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ASYMPTOTIC STATIONARITY OF TANDEM OF QUEUES

BY
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Abstract. In [12] it was proved that the process of waiting times
for single server queues is asymptotically stationary if

(1) a generic process X = {X, k > 1} is asymptotically stationary,

(2) X satisfies condition AB and

(3) the two-sided stationary extension X* = {X}, —o0 < k < 0}
of the stationary representation of X is such that Z;L X —wae

The paper gives a detailed characterization of condition AB.
Next, the sufficient conditions on the input to a tandem of queues are
given under which the inputs to the nodes in that tandem satisfy
conditions (1)}-(3).

1. Introduction. An important problem of queueing networks is their stabil-
ity meant as an asymptotic stationarity (shortly, AS) of some processes related
to those networks. This subject is considered here for single server queues
(nodes) in series with unlimited interstage storage and FIFO discipline of ser-
vice (see [5]). Units enter the node and after servicing there they immediately
go to the second node where their service starts if the node is empty; otherwise
they join the queue and wait for the service. After servicing they go to the next
node, and so on. In such a case an output from a node is an input to the next
one. Therefore the problem of an AS of these queueing networks leads to
finding extra conditions on the output under which an AS of the input gives the
AS of the output and holding those extra conditions for the output. Notice that
it is enough to consider this problem for the tandem of two single server
queues. To formulate this problem let (v, v;, #y) = {(v14, V24, #14), k = 1} be
a generic process for a tandem of two single server queues, where v;, is the
service time of the k-th unit in the i-th system, i = 1, 2, and u, , is the interar-
rival time between the k-th and (k+ 1)-st units to the first system. Furthermore,
let w;; be the waiting time of the k-th unit in the i-th system, i =1, 2, and
u,; the interarrival time between the k-th and (k+ 1)-st units to the second
system. Of course, u,, is also the interdeparture time between the k-th and
(k+1)-st units from the first system and :

(1.1 Up e = Up e+ Wigsr1t01kr1—Wig—V1h, k=1,
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Therefore (v,, v,, u,) is the generic process for the whole system and we call it
the input to the first node while (v;, u;) is the generic process for the second
node and we call it the input to the second node. Then the problem can
be formulated as follows: which property of the input to the first node —
(v1, v2, uy), jointly with its AS, does imply holding this property for the input
to the second node — (v, u,), jointly with its AS? To indicate the main point
in this consideration let us put

X;={Xix = vip—thip, k= 1},
and let
= {X}, —0 <k< 0}

denote the two-sided stationary extension of a stationary representatlon of
X; (f X; is asymptotically statlonary) and S¥() = Z, el X k<0,
i=1, 2. In [12] it was shown that if X, is AS and its statlonary representation
is such that S*,(1) > —co as n— oo, then (w, X;) is AS iff the following
condition AB holds:
(1.2) hmhmmfP(kmax (Sa(1)—Sn-; (1)) < 0) = 1,

<j<n
where Sy (i) =0, S, (i) = ZF , X, for k > 1. Hence and from (1.1) it follows that
if (v,, v,, u;) is AS and X; satisfies condition AB and $%,(1) » — o a.e., then
(v,, u,) is also AS (Lemma 5.1). Therefore the main problem is the following:
which properties of (v, v,, #,) jointly with its AS do guarantee holding con-
dition AB for X; and X, as well as holding §*,()) > —c0 ae. as n—>
fori=1,2?

The paper gives the answer to the last question. The main results are the
following. In Section 3, a characterization of condition AB is given. Namely,
the sufficient conditions for holding condition AB under different types of AS
are given for any sequence of random variables X = {X;, k > 1}, where the
index i related to the label of the node is dropped. For example, X satisfies
condition AB either if it is strongly AS, ergodic and EX¥ < 0 (Corollary 3.2),
where X* = {X, —o0 <k < oo} is the two-sided stationary extens1on of
a statlonary representation of X or if it is AS in variation, Z X; % —o0 and
Z, D¢ ¥ > — o0 ae. as n— oo (Corollary 3.3). In Section 4 1t is proved that
n! w’i,, — 0 a.e. if X* satisfies the functional strong law of large numbers with
EX¥ <0, where w* is the two-sided stationary extension of the stationary
representation of w. In Section 5 the sufficient conditions are given for
(v4, v5, w;) under which X; and X, satisfy condition AB. Those conditions
guarantee the AS of the process of waiting time and a queue length for the
tandem of queues (Theorem 1 and Corollary 5.1).

