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Abstract. Formulas for level crossing probabilities, ladder height 
distributions and related characteristics of a general class of processes 
with stationary bounded variations and continuous decreasing com- 
ponents are derived under certain mild conditions. Results for a risk 
process with a constant premlurn rate and with a claim process gene- 
rated by a stationary marked point process are generalized to the case 
where the premium rate itself can be a stochastic process and the claim 
arrival process can have both jumps and continuous components. The 
case of infinitely many jumps in finite intervals is not excluded. The 
main tool for investigating this more general class of stochastic models 
in an exchange formula for Palm probabilities of stationary random 
measures. Our results can be used to derive a formula for the ascend- 
ing ladder height distribution of the time-stationary workload process 
in single-server queues. 

1. Introduction. We consider a stochastic process (Xo (t)),> , with the prop- 
erty that 

(1.1) X, (t) = A (t)  - D (t) for every t 2 0, 

where (A(t)),,, and {D(t)),,, are stochastic processes with nondecreasing 
trajectories such that A(0) = D(0) = 0. Moreover, we assume: 

(i-a) (A(t)) and {D(t)) have jointly stationary increments; 

(ii-a) with probability 1, there exist disjoint (random) Bore1 sets I, and I, 
on R+ = [0,  +a) such that, for all ~ E R + ,  

t t 

A(t) = j I,, (u) dA (u) and D (t) = j I,, (u) dD (u), 
0 0 

where 1, denotes the indicator function of the set C; 

* The work of this author was partialIy supported by NEC C&C Research Laboratories. 
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(iii-a) the trajectories of {D (t)) are continuous functions in t. 

In the literature (see, e.g., Miyazawa [ll]), (ii-a) is referred to as (A (t)} and 
{D (t)) being mutually singular. Note that (ii-a) is aIways satisfied under (iii-a), 
provided that {A(t)) is a pure jump process. For the above process {X, (t)), we 
consider the time z when the process gets into above level zero as defined by 
z = inf {u 3- 0: X,(u) > 0) and we consider the ladder heights just after and 
before this time, which are defined by Zf = X, (z +) and Z- = -X, (T -), 
respectively. t is referred to as the level-zero crossing time. 

In insurance mathematics, the process {X,(t)) is called a claim surplus 
pocess  with constant premium rate (equal to 1) and with claims U, arriving at 
claim epochs T, if ( A ( t ) }  and {D ( t ) )  satisfy the following additional conditions: 

(ii-b) (A(t)) is a locally finite jump process, i.e. 

where {(T,, U,)), is a stationary marked point process with nonnegative 
marks (Z = {. .., - 1,  0 ,  1,  , ,,}); 

(iii-b) D (t) = t for every t 2 0. 

Sometimes the dual process (-X, (t)) is considered, which is called an 
insurance risk process. For insurance risk processes, the level-zero crossing 
probability P(z < a) is called a ruin probability, while the Iadder height Zf is 
called the severity of ruin. Thus the mode1 of {X,(t)} given by (1.1) and 
(i-a)-(iii-a) can be considered as a claim surplus process governed by the more 
general claim and premium processes (A (t)) and {D (t)) , respectively. Further- 
more, the process {X,(t)) can also describe the excursions of workload pro- 
cesses in queueing systems, as shown in Section 4. 

In the classical compound Poisson risk model given by (ii-b) and (iii-b), 
{(T,, UJ) is assumed to be an independently marked Poisson process with 
intensity A = E max {a: T, < 1). For this model it is well known (see, e.g., 
Feller €51) that the (defective) distribution function G (x) = P (2' < x) is 
given by 

X 

(1.3) G ( x ) = , l J ~ ( ~ ~ > u ) d u  for every x > 0 ,  
0 

provided that 

In a series of papers (see Asmussen and Schmidt 121, Frenz and Schmidt 
[7], Miyazawa and Schmidt [15]) the assumptions on the claim arrival process 
{(T,, U,)) are relaxed step by step. They showed that formula (1.3) remained 
valid in a general point-process set-up where instead of P (U, > u) a correspond- 
ing Palm probability is considered. In Miyazawa [11] and in Asmussen and 
Schmidt [3] a similar formula is obtained for the joint distribution of ( Z -  , Z + ) ,  
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and in [3] a more general claim arrival process {(T,,, U,, M,)) has been con- 
sidered, where the additional mark component M, can contain further infor- 
mation on the claim arriving at time T,, e.g. its type etc. This extension turned out 
to be very useful for investigating ruin probabilities of risk processes governed by 
a Markov-modulated Poisson claim arrival process (see Asmussen et al. [I]). 

