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ON GENERfiIZEI) POISSON DISTRIBUTIONS 

Abstract. In this paper, we show that, for Q > 0 and A in [0, 11, 
the measure y defined on nonnegative integers by 

defines a probability distribution (called Generalized Poisson Distri- 
bution and abbreviated as GPD). Furthermore, we show that, for 
1 > 1, p does not defme a probability measure, and finally we prove 
that GPD is a particular case of the wmpound Poisson distri- 
bution. 

1. buboduction. The Poisson distribution is one of the most important 
probability distributions. This has several generalizations, for example, the 
compound Poisson distribution. Less known is a two-parameter family of distri- 
butions, studied extensively by Consul [l] and called by him the Generalized 
Poisson Distribution (GPD). This is a two-parameter distribution induced by 
the measure p concentrated on the nonnegative integers defined for 0 < A < 1, 
O > O  by 

This family is very close to the so-called Borei-Tanner distribution (Johnson et 
al. [5]). In [I] Consul studies this family and gives various applications. The 
proof that this is a distribution, however, is not entirely easy. Consul and Jain 
in [2] refer to Jenson [4] for a proof. The proof there uses Lagrange's expan- 
sion, which although valid generalIy does not seem to give the exact domain of 
validity. In this paper we prove this and in addition we show that for A > 1 
GPD is not a proper distribution and we find its exact value. Furthermore, we 
draw that GPD is a particular case of the compound Poisson distribution, 
where the compounding distribution is itself GPD. 
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2. p is a probability measwe. Our first god is to prove that 

for 0 > 0 and 0 < d < 1. Let us first prove the above identity for 0 > 0 and A in 
[0, x,), where xo is such that x0 exp (1 + xo) = 1 (xo is approximately 0.28). For 
this purpose, consider the infinite series 

which can be written as 

LEMMA 1. The infinite series 

converges un$5omly on any bounded subset of Z (where Z is the set of complex 
numbers) with (01 < M ,  M > O and A in 10, xo), where xo i s  such that 
xo exp ( 1  + xo) = 1. 

Proof. We have 

to get the last inequality we have used the fact that (1 + lOl/nAy < eL1181. Now we 
use the Stirling formula [3] (nn/n! < en/&) in the last inequality to obtain 
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But 11 is in (0, xo) and the function xel'" is increasing on (0, m), so Re1'" 
< x, exp (1 + xo) = 1 .  Hence elel "llel Em n-o  (Ael '3" converges uniformly on 
161 < M, and so does 

Thus we have proved the lemma. 

Thanks to Lemma 1 we can change the order of summation in (1) in the 
following way: let n+k = m to get 

LEMMA 2. For any complex number x 

f (')(-l)"(x+n)k = 
for O <  kd r n - 1 ,  

n = O  I-l)"m! for k = m .  

Proof. Let us first prove that the lemma holds for x = 0, and the proof is 
by induction. Cearly, 

) - I =  for m = O .  
n = O  

Suppose the claim is true for na < N. Now consider 

N+l N f l  z ( - I T (  )*, 
n = O  n 

where k 2 1 (for k = 0, the claim is true by Binomial Theorem). We have 

If k < N ,  then for j = 0, 1, ..., k-1, we have k - 1 - j  < N, and so 
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by induction hypothesis. Hence 

But if k = N+1, then 

for j =  1 , 2  ,..., k-1, 
(- I)* N !  for j = 0, 

Thus we have proved the claim for x = 0. Now we can write 

which can be written as 

Using the lemma for x = 0 to the inside sum, we get 

for k < m, 
xo(-l)"m!=(-l)"m! for k = m .  

Thus we have proved the lemma. 

Now, using Lemma 2, we can write (2) in the form 
a3 1 

which implies that 

(3) 
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and this can be written as 

where ~~', [ B  (0 +nap- l / n ! ]  e-""converges for all 2 in w, 11 and for any 
complex nuljnber 8. This can be shown in a way similar to the one we used to 
prove Lemma 1 but we are going to avoid this for the sake of brevity. From the 
above equation we get 

Now using (3) we obtain 

for 8 > 0 and A in [0, xo) (actually we have proved the above identity for all 
8 in Z because Lemmas 1 and 2 hold for all complex numbers). 

Now let us prove that 

for 8 > 0 and I in [0, 11. Let G be the simply connected region in Z enclosed 
by the curves 

where x is in [O, 11. Now 

and 
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i 
So if z is in G, then 

xel-" + 1 
I ~ e l - ~ l  < ( ~ + I m ( z ) ) e l - ~  = 

2 < 1 ,  where x = Re (2). 