2. Notation. Most of the notation used here are from [12], and for com-
pleteness we recall some of them. For a Polish metric space S, let S denote
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the right-sided infinite product of S, and S%,, the two-sided infinite product

of S. Any metric space is considered with the Borel o-field, and the finite or

infinite products of metric spaces are considered with the product topology. On

the metric spaces we consider 6 types of convergence of probability measures

U, to a probability measure p. Namely, puttlng dn=n 12 ", M1y we have:
¢; — weak convergence;

c, — weak convergence in mean, when ji, weakly converges to u;

c; — strong convergence, when u,(B) — u(B) for all Borel sets B;

c4 — strong convergence in mean, when fi, strongly converges to pu;

cs — .convergence in variation, when |u,—u| — 0; and

ce — convergence in variation in mean, when |z,—pul — 0.

The asymptotic stationarity is defined in terms of convergence of proba-
bility measures. Namely, an S-valued process & = {&,, k > 1}, where S is a Pol-
ish metric space, is said to be asymptotically stationary (shortly, AS) in some
sense of convergence of probability measures, say c, if the sequence of dis-
tributions {.% (T"€)} converges in the sense c. Here % (Z) denotes the probabil-
ity distribution of a random element Z, T is the shift transformation on S, i.é.
T(x) = {Xy+1, k = 1} for x = {x;, k > 1}, and T" is the n-th iteration of T. If
{Z (T"&)} converges weakly or strongly or in variation, then we say that & is
weakly AS or strongly AS or AS in variation, respectively. ,

Let £° = {£2, k > 1} be an S-valued process with the distribution being
the limiting distribution of {Z (T"€)} (it is stationary and called the stationary
representation of £), and let &* = {&¥, —oo < k < oo} be the two-sided infinite
S-valued process, being the stationary extension of &°.

Let X = {X,, k > 1} be an R-valued stochastic process which generates
the stochastic process w = {w;, k > 1} via

2.1) Wirr =max(0, w,+X,), k=1,

with w; > 0 being the initial state of the process w. In the sequel we consider
also a pair (w, q) of processes w and q = {q;, k > 1} defined by the process
(v, u) = {(vx, w), k > 1}. Then w is deﬁned by (2.1) with X = v—u, and g, is
defined as

k-1 k-1

(22 i = E IWi+ o= Y wy), k=1

1= j=k—1
In the sequel we make no notational distinction between transformatlon T on
R™, 8§ or on other infinite products and we assume that Z _ =0when k <n.

3. A characterization of condition AB. Let X = {X,, k > 1} be a random
element of R®, X° = {X}, k > 1} its stationary representation (if it exists), and
X*={X}, —0o<k< oo} a double infinite stationary extension of X°. For
X define a sequence of sums S, =0, S, = Z’f X;. For X* define a sequence

of sums S} = S¥,, n <0, where Sf; =Zf n+1X* for n < k, and S¥, =0 for

4 — PAMS 171
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— <k < 0. From (2.1) it follows that

Wi4q = Max(Sy+wy, Sp— 0mmkS)
€£j<

Here we will use also the following notation:

3.1) Wers (T"X) = Sy 44—Sp— min (Spe;—S), m k1.
0<j<k

We say that X satisfies condition AB or condition AB in mean if

lim llmlan{max (Sa—Sn-) <0} =1

k»® n—>wo k<j<n
or
lim llmmf- Z P{max (Si—8-)<0}=1,
k»o nsw H;=; ksl\
respectively.

The following lemma, being a little stronger version of Proposition 2 from
[10], states that condition AB is necessary for the AS of w.

LEMMA 3.1. Let X be such that either (i) the sequence {&Z (T"X)} is tight or
(i) {n~* Z -, Z(T’'X)} is tight and all limiting probability measures of all subse-
quences, say % (X°) (they may be different), be such that $*,— — ae. as
n — co. Furthermore, let {& (w,)} and {n~! Z & (w;)} be tight in the cases (i)
and (ii), respectively. Then X satisfies condition AB in the case (i) and condition
AB in mean in the case (ii).

Proof First notice that
(32) max (S S -J)_S Sn Kt Wp— k+1(X)

k<j<n

By the assumption dealing with tightness, we infer that for any & > 0 there
exists a positive number a such that for all » .

Pw,<a)z21-
in the case (i), and

Pw;<a)>1—¢

S =
i

J

in the case (ii). Hence for any b > 0 we get

(33)  P(Syi—Su—i+Wa—y+1(X) < b)
2 P(Sq—Su—k+Wais 1 (X) < b, Wy_ier 1 (X) < a)
2 P(S,—S,—r+a<b)—s.
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Using (3.3) and (3.2) we have
(3.4 lxmllrnlan(max (Sa—Sa-j) < b)

ksj<n

> limliminf P(S,—S,—x+a < b)—e =2 lim P(S*,+a <b)—e=1—=.
k n k

Since ¢ and b were arbitrary, X satisfies condition AB in the case (i). In (3.4) we
have used the Prokhorov theorem which states that for Polish metric spaces
the tightness is equivalent to the relative compactness. ;

The proof of the second assertion runs in a similar way to the above one
with the obvious modifications of considering convergence in mean instead of
ordinary convergence in (3.3) and (3.4). m

In the sequel under different types of AS we will find sufficient conditions
under which X satisfies condition AB.

