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Abstract. This paper focuses on pconvolutions, a class of general- 
ized convolutions of random vectors. It establishes the rate of conver- 
gence in uniform (Kolmogorov) metric for normalized n-fold p-con- 
volution of random vectors to a generalized stable law. The method of 
proof relies on the application of probability metrics. Applications of 
generaked stable laws to financial data are also mentioned. 

1. Imtroalaction. The theory of generalized convolutions represents a unifying 
approach to many binary operations on probability measures. Urbanik 
[lll-[I31 developed a theory of generalized convolutions of probability mea- 
sures on the positive half-line (Urbanik convoIutions). U r b d s  ideas inspired 
a series of results: a characterization of the domain of attraction of stable 
measures in Urbanik's sense (Bingham [I] and [2]), normed rings given by 
Urbanik convolutions (Volkovich [15], [16]), rate of convergence in the Cen- 
tral Limit Theorem for Urbanik convolutions (Panorska [6j). All of the afore- 
mentioned works dealt with generalized convolutions of probability measures 
on R+.  In this paper, for the first time, we consider an example of generalized 
convolution in Rd, p-convolution, and study the rate of convergence in the 
generalized Central Limit Theorem. We state our main result, Theorem 2.1, in 
Section 2, after preliminary definitions and notation. In Section 3, we include 
some auxiliary lemmas and prove Theorem 2.1 using probability metrics tech- 
niques (see Zolotarev [17] and Rachev [8] for details on probability metrics). 

2. Paotatian and statement of the main result. Let X and P be i.i.d. random 
vectors in Rd, and 11-11 be the Euclidean norm in Rd. Vatan [14] iirst pointed 
out the importance of studying the generalized sum 

* This work was partially supported by the UTC Center of Excellence for Computer Ap- 
plications Research Grant for 1994/1995. 



140 A. K. Panorska 

where X{P) = X IIXjIP-l with p > 0. The generalized sum (1) defines a com- 
mutative and associative operation on random vectors called p-convolution. In 
what follows, we always assume that the operation on random vectors is fixed, 
i.e. that p is fixed, Since p-convolution generalizes summation of random vec- 
tors, we can define an analog of stable measure with respect to it. We say that 
a vector Y, is symmetric (a, p)-stable if 

holds for any n 3 1, where Y,"), i = 1, . . . , n, are i.i.d. copies of Y,, and a is 
defined in (1). 

Re mark 1, For any X €Rd, (x(P>){~/P> = X. 

Remark 2. It follows that if 5 is (a, p)-stable, then 

is a symmetric (strictly) Paretian (alp)-stable (for a complete treatment of Pare- 
tian stable random vectors see Janicki and Weron [3] or Samorodnitsky and 
Taqqu [9]). Thus, for any (a, p)-stable vector, we must have 0 < a < 2p. 

Remark 3. Any (a, &stable belongs to the domain of attraction of 
a Paretian &-stable law, and is heavy-tailed: P([Y,I > x) -- ax-" as x + a, for 
some positive constant a. 

The following characterization of p-stability is frequently used in our 
proofs: 

LEMMA 2.1. For any (a, p)-stable vector Y, and 1, R1 A, 2 0 such that 
II" = 1 3  25, we have 1, El) o 1, E2) A kY,,  where El), E2) are i.id. copies 
of Y,. 

Proof. Since Y,<P) is Paretian (alp)-stable, by Theorem 2.1.2 in [9] we 
have 

Taking (l/p) "power" of both sides of the above equation and using Re- 
mark 1 we obtain 

It is easy to see that (a, p)-stable random vectors are the only distribution- 
al limits of (scaled) n-fold p-convolutions of symmetric random vectors in Rd. 
Random vector X is said to belong to the domain of attraction of an (a, p)-stable 
vector if 

where XI, X,, . . . are i.i.d. copies of X. We shall study the rate of convergence 
in (3) when Xl belongs to the normal domain of attraction of Y,, that is when 



c, = n-'la in (3). Our main result, stated in Theorem 2.1 below, gives the rate of 
convergence in (3) in terms of the uniform (Kolmogorov) metric g in 3 ( R d )  - 
the space of Rd-valued random variables. By definition 

where V is the family of all convex Bore1 sets in Rd. In addition, we shall utilize 
the total variation metric Var, 

Var(X, Y):= 2 sup IP(XEA)-P(YEA)I ,  
. - A E S ~ ( R ~ J  

and its smoothed version fr,a, 

where X, Y E X ( R ~ ) ,  and is a symmetric (a, p)-stable random vector indepen- 
dent of X and Y. For clarity, we shall use the following notation: 

X o n = X l o  ... OX, and Y,O"=K('lo...oK(n', 

where XI, . . ., X, and If1', .. ., are i.i.d. copies of X and 5, respectively. 
Finally, we define 

6 P . a :  = max {e (x, YJ, v",,, (X, YJ, [v;,,= (X, YJ]~~(~-Q/P)). 

We shall state the main result now. 