Asmussen and Schmidt 131 showed that the joint distribution of 
( Z - ,  Z', Mt) can be described under conditions (ii-b) and (iii-b) as follows, 
where M +  = M, and q is an integer-valued random variable such that = z, 
i.e. M' is the type of the claim arriving at ruin time z. Let Q = AE, U, < 1, where 
E, denotes the expectation with respect to the Palm distribution of the station- 
ary (and ergodic) marked point process {(T,, U,, M,)} .  Then the equality 

uo 

(1.4) E ( 4 ( Z + ,  Z - ,  M'); z < CO) = A E ~ ( ~  b(U,-u, u, M,)du) 
0 

holds for every nonnegative measurable function 4, where, instead of (iv-a), the 
somewhat weaker condition 

(iv-b) sup,, , ( A  (t) - D ( t ) )  = m with probability 1 

has been used. Here, (A (t)},,, and {D (t)), denote the stationary extensions of 
{ A  (t)It3 and {D (t)},,, to the whole real line R, see also (2.1). 

The purpose of the present paper is to generalize (1.4) to the model de- 
scribed by conditions (i-aHiii-a). This generalization reveals that the distribu- 
tion of ladder heights still has an insensitive structure like (1.4), with respect to 
the form of the distribution of the sequence (T,) of arrival epochs when the 
arrival intensity A is fixed, and where the origin is randomly chosen from the 
decreasing period of {X, (t)). In Section 2, we introduce notation and give 
some basic facts on Palm distributions and approximation of (not necessarily 
purely atomic) random measures. In Section 3 we first consider the process 
{X, (t)) under the additional condition that 

(ii-c) (A(t)) is a pure jump process. 

In Section 4, we show how our general results can be applied in order to 
determine the ascending ladder height distribution of the time-stationary work- 
load process in single-server queues. 

Although we assume that condition (iii-b) may not be fulfilled and, con- 
sequently, the premium process { D  (t)) itself may be random, the approach of 
Asmussen and Schmidt [3] still works in the special case that { D ( t ) )  is deter- 
ministic and linear and that (A(t)) is induced by a marked point process. 
However, instead of using Campbell's formula for stationary marked point 
processes as in [3], our main tool is an exchange formula for Palm measures of 
stationary random measures (see Lemma 2.1). We then remove the additional 
condition (ii-c) approximating the claim process { A  (t)} by a sequence of pro- 
cesses {A,  ( t ) )  that satisfy (ii-c), and applying a limiting argument to the result 
obtained for the case when the claim process is a pure jump process. 

6 - PAMS 17.1 
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2. Stationary framework and preliminary results. We begin with the formal 
description of an appropriate stochastic model for the processes introduced in 
Section 1. This is an important step in our approach because we will consider 
several probability measures on a common measurable space. 

Let (9,F, P) be a probability space, and {0,}, a measurable operator 
group on (a, F). Let A and D be random measures on (R, a(@), where 93 (R) 
is the Borel c-field on R. Our basic assumption is that 

(i-b) these two random measures are consistent with { O , } ,  i.e. 

- A ( B ) ~ ~ , = A ( B + ~ )  and D(B)oO,=D(B+t) for all 3 ~ 9 3 ( R ) , t ~ R ,  

where f o 8, (w) = f (0, (a)) and B + t = {u + t : u E 3). The consistency conditions 
(i-b) just mean that the measures A and D have a common time axis. For these 
random measures, we define nondecreasing random functions { A  ( t ) )  and 
VJ (01 by 

(2.1) A (t) = D (t) = 
D((0,tl) if t 2 0 ,  

if t < 0 ,  -D((t, 01) if t < 0. 

We distinguish these functions from the corresponding measures by their 
arguments. Then, condition (i-a) is satisfied if 

(i-c) (0,) is stationary with respect to P, i.e. P(0;' (c)) = P(C)  for every 
C E ~  and ~ E R .  

In particular, we see that because of (i-b) and (i-c) the random measures 
A and D are stationary, i.e. their distributions are invariant with respect to the 
shift operators 0,. We further assume that 

(i-d) A and D have finite and positive intensities I , ( =  E ( A  (1))) and 
A, (= E (D (I))), respectively. 

