X via (2.1) where all operations are meant in the coordinatewise sense. 

4. Almost sure convergence n - w 5. + 0. To investigate an AS of the process of 
the interdeparture times it is needed to know an asymptote of n- w, and n- w i n  
as n + - m. Here w:+~ = supj<. SS, where ST, = zbj+, X? for - m < n < m, 

j < n, and S,* = Sgo for n < 0. Because of the stationarity of w* = (wz, 
- m < k < m) we have n-l  w i n  5 0 as n + m. 1n the following   em ma 4.1 we 
give the sufficient conditions for the almost sure convergences n-I win -, 0 and 
n-l  wn -+ 0 as n -, m. They are expressed in terms of the almost sure conver- 
gence in the functional space D LO, m) (for the metric see [13]), precisely in 
terms of the functional strong law of large numbers for the sequences X and X*. 
To state this let us define the processes o n ,  Sn and S$ as follows: 

wn (t) = n-I w~,,~, Sn ( t )  = n-  SIntl and S: (t)  = n-I S5 ,,, for t 2 0. 

Furthermore, let e denote the identity function e(t)  = t ,  t 2 0. 

LEMMA 4.1. (i) Let X be such that !Tn -, ae in probability (or with probabiii- 
ty  1 )  as n + m, where a < 0. Then w, + 0 and n-I w, -, 0 in probability (or with 
probability 1 )  as n + m. 

(ii) Let X* be such that S: -, ae a.e. as n + m. Then n-lw?, -P 0 a.e. 
as n+ co. 
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Proof, To prove part (i) notice that by w,, , = Sn- inf,, j,n S j  we have 
on + = f (Sn), where f (x) ( t )  = x (t)- info <,<, x (s). Using the continuity of the 
mapping f in the Skorokhod topology (see [13]) and the convergence Sn ;,.f: ae 
(or with probability 1) we get on 5 f (ae) (or with probability I). Because of 
a < 0 we have 

f(ae)(t)= sup a(t-s)=O, t 2 0 ,  
OSsSt 

which completes the, proof. of part (i). 
To prove-part (ii) define for a fixed m, m > 2, and for any positive integers 

n, j, random variables yn,j = n- +in. Since S: (1) = n-I ST, + a a.e. as 
n+oo and 

we have lim s ~ p , , ~ - . ~  yn,j 6 (m - 1)a with probability 1. Hence for any e > 0 
there exist no > 0 and j, > 0 such that 

which implies 

(4.1) P(su~supn- lSjq- ,>0)<~/2 ,  wheres=-nm-j,. 
n b n o  jcs 

Using Sz -, = Sj* -STn for j < - n < 0 we infer that for any c > 0 the following 
holds: 

n - l  sup Sz -, = SUP ( (t) - (1) < sup (S: (t) -,Tt (1)). 
-nm-c<j< -n I < t < m + c / n  I < t < m f  c 

Since the mapping x H sup, <,<,+, x (t) is continuous on the set of continuous 
functions and Sz + ae a.e., 

sup (Sz(t)-S;(l))+ sup a(t- l )=Oa.e.  a s n + c o .  
I < t < m + c  l < t S m + c  

Hence for any positive b > 0 we have 

P (sup sup (S: (t) - ,T: (I)) > b) 4 as k + co , 
n B k  l < t < m + c  

which implies that for any given E > 0 and b > 0 there exists no such that 

(4.2) P(sup sup n-1S$-n>b/2)<~/2.  
n b n o  -nm-c<j< -n 
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* Using w ? , + ~  = r n a x ( ~ u p ~ ~ ~ S ~ , - ~ ,  s~p,~,~-,S$-,,)  with s = - m - j o  we get 

P(sup n-' W ; P ; , + ~  > b) 
1r3no 

-1 * GPisupsupn Sj,-,>b/2)+P(sup sup n - 1 S z - n > b / 2 ) .  
nBno i d s  s 3 n o  s S j Q - n  

Now choosing no and j ,  such that inequalities (4.1) and (4.2) hold we get 

since E and b were arbitrary, we obtain n - l ~ * - , + ~  3 0  a.e., which in turn 
implies n-I WE, + 0 a.e. as pa 4 m. This completes the proof of part (ii) of the 
lemma. a 

To venfy the condition S,, ;,-t ae a.e. or Sz + ae a.e. as n + m, we use the 
following remark in which V. = x:=, v j ,  U. = z=, uj, n >, 1. 