THEOREM 2.1. If rp > a, then the following estimate holds: 

e (n-'"XO", YJ < Cf,,,, (X, YJ n1 -'pia + C Z ; ~ , ~  n-pia 

for some constant C. 

3. Proof d the main resnlt. We shall need the following four lemmas before 
we can prove Theorem 2.1. 

LEMMA 3.1. qr,, is an ideal metric of order r with respect to operation o, that 
is fr,, satisfies the following two conditions: 

(i) Regularity: fr,, (X o Z, Yo Z) < fr,, (X, Y). 
(ii) Homogeneity: ?r,a (ex, cY) = c' fr,,(X, Y), c > 0. 

Note. Vac is an ideal metric (of order 0) for operation o. 

Proof. Regularity of c,, follows from regularity of Var. To show homo- 
geneity of order r, write 

= suphr$Tar(Xoh/cY,, Yoh/cYJ = c'tr,,(X, Y). 
h > O  
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LEMMA 3.2. Let X, YEX(R~), and 6 > 0. Then for some positive constant 
C the following smoothing inequality holds: 

(4) g(X, P) < ~ ~ ( X o S ~ ~ ~ y b ,  Y 0 6 ~ / p ~ ) + C d .  

Proof. First, we show that p(X, Y) = Q ( X < ~ > ,  Y(p>). By Remark 1, 
for any Borel set CE@, we have {XCP) E C )  if€ (XE C{'/P>), where 
C<'lp' = {c(l/P) : c E C), Consequently, 

p (X(P>, YCP)) = sup IP (X{P> f C)- P (V*> E q1 
CEW 

= SUP I P ( X  E c<l/p>) - P ( Y  E cCIIp> )I = e(x,  r). 
C E ~  

Then, recall the classical smoothing inequality for summation of random vectors 
(see Zolotarev [I71 and Rachev [a]): 

where X, YE%(R~) and O is a symmetric (Paretian) a-stable random vector, 
and write 

LEMMA 3.3. For any X, 2, R€X(Rd), d > 0, and symmetric a-stable 5, 
the following two inequalities hold: 

Proof. We will prove part (i), and skip the details of the analogous proof 
of (ii). We have 

= Q ((A Yd<p> + x<P> + Y<P>, (A YJ(p> + X<P> + Z<P) ) 

where Fx denotes the distribution function of a random vector X. Let us put 
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Then L can be bounded as follows: 

L d sup lj (P (X(P> E A - V )  - P(R(P> E A - v)) d(F(a,r, -F(,,z)) (u)l 
AEQ 

+ sup IS P WP) E A - 4 d F(",Y) - F(u,z)) (v)l 
A& 

Q (X'p' 3 R'p') S Id CF(a,y) -F(a,~))l 

+ ((a YJ(P> + R { P )  t F P )  , (A YJCP) + R { P )  + z(P)) 

The following &timate is an analog of a classical result (Senatov [lOJ), and will 
be used several times in the proof of the main theorem. 

LEMMA 3.4. FOP X, Y E X ( R ~ )  and I ,  I ,  K, 2 0 such that b = I>flE", we 
have 

~ a r ( ; l ~ ~ ~ ) o ~ o ~ , 2 1 , ' ~ ) ,  A , * ~ ) O  POA,E~') G xrpt  I.p,a (X Y) ,  

where El', e2) are i.i.d. copies of x',. 
Proof. By L e m a  2.1, we have , I , ~ ' ) o A , ~ ~ ) ~  LI.',, and thus 

Now we prove the main result. 

Proof of Theorem 2.1. Note that C depends on r and a, but it does not 
depend on the distributions of X and Y,. We wil l  follow the main idea of 
Senatov [lo] and Rachev [8], pp. 264-281. We will proceed by induction. For 
n = 1, 2, the assertion of the theorem is easy to see. Let us assume that, for all 
j < n, 

( 5 )  e G1laXOj, YJ < CGrp,, (X, YJ j1 -'p/"+ C ' Z ; ~ , ~  j - P I Q .  

Set 6 : = ATr,, n-P1a and m = [n/2], where [.I denotes the greatest integer func- 
tion. Using the stability property of Y,, Lemma 3.4, and the triangle inequality 
(rn times), we obtain 
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We estimate J 1  using Lemma 3.3 (i) with 

X = n - l / a ~ O ( n - l ) ,  y = n-l/a X Z = ,-l/a yn and = n-l/a q t n - 1 ) .  
n 3 a 9 

Then we get 

J ,  G e l n  -l/axo(n-1) n-l/a yo("-1) , a ) X V ~ ~ ( ~ ~ / P ~ O O - ~ ~ ~ X ~ , S ~ / ~ ~ O ~ - ~ / ~ ~ )  

+ 4 ( d l / ~ ~ o f i - l / a ~ ~ ( ~ - ~ ) o n - l / a ~  n 3 ~ ~ / P Y O X O ( ~ ) = I  a 
I + 1 ~ .  