Similarly to Asmussen and Schmidt 131, we consider a continuous-time 
process {J(t)} as a background process for (X , ( t ) ) .  We assume that the ran- 
dom variables (J(t)) take values in a Polish space, i.e. a complete, separable 
metric space K with the Borel c~-field B(K). Furthermore, we assume that 

(i-e) {J(t)} is consistent with {O,), i.e. J(s)o 8, = J(s+t)  for all s, t ER. 

This means that, under P, the background process {J (t)} is jointly station- 
ary with the increments of the random measures A and D.  Unless stated 
differently, we assume that all processes considered in this paper are continu- 
ous from the right and have left-hand limits, CORLOL for short. Throughout 
this paper we additionally assume that (i-b), (i-c), (i-d) and (i-e) are satisfied. For 
simplicity reasons, we denote this set of conditions by (i). 

A further basic notion which we will use in order to describe our results is 
that of a Palm probability measure induced by a stationary random measure 
(see, e.g., Mecke [lo], Daley and Vere-Jones [4], Konig and Schmidt [9]). 
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DEFINITION 2.1. Under conditions (i-b), (i-c) and (i-d), let the probability 
measure PA on (52, P) be given by 

1 

(2.2) P , ( C ) = ~ A 1 E ( ~ l c o d , ~ ( d ~ ) )  for every C E ~ ,  
0 

where the integration is taken over the interval (0, 11 open to the left. PA is 
called the Palm probability measure of P with respect to A. The Palm measure 
P, with respect to the stationary random measure D is defined analogously. 
The expectation under the Palm measures PA, P,, . . . is denoted by 
EA, ED, . ..., respect'ively. 

Our main tool in this paper will be the following exchange formula for 
Palm measures of stationary random measures (see, e.g., Miyazawa [14], 
Schmidt and Serfozo 1171). 

L m  2.1. For each nonnegative mensurable function f: R x D + [0, a) 
the equality 

+ m  + m  

(2.3) a,En( j f (u,  O,)A(du)) = aAEA( J f I-u, do)~(du)) 
- m  - m  

holds. 

A simple consequence of Lemma 2.1 is the following result: 

COROLLARY 2.1. If {A(t)) is a locally finite jump process, i.e. the jump 
points T, of { A @ ) }  induce a locally finite counting measure N ,  with 
NA(B)= #{n: T , E B ) ,  then 

where A A (u) = A (u) -A (u - ) and ANA = E ( N ~  ((0, 11)). 

Note, however, that (2.4) can directly be obtained from definition (2.2). 
Namely, 

Another auxiliary result is an approximation of random measures in terms 
of pure jump processes. For n = 1, 2, . . . , let K be a random variable which is 
uniformly distributed on (0, l/n], independent of A and D, and which satisfies 

12.5) o 0, = + t (mod l/n) for every t E R. 

We can easily construct a sequence of such K by extending the probability 
space (a, 9, P) to (SZ x Rm , F x B (Rm) , P@ Lm=, P,) and by redefining 0, 
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according to (2.5), where Pn is the uniform distribution on (0, l/n], and Q de- 
notes the product of measures. Note that the new operator group (8,) is in- 
variant with respect to ~ @ n ~ = ~  P,,. For every n = 1, 2, . . . we define the pro- 
cess {An(t)) by 

Cnv.1 (26) Afi(t)=A(cn(t+V.)l-K)-A(T-K) n for every ~ E R ,  

where [aJ denotes the largest integer not greater than a. Then, A,(O) = 0, and 

Hence, the random measure induced by (A, It)) is consistent with (8,). More- 
over, 

A(t-2/n) < A,(t) < A(t)-A(-l/n). 

Thus, we get the following result: 

LEMMA 2.2. In the above setting, {A, (t)) is a Iocallyfinite jump process with 
finite intensity LA, €((I -2/n) LA, A,], and A, and D are jointly stationary. Fur- 
thermore, if {A (t)) is continuous for all t, then A, (t) converges to A (t) unijiormly 
on each finite interval as n tends to infinity. 

Finally, we introduce the notion of a generalized L6vy measure, see also 
Miyazawa 1131. This measure will be used in case {A (t)} admits infinitely many 
jumps in a finite interval. 