Re mark 4.1. Let n-l I/, + 6 and n'l Un 4 ii in probability (or with proba- 
bility 1) as n + a, where ii and C are nonrandom. Furthermore, if Xk = VL - uk, 

then Sn + (fl-a)e in D[O,  a) in probability (or with probability 1). 

Proof. Defining processes Y.  (t) = n-' qq and 0, (t)  = n-' [I,, for t 2 0, 
we see that their sample paths are nondecreas~ng and nonnegative. Hence by 
Proposition 2.1 from [1 l] it follows that V ,  + iie and D,, + iie in probability (or 
with probability 1) as n + m. The proof of Proposition 2.1 in [ll] is complete 
in the case when the limiting process has continuous sample paths, which we 
have here. Now, because the operation of summation on the set of continuous 
functions is continuous (see [131), we obtain G- 5 (C- ii)e in D p, m) as 
n + m, which completes the proof. 

To get the convergence S: + ae a.e. we use the above remark with 
V. = ~ ~ = , C j ,  Un = Z;= ,U'_~ ,  n 2 1. 

5. Condition AB for the second node. Here we formulate the suficient 
conditions under which the input to the second node satisfies the conditions of 
Corollaries 3.1-3.3, which imply that it satisfies condition AB. First notice that 
from formula (1.1) it follows that the process of the interdeparture times u2 is 
an image of (wl ,  a,, u,) by a continuous mapping. Hence, defining 

where q is an S-valued process, we get the following lemma: 

LEW 5.1. If 5 is AS in some sense cj, 1 < j < 6, then (c, rc,) is AS in the 
same sense as 5; and a double ended stationary extension of its stationary re- 
presentation (cO, 11:) is 

(c*, ~ 2 )  = {(w?,~, v E ~ ,  uT,R, qk*, u&), - a < k < 001, 
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where (wf , I : ,  uT, q*) is a double ended stationary extension of (IVY, vy , MY, qo), 
and 

Now we give the sufficient conditions under which P (X, E B) = P (X: E B) 
for all invariant sets B in R". 

LEMMA 5.2. Let $ = (v,, v2, re,) be eithm (i) weakly AS or (ii) weakly AS 
in mean and let P (pk E B) = P (9' E B) for all invariant sets B in R3.". Then 
P (XI E B) = P(Xy E;B) for all invariant sets B in Rm. Furthermore, $ ($, wl) is 
eithm (i) weakly AS or (ii) weakly AS in m a n ,  then P (X2 E B) = P ( X i  E B) for all 
inuariant sets B in Rw. 

To prove Lemma 5.2 we use the following 

IDEA If G: Sm I+ (S1)w i s  a measu~able mapping such that TG (x) = G (Tx), 
while B is an invariant set in (S1)", then G-'B is an invariant set in S". 

Indeed, if x E G- 'B, then G ( x ) ~  B. Since B is invariant, TG (x) E B, which 
by TG (x)  = G ( T x )  gives G(Tx)  E B ,  and this implies T X  E G -  'B. 

Proof of Lemma 5.2. Applying the Idea to X1 = a,-a ,  with G(x, y) 
= x - y ,  x, y ER" and using the assumptions of the lemma for all invariant 
sets B in El" we have 

To prove the second assertion notice that if B is an invariant set in R49", 
then 

A = { ( @ , w ~ ) E B ) = { T " ( $ , w ~ ) E B )  for each n 2 1 .  