LeEMMA 3.2. Let X be either (i) weakly AS or (i) weakly AS in mean and
S§*¥,—> —o0 ae as n—oo. Then there exists a nondecreasing sequence
{L}, I, — o0, l,/a—0, such that

(3.5) lim liminf P( max (S,—S,- J) <0)=1

k—*® n—w k<j<Sln

in the case (i), and

3.6 1 li nf p S;—8;-)<0)=1
9 Jim imint 3, P(mas, (5=5,-) <)
in the case (ii).
Proof. For any k<[, n>1, let us put
3

=P(sup §f <0), a,;=P(max ) X?<0),

is—k k<isli=1-j+1

Qg in = (max (Sa—Sn-)) <0) = P(sup Z X,—1+: <0).

ksjsl k<j<li=1—j+1

Because X* is a two-sided stationary extension of X° we get

(3.7 ay,; = P(max Z X*4:<0)=P( sup S} <0).
kSjslij=j—j+1 —I1Sj< -k

Since the function x > max; < ;<;X; for x = {x;, j > 1} € R® is continuous on R”

and X is either (i) weakly AS or (ii) weakly AS in mean, then for any k < ! we

have liminf,a;,, > a,, in the case (i), and liminf, n“Z"_lak,, 2 a4, in the

case (ii). Moreover, by (3.7), for any k, liminf,., ,, a;; > a;. Hence, by Lemma 5



52 ‘ W. Szczotka

in [8], there exists a nondecreasing sequence I, — oo, [,/n—0, such that
liminf,a, . > a in the case (i) and liminf,n ™'Y _ a,,; > a; in the case (i).
Since S*,— —oo a.e., we have g, — 1, which implies lim; lim, a;,; , =1 and
completes the proof in the case (i). To end the proof in the case (ii) notice that
Qp1i = gy, for 1 <i<n, which together with the above gives

lim lim inf l
k n

n 1 n
Ay, = limliminf- ) ap, ; =lima, = 1.
=1 Tk _ k- :

i= n Ny

This completes the proof. m
Now we prove the following technical lemma:

LeMMA 3.3. Let {Z,;, n, k = 1} be a sequence of random variables defined
on a common probability space such that, for each n, k> 1, Z,;, < Z, 4+, and,
for each k, Z,, 25 — 0 as n— oo. Then there exists a nondecreasing sequence
{I,} tending to infinity such that l,/n—0 and Z,,,,"—pr —00 as n— 0.

Proof. Let {¢;} be a sequence of nonincreasing positive numbers tending
to 0 and let {a;} be a nondecreasing sequence of numbers tending to co. Since,
foreachk>1,Z,, 2 — 0 as n— o, it follows that for each k > 1 there exists
an increasing sequence {n;(k), i > 1} tending to co such that n;(k) < n;, (k)
and

5L inf P(Zyo< —a)>1—e,.

nznik)

Moreover, by Z,,;, < Z,;+1 we have n;(k) < n;(k+1). Let n; = n;(§), i > 1, and

by = inf P(Z,y < —a).
Since for i > k we have n; = n;(i) > n;(k), we obtain b, > b;; > 1—¢;. Hence,
for each k > 1, b;;, = 1 as i — oo. Therefore, using Lemma 5 from [8], we infer
that there exists a nondecreasing sequence {k;}, tending to co and such that
kfi—0 and b;, — 1. Define the sequence {l,} as follows: I, =k; for
n; < n < n;4,. Then {l,} is nondecreasing and I,/n < ki/n; < k;/i -0 as n — oo.
Now for a given a > 0 there exists i such that a; > a and we have the following
inequalities:
inf P(Z,,, < —a)2 inf P(Z,,, < —a)=inf inf P(Z,, < —a)

nzny n=n; JZinySn<nmjiq

>inf inf P(Z,, < —a)

JjZing<n<njiq

>inf inf P(Z.,, < —a)>inf(1—g)=1—¢.

jZing<n<nyiq jzi

Hence inf,>,, P(Z,,, < —a) = 1—¢; - 1 as i » oo, which completes the proof. =
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LEMMA 3.4. Let X be such that S, 2 — 0. Then there exists a nondecreasing
sequence {k,} tending to oo such that n—k,— o, k,/n—1, and

max (S,,—S,,_j)—p> —00 as n— .
kn<j<n
Proof. The proof follows by using Lemma 3.3 with Z,, ; = S, —infy<;<xS;
n, k= 1. Then k, = n—I,. This completes the proof. m

In the sequel we will use the following remark, which is a slight modifica-
tion of Lemma 2 from [4], p. 67.