To estimate J ,  we use Lemma 3.3 (ii) with 

and 
z = n-lla y(n-13 ,  .-l/a yoCri. 

Then we obtain 

We estimate J ,  using Lemma 3.4 with 1, = 0, A2 = 1 ,  and 1 = 1 ,  the fact that 
Q < $Var, and the ideality properties of frp ,a:  

< rn-'*/l"(n-rn- l )%,,(X,  YJ < Dl nl-'P1afrp,a(X, Yk) \ 

for n large enough and some positive D l .  We use Lemma 3.4 with 1, = dl/p, 
A, = (j/n)", and the ideality properties of h, to estimate the term involving 
Var in I,: 
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Also, by inductive hypothesis, we estimate the term involving g in I,: 
( - 1 l a O - 1  , n - l / a  p ( n - j - 1 ) )  a 

= p((n- j -  1 ) - 1 / a  x O [ " - j -  1 )  tn- j -  l ) - l / a  y O [ n - j - l '  a  

- l / a ~ o ( n - j - 1 )  

1 
= e ( (n - j -1 )  3 %) 

B ( c p , a ( X ,  Yk)(n- j - l ) l -rP/a+frp, , (n- j -  1) -PIa  1 
6 B ( f r p P u  (X, YJ (n - m - 1)' -'P'a + frQ,a (n - m- 1)-PIa)  

; <BDi (Frp ,a (X ,x )n l - rp lu+f  -p /a)  
. - rp.a n 

for sfllciently large n  and some positive D,. Note that 6 d Afrp,, n-PIu ,  so that 

for some positive D, and large n. Now we will estimate I ,  + I,. We use Lem- 
ma 3.4 with A,  = ((n - j -  l ) / (n  - A, = Q/(n - I))'/', A = 1, 2e $ Var, and 
the ideality of v",,,: 

< m (n - l ) - r P I a  f rp ,a  ( X ,  5) < D4 n1 -'PIu q r p , a  G 9 YJ 

for some constant D, and large n. To estimate I,, we use Lemma 3.4 with 
A, = i = d1Ip, A = 0, the inductive hypothesis (3, and the ideality of GrP,,: 

10 - FAMS 17.1 
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for some constant D ,  and large n. Further, 

Since fP,# (X, Yh) h-plE < 6/A,  we obtain 

Combining all the above estimates, we get 

~ ( P ~ - ' ~ ~ X O ~ ,  YJ< Il-k12f l , + I ,  
.. . . .. 

. - < CB ( D , / A + D ,  AElp-3 (frP,# (X, Y& nl-rPja + frp,a t~ - ' l a )  

+C(Dl+D,)n'-rplaCrp,..(X, ETa)+CAfrp,rrn-Pta. 

It is clear that we can choose a new constant C, so that 

4. A wte on npplicaiiom Interesting applications of this theory come from 
the area of "heavy tail" modeling, in particular in mathematical finance, as 
discussed by Mittnik and Rachev [5]. The problem of finding the probability 
distribution of financial asset returns has occupied a prominent place in statis- 
ticd and financial literature (for a comprehensive review of the literature see 
Mittnik and Rachev [5] and the references therein). The (a, &stable Iaws were 
successfully used in modeling the distribution of financial data. Panorska [7] 
fitted (a, p)-stable models to foreign exchange rates and interest rates, 
and showed that they fit the data better than Paretian stable and normal 
models. 

The empirical distribution of financial data is very often heavy-tailed and 
peaky at the center (i.e. leptokurtic), and thus to model it successfully we need 
distributions with similar properties. It turns out that variables stable with 
respect to p-convolutions have both of the above properties (for details on 
modeling and properties of (a, &stable models see Panorska [73. Apart from 
that, they are stable, and thus have domains of attraction, which makes them 
even more attractive models. The (a, p)-stable models have several advantages 
over the Paretian stable ones. It occurs that their densities can be unimodal or 
bimodal, depending on a and p. Thus, we can fix the tail order a, and by 
varying p we obtain a unimodal or bimodal model. Another advantage of the 
(a, p)-stable laws is that by choosing appropriate p we can get a model with 
much steeper center peak than that allowed by Paretian stable distributions 
(financial data is often very peaky at the center). Finally, since a is not bounded 
above by 2, we can model data with tails lighter than those of Paretian stable 
distributions (see Loretan and Phillips [4]). 

The (a, p)-stable models successfully compete with Paretian stable ones in 
modeling one-dimensional financial asset returns. Extensions to multivariate 
portfolios' modeling would be a natural next step in this line of research. 
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