DEPINITION 2.2. Let p, be the probability measure on g ( R )  given by 
pA (B) = PA (AA (0) E B), and v, the 8-finite measure on 9 ((0, + a)) given by 

Then v, is called the generalized G u y  measure of A. 

Note that vA((O, +a)) may be infinite, but 1," xv,(dx) = A, < co. More- 
over, if {A(t)) is a nondecreasing and pure jump LCvy process, i.e. a pure jump 
process with independent increments, then v, agrees with the LCvy measure of 
( A ( t ) )  (see, e.g., p. 27 of Protter 1161). 

3. Level crossing probabilities and ladder height distribntions. Throughout 
this section, we assume that conditions (i), (ii-a), (iii-a), and (iv-b) are satisfied. 
First, we consider the level crossing behavior of {X,(t)) under the additional 
condition (ii-c) that the claim process {A(t)) is a pure jump process. Note, 
however, that we do not make any additional assumptions on the premium 
process {D(t)). In particular we do not assume that (iii-b) holds. Nevertheless 
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we can still proceed similarly to Asmussen and Schmidt [3] provided that we 
use the exchange formula given in Lemma 2.1 instead of the standard Campbell 
formula. 

In addition to the claim surplus process {Xo(t)}, we define two processes 
(Xu (v)) , , , and (X,* (v)},  , , for any u 2 0. Namely, let 

and 
X,(v)=Xo(v-u)od, for U G U ,  

X:(v) = - X - , ( - u )  for u 4 v.  

The process {-x,* (v)),,, is dual to the process {X , (u) ) , , ,  in the sense that 
XZ* (v) = X, (v), see also Asmussen and Schmidt [2], [3], and Miyazawa [12]. 
Note that the dual process (-X,* (2r)),,, is not CORLOE, but COLLOR, i.e. 
continuous to the left and having right-hand limits. Furthermore, we put 

Since 

= - A ( O - ) + A ( - s } + D ( O - ) - D ( - s ) ,  
we have 

Note that, because of (ii-a) and (iii-a), {V(u)} increases if and only if 
V(u) = X$+ (u), and we have V(du) = -D(-du) at these points of increase. 

Given these notations we are now' in a position to derive a representation 
formula for the joint distribution of (Z', Z - ,  J(z ) )  under the Palm mea- 
sure P,. 

THEOREM 3.1. Under conditions (i), (ii-c), (iii-a) and (iv-b), the equation 

(3.3) ED (# (z+, Z -  , J (z)); z < 03) 

holds Jor every nonnegative measurable function #: R2 x K + [0, a). 

Proof. We apply Lemma 2.1 similarly to how Campbell's formula has 
been used in [3]. Note that the assumption that A is induced by a pure jump 
process leads to 
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Thus, Lemma 2.1 yields 

(3.4) d D E ~ ( r f i ( Z + , Z - , J ( ~ ) ) ; ~ < m )  

Since 
T O O - ,  = inf{s > 0: A(s -u) -A( -u ) - (D(s -u ) -D( -u) )  > O ) ,  

equalities (3.1) and (3,2) imply that the event {TO 6 - ,  = u)  is equal to 

where the last equation follows from the fact that V(u) 2 Xg+ (u) by the defini- 
tion of V(u). Further note that (iv-b) implies lim,, , V(u) = + oo, and that 
D (0 -) = 0 because of (iii-a). Hence, by using the fact that V (du) = - D ( - du) 
for the increasing points of {V(u)), we have 

where the last equation has been obtained by substituting v = V(u). Thus, (3.4) 
implies (3.3). s 
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COROLLARY 3.1. I$ in addition to the assumptions of Theorem 3.1, the jump 
process (A(t)) is locally Jinite, then 

The proof of (3.5) follows directly from Theorem 3.1 and Corollary 2.1. 
Moreover, since P, = P and 1, = 1 if D It) = t, Corollary 3.1 generalizes Theo- 
rem 1 and Corollary 1 of Asmussen and Schmidt [3] (see (1.4)). 

Remark. 3,1. Note that in the proof of Theorem 3.1, conditions (ii-a) and 
(iii-a) have been exploited essentially, since V (du) = - D  (- du) does not hold 
otherwise. 