Remark 3.1. Let Z,, n> 1, be random variables. Then Z, % — w0 as
n— oo iff every subsequence of {Z,}, say {Z,}, has itself a subsequence, say
{Z,}, converging to — oo with probability 1. Furthermore, {n;} can be chosen in
such a way that Z, ,; — — o, with probability 1, as k — oo for all positive
integers i.

Proof. The convergence Z, - — oo is equivalent to the statement that for
any &€ >0, a > 0, there exists n, such that

sup (1—P(Z, < —a))<e.

nzng

Let g = 1/2* and a; — o0, a; < a;4+,. Then for any k > 1 there exists n, such
that

inf P(Z, < —a) = 1—1/2"

nzng

Let A, be the complement of the set {Z, < —a;}. Then
YP(4) <Y 1/2* < oo,
k k

so P {limsup, 4;} = 0. For a given a > 0, there exists k such that a < g, and we
have the following inequalities:

s

P(Supzm < -—a)2 P(Supzm < —a) = P(

izk izk i

L {Z'u < _ak})

=}

>P((\{Zn< —a})= P(fj A4) > 1~ i P(4).

i=k i

Hence and by the finiteness of ), P(4,) we have lim; P(supi>x Z,, < —a) = 1
for any a > 0, which means that Z, — —oo a.e. Notice that from the above
consideration we also infer that Z,, ,; » — co a.e. for any positive integer i > 1.
This completes the proof. m
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LemMmA 3.5. Let X be either (i) weakly AS or (ii) weakly AS in mean and let
P(X eB) = P(X°eB) for all invariant sets B in R®. Furthermore, let $* , » — 0
a.e. as n— o0. Then for any nondecreasing sequence 1, tending to infinity such
that 1, < n we have

(3.8) max (S,,—S,,_j)i —0 as n—ow

In$j<n

in the case (i), and

} . 1 -n

(3.9) ;ZP(max (Si=Si-)<0)—>1 asn—-o0
i=1 Lhsj<i

in the case (ii).

Proof. For fixed nondecreasing subsequences {n;} and {I,} tending to
infinity such that I, < n, let us define 4 = R™ as the set of elements x € R* such
that for any positive integer k the following holds:

ni

limsup max Y Xgpp = —00.
i InSjsm s=m—j+1

Of course, A is the invariant set in R*. Using definition (3.1) we get

ln;‘?f (Sn_Sn—j) = Sp—Sn-1,F Wa-1,+1(X).
Since S*,— —oo0 a.e. as n— o, by Borovkov’s result the sequence {w;(X®),
k > 1} weakly converges. Furthermore, for any sequence {l,} described above

we have (S¢—S°_,)5 —oo, which implies

(3.10) max (S2—S2_) = 80— 80, +Wy1,+1(X) D — 0.

h<j<n

Hence any sequence {n'} contains a subsequence {m;}, n; » o0, such that
(3.11) S — 88—ty + W1, +1 (X%) = — 0 ae.

The sequence {n;} can be chosen in such a way that (3.11) holds also for the
sequence n; = n;+k with any positive integer k (see Remark 3.1). This means
that P(X°e A) = 1, where A is defined for the sequence {n;} chosen in (3.11).
Hence and by P(XeB) = P(X°eB) for all invariant sets B in R® we have
P(XeA) =1. Now using Remark 3.1 we get (3.8).

In the case (ii) we also have P(X%eA4) = 1, so by the assumptions and
Remark 3.1 we have P(XeA) =1, which implies (3.9). This completes the
proof. =

Note 1. The assumption P (X € B) = P(X°e B) for all invariant sets B = R®
could be restricted to all invariant sets A defined in the proof of Lemma 3.5.
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LEMMA 3.6. Let X be either (i) AS in variation or (ii) AS in variation in mean,
and let S*,— — o a.e. as n— . Then for any sequence {I,} such that I, » c©
and n—I, - o0 we have

(3.12) hmllmmfP( max (S,—S,-;) <0)=1

n k<j<iIn

in the case (i), and

(3.13) hmhmmf Z P(max (S;—S8i-)<0)=1

) n NSy k<ji<y
in the case (ii).
Proof By Theorems 4.3.2 and 4.3.3 from [1], p. 96, it follows that there
exist random elements X and X° defined on a common probability space such
that X 2 X, X° 2 X°, and

(3.14) P(T"X # T"£% >0 in () and -'1; z P(T'X # T X% - 0 in (ii).

i=1

Now notice that max;<;<;,(S,— S~ ;) depends only on {S;,jzn—1,+1}. So
putting §, =37 _ X;, §2=Y"_, X7 and using 22 x, %02 X0 and (3.14)
we get '

(315)  P(max (5,~5,-;) < 0) = P(max $,—S,_) <0)

k<j<lIn k< jsln

= ( max (.§,,—S,,_ ) <0, T ¥ Tn—t..XO)

k<j<In

= P(max (§9-82_) <0, T" X =T"""X)

k< i<in

> P(max (§2—-80-)<0)—-P(T" "X # T" X

k<j<l,

= P( max S*<0) o(1).