Now for z in G consider the infinite series 

which-. can 'be written as 

Now, by using the Stirling formula [3] (nn-'/n! < ê /n*) in the last in- 
equality, we get 

But for all z in G we have lzl < 1. Consequently, from (4) we conclude that 
the sequence of analytic functions 

converges uniformly on G to an analytic function J; where 

But we know that for z in (0, x,) 
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hence f (being an analytic function) must be a constant function on G, so 

for all 0 > 0 (actually for all 8 in Z) and 0 < 1 < 1. But the series 

converges uniformly on compact subsets of Z with 181 < M for some positive 
real number M and A 2 0 (this can easily be shown by using the Stirling 
formula [3] in a similar way to that we proved Lemma 1). So f is a continuous 
function of 0 and A > 0. Consequently, by continuity off we get f = ea for 
1 = 1 as well, and we have achieved our first goal. 

3. For 1 > 1 GPD is not a distribution. Now our next goal is to prove that 
for all 0 > 0 and ;i > 1 

Proof, Let 0 > 0 and II  > 1. Then there exists a Oo in R such that 0 = 8,A, 
so we have 

But the function f (x) = xe-" is one-to-one and onto from (0, 1) to (0, e-I), so 
f (x) = xe-" is one-to-one and onto from (1, a) to (0, e-l). Consequently, 
there is a unique p in (0, 1) such that pe-p = Re-" so (6) can be written as 

which equals exp ( ~ 8 ~ )  by (5). Therefore we can write 

But 8, = BjA, so the above equation becomes 
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which is less than 1 because p < A. Consequently, for L > 1 and 8 > 0 we have 
shown that 

Furthermore, we have found its value in terms of p, il and 0, where 
/&-!-'= Ae-A. 

4, GPD as a compoand Pdssm distribution. Now we are going to prove 
that the GPD is a particular case of the compound Poisson distribution. 

Let us define a function &(z) in the following way: 

where 8 is a nonnegative real number and K is in [ O ,  11. This can be shown with 
the help of Stirling's formula [3] and the type of reasoning we did in proving 
Lemma 1 that for all values of /1 (0 < A < 1) the function 4, is analytic in 
D = {z; lzl < e-l/Ae-'} (being a uniform limit of analytic functions) and is 
continuous on the closure of D. 

It is known that GPD is infinitely divisible in parameter 8 with R fmed in 
[0, I] (Consul [I]). Consequently, 4, has the following property: 

for all t in R. Since #, is analytic in D which contains the unit circle, we have 

for all z in D (for K = 1, D does not contain the unit circle, but we avoid 
this simple part of the proof for the sake of brevity). The property (7) states 
that r # ~ ~  (2) # 0 for all z in D. Indeed, if for some 8, #o (z) = 0 for some value of 
z, then this will imply that #,(z) = 0 for that value of z, but &,(z) = e-' for 
all values of z. Consequently, we have a nonvanishing analytic function 4, 
on a simply connected domain, so there exists an analytic function $, such 
that #,(z) = exp ($,(z)). Now, by using (7) it can easily be deduced that 
the function $, = 01) for some function t,b (analytic in D). Thus we have 
#e (z) = ee'. 

Consider the mapping U(t) = te-"'-ll from [O, 11 to [0, 11, where 0 < 
A ,< 1. Clearly, U'(t) = Ae-at-l)(l/A-t) > 0 for t ~ ( 0 ,  I), so U ( t )  is strictly in- 
creasing on (0, 1). Also U (0) = 0, U (1) = 1, and hence U maps LO, 11 onto [0, 11 
in a one-to-one fashion. Now, for 0 < u 6 1, 4,(u) is real, and there exists a t in 
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[0, 11 such that u =  te-'('-ll, so we have 

= ,ere-e 
0te-Ot (Ot + &)A- emnAt [.F:~ n ! 

where 
I 

0teL8*(0t+ nAt)"-l e-"lt 
C = 1. 

.. . n=O n ! 

 heref fore, &O(U) = esct-I), where u = tepAct-l), but we also know that +o(u) 
- - ee*(#). Thus, by comparing we get t = $ (u) + 1, so u = ($ (u) + 1) e-"@(")). 

Now both sides are analytic in z (u replaoed by z), so z = ($ (z)+ 1) e(-A)*(z) for 
each z in D. Now for z = eia we get 

(for simplicity, we denote $J (eia) by @(a)). Now eA@(') and e'" are characteristic 
functions, and so is e.2.*(a1e'u. Therefore, from (8) we conclude that $(a)+ 1 is 
a characteristic function. Now put $(a)+ 1 = p in (8) to get 

p e - i ~  = e M # - l )  = e- -W-~)  

where pe-'" is the characteristic function of GPD(R, A), and p is the charac- 
teristic function for GPD (A, A) * 8 , .  Thus we have shown that GPD is a com- 
pound Poisson distribution, where the compounding distribution is GPD (A, A) 
shifted one unit to the right. 
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