Hence A does not depend on a finite number of coordinates of the sequence 
($, wl).  Therefore assume that wl,, = 0, V ~ , ~ - U I , ~  = V ~ , Z - U I , Z  = 0. 

Now define mappings F,: RZ*" H R and F: R2." I+ Rm in x, y E Rm by 

and P ( x ,  y )  = (Fk(x, y) ,  k 2 I). Furthermore, define a mapping F: R3qm I+ 

R49" by 

Notice that 

Now we will show that for any invariant set B in R43" the set F-'B is 
invariant in R3,". To do this we need to show that if ( x l ,  x2, y ) ~  F-'B, then 
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T(xl, xz, y) E F-'B. Here, without loss of generality, we assume that x,,, - y1 
= - yz = 0. First notice that 

(5.4) F(TJCI, TXZ, TY) = (Txl, Txz, Ty, F(Tx1, Ty)), 
while F(Tx,, Ty) = (z,, It 2 11, where 

k 

z l = O ,  z ~ + ~ =  max yi+ l  and y , = ~ ~ , ~ - y ~ f o r k > l .  
1 C j 6 k i = j t l  

k+ 1 
Since y1 = y,  = 0, we have z1 7 z2 = 0 and = m a ~ o ~ ~ ~ r + l ~ ~ = ~ + ~ ~ i ,  
k 3 2 .  On the other hand, F(xl, y )  = {fk, k 3 I), where fl = 0, Fk+' 
= r n a ~ ~ ~ , ~ ~ ~ ~ = ~ + ,  y i  for k 3 1. Since y l  = y2 = 0, we obtain il = i2 = i3 = 0 
and 5k+1 = zk for k 2 1, which in turn implies F(Tx,, Ty) = TF(x,, y). The 
last equality together with (5.4) gives 

Assuming that(x,, x,, y)gF-lB,weget F(xl, x,, y)~B,i.e.(x~, x,, y, P(xl, y ) ) ~  
E B. Since B is invariant, T(x,, x2, y ,  F(xl, ~ ) ) E B  which together with (5.5) 
gives F (Tx,, Tx,, Ty) E B, so T(xl, x2, y) E F-'B. Hence F-Ill is an invariant 
set. Now defining a mapping G: R 4 7 m w R m  by 

G ( x ~ ,  XI, y, Z) = x z - y - T z - T ~ l + ~ + x l ,  
we see that 

TG(x1, xz, Y, 2) = G(Txl, Txz, TY, Tz). 

Since X2=oZ-ul-Twl-Tvl+wl+oly we obtain Xz = G(vl, v2, ul, wl). 
Hence, using the Idea and the assumptions of the lemma, for any invariant set 
B in Rm we have 

The fourth equality follows by the fact that G-lB is invariant if B is invariant, 
and next by the fact that G-lB does not depend on a finite number of co- 
ordinates of the sequence (up, v;, uy, wl). This completes the proof. rn 

In the sequel we use the notation aj = Evil -EU:,~, j = 1, 2. 

THEOREM 1. Let $ = (vl, vz, ul) be AS is some sense cj, 1 < j < 6, and let 
#* be ergodic and EvXl < Euysl for j = 1,2. Furthermore, in the cases cl and 
cz assume additionally that P ($ E B) = P ($* E 3) for all invariant sets B in R3pm. 
Then the following assertions hold: 

(i) n- l .~T,  (1) -, a, a.e. and n-l S, (1) + a1 a.e. as n -+ oo and X1 satis$es 
condition A 3  in the cases cl, c3, c5 and condition AB in mean in the cases 
c2, c4; c6.  Moreover, (wl, uz, #) is AS in the same sense as $. 



. ~symptotic stationarity of tandem of queues 6 1 

(ii) n-I  Sf, (2) -+ a,  a.e. and n-I S, (2) + a2 a.e. as n j cg and X, satisfies 
condition AB in the cases c l ,  c3, c5 and condition AB in mean in the cases 
c2, c4, c6. 