“ln\J

Now passing to infinity in the above first with n and next with k and using
S*,—> —o0 ae. we get (3.12).

The proof of the convergence (3.13) runs in a similar way to that of (3.12)
with the obvious modifications of considering convergence in mean instead of
ordinary convergence in (3.15). This completes the proof. =

Now using
(3.16) max (S,—S,-) = max( max (S,—Sx-j); max (Sa—Sn-))
k\ \ \j‘:l.. In< -Jl

and Lemmas 3.2-3.6 we get the following corollaries:




56 . W. Szczotka

COROLLARY 3.1. Let X be either (i) weakly AS or (ii) weakly AS in mean,
and let P(XeB) = P(X°eB) for all invariant sets B in R®. Furthermore, let
S§*,— —o0 ae as n— oo. Then X satisfies condition AB in the case (i) and
condition AB in mean in the case (ii).

COROLLARY 3.2. Let X be either (i) strongly AS or (ii) strongly AS in mean,
and let X* be ergodic and a ZEx ? < 0. Then X satisfies condition AB in the
case (i) and condition AB in mean in the case (ii).

'CoRrOLLARY 3.3. Let X be either (i) AS in variation or (ii) AS in variation in
mean such that S, —oo, and S*,— —o0 ae as n— oo. Then X satisfies
condition AB in the case (i) and condition AB in mean in the case (ii).

Corollary 3.1 follows from (3.16) by using Lemma 3.2 to the first term of
(3.16) and Lemma 3.5 to the second term. Since the strong AS implies the weak
AS, Corollary 3.2 follows from Corollary 3.1 by using Proposition 1 from [7].
Corollary 3.3 follows from (3.16) by using Lemma 3.4 to the second term of
(3.16) with I, = k,,, where {k,} is given in Lemma 3.4, and by using Lemma 3.6
to the first term of (3.16). In view of Note 1 the class of all invariant sets in
Corollary 3.1 could be restricted.

Remark 3;2. All the above lemmas and Corollaries 3.1-3.3 are true in the
case when X is a random element of R™* = (R™® and w = {wy, k > 1} is defined
by X via (2.1) where all operations are meant in the coordinatewise sense.

4. Almost sure convergence n~ ' w* , — 0, To investigate an AS of the process of
the interdeparture times it is needed to know an asymptote of n™ ! w,and n™ ! w¥*
asn — —co. Here wi, ; = sup;<,S¥,, where S%, = ZLjHX;" for —o0 <n < o,
j<n, and SF =S5, for n <0. Because of the stationarity of w* = {w},
—0o0 <k < oo} wehaven™'w*, 5 0asn— co. In the following Lemma 4.1 we
give the sufficient conditions for the almost sure convergences n~! w*, — 0 and
n~'w, —»0 as n— oo. They are expressed in terms of the almost sure conver-
gence in the functional space D [0, oo) (for the metric see [13]), precisely in
terms of the functional strong law of large numbers for the sequences X and X*.
To state this let us define the processes w,, S, and §* as follows:

O, =n" Wy, S,()=n"'S,; and SF@=n"'S%,, fort=0.

Furthermore, let ¢ denote the identity function e(t) =t, t > 0.

LemMA 4.1. (i) Let X be such that S, — ae in probability (or with probabili-
ty 1y as n —» oo, where a < 0. Then @, — 0 and n~ ! w, — 0 in probability (or with
probability 1) as n— oo.

(ii) Let X* be such that §* —ae ae. as n— o©. Then n"*w¥, 50 ae.
as n— oo. :
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Proof. To prove part (i) notice that by w,,; = S,—infy<;<,S; we have
@y +1 =f(8,), where f(x)(t) = x (t)—infy << X (5). Using the continuity of the
mapping f in the Skorokhod topology (see [13]) and the convergence §, % ae
(or with probability 1) we get w, - f(ae) (or with probability 1). Because of
a <0 we have

f(ae)(t) = sup a(t—s)=0, t=0,

0<s<t

which completes the proof.of part (i).