Remark  3.2. If the random measures A and D are ergodic, then the 
inequality A, < AD implies (iv-b). The proof of Theorem 3.1 shows that, even if 
condition (iv-b) does not hold, we still get a certain expression for 
E,(# {zC, Z - ,  J(r)); z < a). That is, putting Vm = supvao V(u), we have 

We further note that if D'(0) exists with probability 1, then the left-hand 
sides of (3.3) and (3.5) can be written as E (# (Z+ , Z-, J (z)) D'(0); z < a). 
Thus, a possible interpretation of the expectation under P,  is that the starting 
point of the process { X o  (t)) is chosen at the arrival of a typical (infinitesimally 
small) unit of increase of the process {D (t)). Moreover, the right-hand sides of 
(3.3) and (3.5) depend on D only through its intensity, provided that D is 
independent of A A (0) and J (0). This insensitivity property will also hold for all 
our results stated in the remaining part of this paper. 

We now remove condition (ii-c). For this purpose, we decompose A into 
two components. Define the nondecreasing processes {A, (t)) and {Ac(t)) by 

Ad(t)= AA(u), A,(t)=A(t)-Ad(t) for every ~ E R .  
O < u b t  

Clearly, (Ad(t)) and {Ac(t)) have stationary increments under P. 

THEOREM 3.2. Under conditions (i), (ii-a), (iii-a) and (iv-b), the equality 

holds for every bounded measurable function #: R2 x K + R. 
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Remark  3.3. By using the generalized E v y  measure v,,, (3.7) can be 
rewritten in the form 

- Proof  of Theorem 3.2. First note that it is enough to prove (3.7) for 
a bounded continuous function 4. For each positive integer n, we define A , ,  for 
A, in the same way as (2.5). We also define 

Then, by Lemma 2.2, A,(t) has stationary increments and satisfies (i-c), (i-d) and 
(iv-b). In accordance with the definitions of z, Zf and Z -  we gave above for A, 
we define z,, 2: and 2,- for A,, respectiveIy. Hence, the definition of Palm 
probabilities and Theorem 3.1 imply 

The second term on the right-hand side of (3.9) can be rewritten as 

4(AAc,n@)-.,u, 

Hence, by Lemma 2.2, this term converges to the second term on the 
right-hand side of (3.7), since Ac,,(t) converges to A,(t) uniformly on finite 
intervals as n tends to intinity and 

1 AAc,n(O 

inf $(v,u,J(t))<- 
0 < u,u d AA,,.(t) 

J # ( A  A,, (tl-u, u, J (4) du 
A Ac,n(t) 0 

where the difference of the upper and lower bound tends to zero uniformly in 
t as n + co. On the other hand, the left-hand side of (3.9) equals 
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Since, for each fixed w E Q, the ruin time z can attain at most countably many 
values, Lemma 2.2 yields 

except for possibly countably many u's for each w E Sa. Hence, the left-hand side 
of (3.9) converges to the one of (3.7). 

An immediate consequence of Theorem 3.2 is the following result: 

COROLLARY 3.2. .Given--the conditions of Theorem 3.2, the equality 

holds, provided that {A( t ) }  is continuous in t with probability 1. 

4. Ladder heights of stationary workload. Note that in Section 3 we con- 
sidered the stochastic processes {X,, ( t ) }  and ( J  (t)] not on the basic probability 
space (a, F, P), but we replaced the probability measure P by the Palm prob- 

I ability P,. This means, in particular, that the claim surplus process ( X , ( t ) }  is 
1 started at time t = O under the condition that it is decreasing at this time. 

Furthermore, from the definition of P, it follows that, within the decreasing 
periods of {X, (t)), the starting point is chosen with a probability proportional 
to D (du). 

Let us briefly discuss what can be concluded from the above results if the 
process (X , ( t ) )  is considered under P. Since the general case seems to be very 
difficult, we will consider a rather simple example. That is, we assume that 
D'(u) = 0 or D' (a) = c for a constant c > 0, i.e. locally {D (u)) is either constant 
or increases with a constant rate c during its increasing periods. This means 
that, for every C E  9, we have 

Choosing C = Q in (4.1) gives 

Hence, Theorem 3.2 yields the following result: 

THEOREM 4.1, In addition to the conditions of Theorem 3.2, assume that 
D'(t) = c for euery increasing point of { D  ( t ) ) ,  where c > 0 is a certain constant. 
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Then 

Note that (4.2) extends Theorem 2 of Asmussen and Schmidt [3], where the 
probability P ( J  {t) E F ,  T c a) is considered under the assumption that (A (t)) 
has a density r (J ( t ) )  and that the increasing and decreasing periods alternate 
one by one as well as that their starting times form a (locally finite) point 
process. In this case, 

since A(t) increases at t = 0 when D'(0) = 0. On the other hand, the second 
term on the right-hand side of (4.2) disappears, and the third term, multiplied 
by c, becomes 

1 T i  

where T,+ and T,,- are the n-th switching times for up and down periods, 
respectively, and Nf and N -  are the counting measures generated by {cf) 
and (%-I, respectively. This gives formula (18) of Asmussen and Schmidt [3], 
i.e. 