Proof, First we consider the cases c, and c,. To prove the first assertion 
in these cases notice that by Lemma 5.2 we get P ( X l  E 3) = P (%: E B) for all 
invariant sets 3 in R". This and the ergodicity of $* imply the convergences 
n-I S, (1) + al a.e. and rz-l S?, (1) + al a.e. as n 4 co. The last convergence in 
view of a, < 0 gives ST,(l) + - rn a.e. as n  -+ m. Hence and by Corollary 3.1 
we <ee that XI satisfies condition AB in the case c,  and condition AB in mean 
in the casec,. This together with Theorem 1 from [12] imply that (w , ,  9) is AS 
in the same sense as pk, and (w?, $*) is ergodic. This and the equality 
uz = uT + TwT + TvT - wf - v: and next the Idea imply that (wf , uz, $*) is 
ergodic. A similar argument gets the ergodicity of X;. 

To prove the second assertion notice that by the ergodicity of $* we get 
the following convergences : 

and 

Now putting K(t)  = n-' E;'~ DL- and 0, ( t)  = n- ' xy', ~ t - ~ ,  t 2 0, and 
next using the ergodicity of pk* and Remark 4.1 we get E- U, -r a l e  a.e. in 
D [0, co) as n + co. This in turn implies that the conditions of Lemma 4.1 in 
the case (ii) are satisfied. Therefore, by that lemma we get the convergence 

Notice that 
0 

s.*(2) = C ( V ~ , ~ - ~ T , ~ ) - W ~ , ~ - V T , ~  + W T , ~ + Z + V T , , + Z ,  n < 0. 
j = n + l  

Therefore, by convergences (5.73-65.9), we get n-I S8-,(2) + a,  a.e. as n  + a, 
which in view of a,  < 0 gives S*_,(2) + - co a.e. as n + co. Now notice that the 
weak AS of ( w l ,  $) in the case cl  and the weak AS in mean in the case c, and 
next Lemma 5.2 imply that P ( X ,  €3) = P(Xg E B) for all invariant sets B in R*. 
This and the ergodicity of X% and the convergence n-I ST, (2)  -+ a2 a.e. as 
n  + m imply the convergence n-l  Sn (2) -+ a,  = EX?,, a.e. as n  + m. 

To complete the proof notice that the equality P  ( X ,  EB)  = P ( X i  E B) for 
all invariant sets 3 in Rm and Corollary 3.1 imply that X, satisfies condition 
AB in the case cl and condition AB in mean in the case c2. To get the same for 
other cases we apply Corollaries 3.2 and 3.3. This completes the proof. 
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Theorem 1 can be used to analyze an asymptotic stationarity of m single 
server queues in series. Namely, let 

describe a series of rn single server queues (see [5j), where vi,, is the service time 
of the k-th unit in the i-th queue while u,,, is the interarrival time between the 
k-th and (k+ 1)-st units to the first queue. Furthermore, let w ~ , ~  denote the 
waiting time of the k-th unit in the i-th queue, and qi,k the number of units at 
the i-th queue just before the k-th arrival to that queue. Then using Theo- 
rem 1 and next Theorems 1 and 2 from [I21 we get the following corollary: 

COROLLARY 5.1. Let 5: be AS in some sense cj,  1 < j < 6, and kt r* be 
ergodic and Eu& < E U ~ , ~  for i = 1,2, .. ., m. Furthermore, in the cases c ,  and 
c2 assume dditionally that P  (c E B) = P(cO E B) for a21 invariant sets B in 
~ m + l , m  . Then (w, {) is AS in the same sense as f, where 

and (w, q ,  p) is AS in the same sense as 5 in the cases cj, 3 < j < 6, where 

FOP AS of ( w ,  q ,  c) in the cases cl and c2 we need the condition 
k 

P ( W ~ ~ + V ~ , -  C u z j = O ) = O  for ail k 2  1, 1 < i < m .  
j=  1 

Theorem 1 and Corollary 5.1 complete the proof of Theorems 1 and 2 in 
[5]  in the case of the strong AS. 
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