To prove part (ii) define for a fixed m, m > 2, and for any positive integers
n, j, random variables y,; =n"'8* . _. ... Since §¥*(1)=n"1'8*,>a ae. as
n— oo and

_nm+j 1 1
n nm+j

Vn,j —nm—j—;;S*—lru

we have limsup, j- o ¥s,; < (m—1)a with probability 1. Hence for any ¢ > 0
there exist ny > 0 and j, > 0 such that

P (sup sup y,; > 0) < ¢/2,

nZno jZjo

which implies

(4.1) P(supsupn™1S¥_,>0)<¢/2, where s=—nm—j,.

nZng j<s

Using S¥_, = S§ — 8%, for j < —n < 0 we infer that for any ¢ > 0 the following
holds:

tosup Sf.= sup (SrO-S¥)< sup (S¥()-Sk(1)

—nm—c<j€ —n 1<t<m+c/n 1<t<Sm+c

n

Since the mapping x+— SuUp; <; <m+c X (t) is continuous on the set of continuous
functions and S} — ae ae.,

~sup (S¥(®)—S8¥(1))> sup a(t—1)=0ae as n- oo,

1<tSm+e¢ 1<t€m+c
Hence for any positive b > 0 we have

P(sup sup (S*(®)—S*¥*(1))>b)—»0 as k— oo,

nZk 1<t<Sm+c

which implies that for any given ¢ > 0 and b > 0 there exists n, such that

4.2) P(sup sup n~1S¥_,>b/2)<¢2.

nZng ~mm—c<j< —n
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Using w* 41 = max (Sup;<;ST—n, SUPs<j<—n 85— With s = —nm—j, we get

P(sup n~'w¥,,; > b)
nzno
< P(supsupn~'8¥_,>b/2)+P(sup sup n~*S}_,>b/2).

nZng j<s nZnpssj<—n

Now choosing n, and j, such that inequalities (4.1) and (4.2) hold we get

P(supn~lw*,>b)<e
nZng .
Since ¢ and b were arbitrary, we obtain n"'w*,,; >0 ae, which in turn
implies n~!w*, — 0 a.e. as n — oo. This completes the proof of part (ii) of the
lemma. & "

To verify the condition §, — ae a.e. or S§ — ae a.e. as n— co, we use the
following remark in which ¥, = Z:; U Un= Z;;luj, n>l

Remark 4.1. Let n=' V, — # and n~* U, — ii in probability (or with proba- -
bility 1) as n — oo, where © and i are nonrandom. Furthermore, if X; = v,—,
then S, — (F—iu)e in D0, oo) in probability (or with probability 1).

Proof. Defining processes V,(t) = n~* ¥,y and U,(t) =n~ ' U for t >0,
we see that their sample paths are nondecreasing and nonnegative. Hence by
Proposition 2.1 from [11] it follows that ¥, — #ie and U, — ile in probability (or
with probability 1) as n — co. The proof of Proposition 2.1 in [11] is complete
in the case when the limiting process has continuous sample paths, which we
have here. Now, because the operation of summation on the set of continuous
functions is continuous (see [13]), we obtain V,—U, %, (5—u)e in D0, o) as
n— oo, which completes the proof. m

To get the convergence SF — ae ae. we use the above remark with
n n
Vo= Zj=1u‘ij, U,= Zj=1u“lj, nz1.

5. Condition AB for the second mode. Here we formulate the sufficient
conditions under which the input to the second node satisfies the conditions of
Corollaries 3.1-3.3, which imply that it satisfies condition AB. First notice that
from formula (1.1) it follows that the process of the interdeparture times u, is
an image of (w;, vy, u,) by a continuous mapping. Hence, defining

af
£ = (wy, vy, uy, 7) = {(Wrk V10> Ya,6> M)s kK =1},

where 5 is an S-valued process, we get the following lemma:

LeMMA 5.1. If { is AS in some sense ¢j, 1 <j < 6, then ({, uy) is AS in the
same sense as {, and a double ended stationary extension of its stationary re-
presentation (£°, u3) is

(C*: u;‘) = {(Wf,ks vf,k’ uiks 11;:5 ug,k)s -0 < k < w}’
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where (w, v}, ut, 4*) is a double ended stationary extension of (w3, o3, u$, n°),
and

(GRY i =ufp+wiss1+ot e —wip—vtie —o0 <k < 0.
Now we give the sufficient conditions under which P (X, B) = P(X} e B)

for all invariant sets B in R™.

LEMMA 5.2. Let ¢ = (v,, v,, u,) be either (i) weakly AS or (ii) weakly AS
in mean and let P(yeB) = P(Y°eB) for all invariant sets B in R>®. Then
P(X,eB) = P(X%eB) for all invariant sets B in R®. Furthermore, if (Y, wy) is
either (i) weakly AS or (i) weakly AS in mean, then P (X, € B) = P(XS¢e B) for all
invariant sets B in R™.