T; 

EN+ ( I # (J  (4) P ( J  (4) du) 
(4.4) E (#I (J (z)) I D' (0) > 0, 0 < z < co) = 

0 
T1 

EN + ( j r (J (4 )  du) 
0 

for every bounded measurable function #: K + R. 
Now we give an example of how Theorem 4.1 can be used in order to 

detehine the distribution of the first ascending ladder height of the stationary 
workload process in single-server queues. Another interesting relationship be- 
tween queueing characteristics and ladder heights of risk processes is discuss- 
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ed in Sigrnan [ls]. For the purpose of this section we interpret process {A(t)) 
as the input of the queue which can either be a locally h i t e  jump process, 
a common assumption in queueing theory, or an arbitrary pure jump process. 
We assume that {A(t)) induces a stationary ergodic random measure with 
intensity 1, < 1. In case ( A ( t ) )  is a locally finite jump process, the famous 
ergodic theorem of Loynes says (see, e.g., Franken et al. [6]) that, under these 
assumptions, a unique stationary workload process {W (t))  exists which is con- 
sistent with the shift operators 0,. For a general (ergodic) jump input { A @ ) ]  
with 1, < 1, the existence of such a stationary workload process {W(t)) can be 
proved analogously'to the proof of the locally finite jump process case. Thus, 
the stochastic process {D(f)} given by 

r 

(4.5) D (t) = 1(,(,, , du for every t 2 0 
0 

is also consistent with 18,). It is easy to see that 

(4.6) W (t) = X ,  (t) + W (0) for every t 2 0, 

where X, (t) is given by (1.1). Moreover, A, = AD. This means, in particular, that 
in many cases interesting from a practitioner's point of view, condition (iv-b) is 
fulfilled, e.g. when {A (t)) is induced by an independently marked Poisson pro- 
cess, a Markov-modulated Poisson process or a Lkvy process, respectively. 
Thus, from Theorem 4.1 we get the following result, where W+ denotes the first 
ascending ladder height of the stationary workload process (W(t)) as given by 

W(z)-W(0)  if z < c o ,  
W+={o otherwise 

with z = infit > 0: W(t) > W(0)). 

THEOREM 4.2. Assume that (iv-b) holds. Then 

for any bounded measurable function #: R + R, where rA  = min (t : A (t) > 0). 

Proof. Because of aA = AD, putting 4 = 1 we get P (z < m) = 1 from (4.2). 
Moreover, the third term on the right-hand side of (4.2) vanishes because we 
assume that {A(t)) is a pure jump process. Thus, (4.7) follows from (4.2). B 

Note that the random variable Wf considered in Theorem 4.2 is the 
overshoot when, for the first time after time zero, the time-stationary workload 
process {W (t)Ir, crosses the random level W(0) which this process had at 
t = 0. A related but still different problem is the study of excursions of the 
workload process above a given (deterministic) level (see, e.g., [8]). However, 
although the results obtained by Guillemin and Mazumdar [8] are different 
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from Theorem 4.2, their method of proof is similar to our approach, because 
they use a special case of exchange formula (2.3). 

A formula similar to (4.7) can be proved for the ladder height distribution 
of the stationary workload process in a single-server queue with fluid input 
provided that for the continuous component {A,(t))  of {A(t)) we have 

d 
- A ,  (t] = 0 or > 1 with probability 1. 
dt 

O n  the other hand, the case of multiserver queues seems to be much more 
complicated. Here we see, similar to (4.1), that 

where Q = -(d/dt)D(t)J,,, denotes the number of busy servers at time zero. 
Thus, instead of obtaining (4.7), we would get a representation formula for the 
covariance E ( d ( W + ) - Q )  as a consequence of Theorem 4.1. 
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