To prove Lemma 5.2 we use the following

IDEA. If G: S®+—(S)® is a measurable mapping such that TG (x) = G(Tx),
while B is an invariant set in (S,)®, then G™'B is an invariant set in S*.

Indeed, if xe G~ !B, then G (x)e B. Since B is invariant, TG (x) e B, which
by TG(x) = G(Tx) gives G(Tx)eB, and this implies Txe G~ !B.

Proof of Lemma 5.2. Applying the Idea to X; = v, —u; with G(x, y)
=x—y, X, yeR® and using the assumptions of the lemma for all invariant
sets B in R® we have

(52) P(X,eB)= P((vy, u)eG~'B) = P((»?, u})eG™'B) = P(X}eB).

To prove the second assertion notice that if B is an invariant set in R*®,
then
A={y,w)eB}={T"(y,w))eB} for each n>1.
Hence A does not depend on a finite number of coordinates of the sequence

(¥, wy). Therefore assume that wy ; =0, vy —u; 1 =v5,—Us,, =0.
Now define mappings Fi: R*®+—»R and F: R*®—R® in x, yeR® by

k
Fl(x’ y)=0’ Fk+1(x’ y)= max Z (xi_yi)s kf>’ 1:
Sjski=j+1

and F(x, y) = {Fi(x, y), k > 1}. Furthermore, define a mapping F: R**—
R*® by

F(xl, X2, y)=(x15 X2, ¥, F—(xls y)) fOI' X1, X3, .VERGO'
Notice that
(5'3) (vI, vy, U;, wl) = F(vls v, ul)-

Now we will show that for any invariant set B in R*® the set F~'B is
invariant in R>*. To do this we need to show that if (x,, x,, y)e F~ 1B, then
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T(x;, X5, y)e F~1B. Here, without loss of generality, we assume that x; ; —y;
= X;,,—y, = 0. First notice that

(5.4) F(Txy, Txy, Ty) = (T, Ty, Ty, F(Tx,, Ty)),
while F(Tx,, Ty) = {z, k > 1}, where

23 =0, z4;= max Z Yi+1  and  ye=xy,—y for k> 1
1$]$k1w1+1

k+1
Since y; =9, =0, we have z; =z, =0 and 2z, = MaXogj<i+1 i=j41 7

k>72. On the other hand, F(xy,y)={&,k>1}, where %, =0, %,
= maxos,,ﬂzl j+ vifor k > 1.Since y; =y, =0, we obtain ; =2, = 73 =0
and %,., = z, for k > 1, which in turn implies F(Tx,, Ty) = TF(x,, y). The
last equality together with (5.4) gives

(5.5) F(Tx,, Txy, Ty) = TF (x4, X3, y) = T(xn X2, ¥, F(xy, .V))

Assuming that (x,, x,, y)e F~'B, we get F (x,, x,, y)€ B, ie. (x;, x5, y, F(x,, y)€
€B. Since B is invariant, T(xy, x,, y, F(x;, )€ B which together with (5.5)
gives F(Tx,, Tx,, Ty)e B, so T(xy, x,, y)e F~'B. Hence F~ !B is an invariant
set. Now defining a mapping G: R*®— R® by

G(xls X2, ¥, Z) = xz—y—Tz—Tx1+z+x1,
we see that
TG(xI:v x27 ya Z) = G(Tx15 sz, TJ’, TZ).

Since X, =v,—u,—Tw,—To, +w,+v,, we obtain X, = G(v,, v3, #y, wy).
Hence, using the Idea and the assumptions of the lemma, for any invariant set
B in R*® we have

(5.6) P(X,€B)=P((vy, v2, uy, w;)eG 'B) = P((vy, v3, u;)e F"'G™B)
= P((?, v, u))e F"'G™'B)
= P((v9, v, u?, w})e G~ 'B) = P(X9eB).

The fourth equality follows by the fact that G~ !B is invariant if B is invariant,
and next by the fact that G™!B does not depend on a finite number of co-
ordinates of the sequence (v}, v3, w3, w?). This completes the proof. m

In the sequel we use the notation a; = Ev?; —Eu},, j=1, 2.

THEOREM 1. Let ¥ = (v1, v2, #,) be AS is some sense c;, 1 <j <6, and let
y* be ergodic and Ev, < Eul , for j = 1, 2. Furthermore, in the cases ¢, and
¢, assume additionally that P (i € B) = P (y° € B) for all invariant sets B in R*>*.
Then the following assertions hold:

@) n~tS*,(1)—>a, ae. and n"'8,(1) > a, ae. as n— o and X, satisfies
condition AB in the cases ¢y, ¢3, ¢s and condition AB in mean in the cases
Cy, Ca5 Cg. Moreover, (W, u,, ) is AS in the same sense as .
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(i) n~18*,2)>a, ae and n='S,(2) > a, a.e. as n— © and X, satisfies
condition AB in the cases c,, c3, cs and condition AB in mean in the cases
Ca, Cq, Cq-

Proof. First we consider the cases ¢; and c¢,. To prove the first assertion
in these cases notice that by Lemma 5.2 we get P(X, e B) = P(X{eB) for all
invariant sets B in R™. This and the ergodicity of ¥* imply the convergences
n"18,(1) > a; ae. and n~15*%,(1) > a, a.e. as n — oo. The last convergence in
view of a, < 0 gives §%,(1) > — o0 a.e. as n — co. Hence and by Corollary 3.1
we see that X, satisfies condition AB in the case ¢; and condition AB in mean
in the case ¢,. This together with Theorem 1 from [12] imply that (w,, ¥) is AS
in the same sense as Y, and (wf, ¥*) is ergodic. This and the equality
uf = uf+ Tw}+ Tof —w¥—of and next the Idea imply that (w}, uf, ¥*) is
ergodic. A similar argument gets the ergodicity of X%.

To prove the second assertion notice that by the ergodicity of y* we get
the following convergences:

0

(5.7 = Y (v§;—ut)—>a, ae. as n— o
i==n
and
1 . 12 * 1t * 0 0
(5.8) ;‘UL_" =; Z Ul,—j_; Z UL._J-—’Evl,l—EULI =0 ae. as n — 0.
i=1 j=1

Now putting ¥,() =n"1 Z[.Tl vf_;and U,()=n"" 5.':]1 uf _;, t=0, and

next using the ergodicity of y* and Remark 4.1 we get ¥,—U, > a e ae. in
D[0, o) as n— 0. This in turn implies that the conditions of Lemma 4.1 in
the case (ii) are satisfied. Therefore, by that lemma we get the convergence

1
(5.9 ;wi_,, -0 ae. as n— .
Notice that
0
‘ Sy (2) = z W% ,;—uf )—wi i —vf +wi,a+0viae, n<O.
j=n+1

Therefore, by convergences (5.7)5.9), we get n=15*,(2) > a, a.e. as n— o0,
which in view of a; < 0 gives §* ,(2) > — o0 a.e. as n —» 0. Now notice that the
weak AS of (wy, ¥) in the case c; and the weak AS in mean in the case ¢, and
next Lemma 5.2 imply that P (X, e B) = P(X3e B) for all invariant sets B in R®.
This and the ergodicity of X% and the convergence n™!S$*,(2) - a, ae. as
n— oo imply the convergence n~'S,(2) - a, = EX{, ae. as n— .

To complete the proof notice that the equality P(X,eB) = P(X3¢ B) for
all invariant sets B in R® and Corollary 3.1 imply that X, satisfies condition
AB in the case ¢, and condition AB in mean in the case c,. To get the same for
other cases we apply Corollaries 3.2 and 3.3. This completes the proof. &
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Theorem 1 can be used to analyze an asymptotic stationarity of m single
server queues in series. Namely, let

E=(v1, 02, .00, Uy, W) = {(Ul,kr V2> +evs Umks Y1,6)s k> 1}

describe a series of m single server queues (see [5]), where v, is the service time
of the k-th unit in the i-th queue while u, , is the interarrival time between the
k-th and (k+1)-st units to the first queue. Furthermore, let w;, denote the
waiting time of the k-th unit in the i-th queue, and ¢;, the number of units at
the i-th queue just before the k-th arrival to that queue. Then using Theo-
rem 1 and next Theorems 1 and 2 from [12] we get the following corollary:

COROLLARY 5.1. Let & be AS in some sense ¢;, 1 <j <6, and let £* be
ergodic and Bv?, < Bu ; for i=1,2, ..., m. Furthermore, in the cases c, and
¢, assume additionally that P(§eB) = P(E°eB) for all invariant sets B in
R™*1®, Then (w, ) is AS in the same sense as &, where

w={wr =Wy Waks oo Wmp), k= 1}
and (w, q, §) is AS in the same sense as & in the cases c; 3 < j <6, where
4 = {q = @14 2> --+» Amp)> k = 1}.

For AS of (w, q, &) in the cases ¢, and c, we need the condition
k

Pwti+vi— Y uti=0=0 Jorallk>1,1<i<m.
j=1

Theorem 1 and Corollary 5.1 complete the proof of Theorems 1 and 2 in
[5] in the case of the strong AS.
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