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Abstract. In this paper, we show that, for 8 > 0 and 4 in [0, 1],
the measure p defined on nonnegative integers by .
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defines a probability distribution (called Generalized Poisson Distri-
bution and abbreviated as GPD). Furthermore, we show that, for
A>1, u does not define a probability measure, and finally we prove
that GPD is a particular case of the compound Poisson distri-
bution.

1. Introduction. The Poisson distribution is one of the most important
probability distributions. This has several generalizations, for example, the
compound Poisson distribution. Less known is a two-parameter family of distri-
butions, studied extensively by Consul [1] and called by him the Generalized
Poisson Distribution (GPD). This is a two-parameter distribution induced by
the measure u concentrated on the nonnegative integers defined for 0 <A< 1,
0 >0 by

0(O+niy e
N n! ’
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This family is very close to the so-called Borel-Tanner distribution (Johnson et
al. [5]). In [1] Consul studies this family and gives various applications. The
proof that this is a distribution, however, is not entirely easy. Consul and Jain
in [2] refer to Jenson [4] for a proof. The proof there uses Lagrange’s expan-
sion, which although valid generally does not seem to give the exact domain of
validity. In this paper we prove this and in addition we show that for A > 1
GPD is not a proper distribution and we find its exact value. Furthermore, we
draw that GPD is a particular case of the compound Poisson distribution,
where the compounding distribution is itself GPD.
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2. p is a probability measure. Our first goal is to prove that
o 00+n"" e _ = 0(0+ni)y ! )
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for § > 0 and 0 < A < 1. Let us first prove the above identity for § > 0 and A in
[0, x,), where x, is such that xq exp {1+ x,} = 1 (x, is approximately 0.28). For
this purpose, consider the infinite series
© (0+n/1)"e“"1_9

I 1= Z
n=0 n!
which can be written as
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LEMMA 1. The infinite series
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converges uniformly on any bounded subset of Z (where Z is the set of complex
numbers) with 0| <M, M >0 and A in [0, x,), where Xo is Such that
xoexp {1+x,} = 1.

Proof We have
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to get the last inequality we have used the fact that (1+|0]/nA)" < "%, Now we
use the Stirling formula [3] (n"/n! < €"/\/2nn) in the last inequality to obtain
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1+x 1+A

But A is in (0, x) and the function xe is increasing on (0, o), so le
< xoexp{l+xo} = 1. Hence el/"*#y"* (1e'*4" converges uniformly on
18] < M, and so does

(— 1% (@ +na)y+k
3§ |CUCT
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Thus we have proved the lemma.

Thanks to Lemma 1 we can change the order of summation in (1) in the
following way: let n+k=m to get
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LemMma 2. For any complex number x

n(m 0 Jor 0<k<m—1
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L (n)( ) (x+n) {(—l)mm! for k=m.

n=0

Proof. Let us first prove that the lemma holds for x = 0, and the proof is
by induction. Cearly,

i (r:)(—l)"(n)" =0 for m =Q.

n=0

Suppose the claim is true for m < N. Now consider
N+1 N+1
B ()
where k > 1 (for k =0, the claim is true by Binomial Theorem). We have

Nil( 1)"( )"=(—1)(N+1)[§ (—1)n<’:)(,,+1)k-1]
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If k<N, then for j=0,1,...,k—1, we have k—1—j < N, and so
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by induction hypothesis. Hence
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But if k= N+1, then

o for j=1,2,..., k-1,
T W(=1D¥N!  for j=0,
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Thus we have proved the claim for x = 0. Now we can write
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which can be written as

L0 £ 0]

. Using the lemma for x =0 to the inside sum, we get
LN m ; 0 for k<m
; J -1 k=i | = ’
j;,(j)x [,,;0( )<n>n :l {xo(—l)"'m! =(—=1)"m! for k=m.
Thus we have proved the lemma.
Now, using Lemma 2, we can write (2) in the form
i 1
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which implies that
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and this can be written as
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or
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where Y [0(0+niy"~/n!Je " converges for all A in [0, 1] and for any
complex number 6. This can be shown in a way similar to the one we used to
prove Lemma 1 but we are going to avoid this for the sake of brevity. From the
above equation we get

> 0@+ni)* A (0+,1+n,1)" e
D - e ,,;0 i “ix
Now using (3) we obtain
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for 8 > 0 and A in [0, x,) (actually we have proved the above identity for all
0 in Z because Lemmas 1 and 2 hold for all complex numbers).
Now let us prove that
i 0(0+nl)" ! m_
for # > 0 and A in [0, 1]. Let G be the simply connected region in Z enclosed
by the curves

1-—x l_xel—x

fx)= ﬁ and g(x)=—

where x is in [0, 1]. Now
xel " 41
x+f(x) =x—g(x)= el
and
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() et = (r—g )7 = 2 H
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So if z is in G, then

1-x 1
|ze' ¥ < (x+Im(z))e! ™ = iz—i— <1, where x =Re(z).

Now for z in G consider the infinite series
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which can be written as
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Now, by using the Stirling formula [3] (n"~!/n! < €"/n./2nn) in the last in-
equality, we get
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" But for all zin G we have |z e! ~* < 1. Consequently, from (4) we conclude that

the sequence of analytic functions

k n—1
A@=Y 0(0+nz) -

n=0 n!

nz

converges uniformly on G to an analytic function f, where

=5 0@+n2y " _,

n=0 n!
But we know that for z in (0, x¢)

-1
g 004n2)"7 e _ o,
n=0 n!



Generalized Poisson distributions 383

hence f (being an analytic function) must be a constant function on G, so

@ 0 n—1
) 5 (0+ni) R
n=0 n!
for all 6 > 0 (actually for all # in Z) and 0 < A < 1. But the series
0(0+nl)" 1

converges uniformly on compact subsets of Z with |0] < M for some positive
real number M and A > O (this can easily be shown by using the Stirling
formula [3] in a similar way to that we proved Lemma 1). So f is a continuous
function of 6 and A > 0. Consequently, by continuity of f we get f = &° for
A=1 as well, and we have achieved our first goal.

3. For /4 > 1 GPD is not a distribution. Now our next goal is to prove that
for all 6 >0 and 1>1

i 0(0+niy?

n=0 n!

Proof Let @ > 0 and A > 1. Then there exists a 8, in R such that 6 = 0, 4,
so we have

© i
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But the function f(x) = xe™* is one-to-one and onto from (0, 1) to (0, e~ 1), so
f(x) = xe™* is one-to-one and onto from (1, o) to (0, e~*). Consequently,
there is a unique g in (0, 1) such that ue™* = Ae™*, so (6) can be written as
© 0o(0 +n" ro 0o (O +n)~t, _
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which equals exp {;490} by (5). Therefore we can write

> 0(0+niyt
Y (T)exp{—nl—e} = exp {uf,—0}.
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But 0, = 0/, so the above equation becomes
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which is less than 1 because u < 1. Consequently, for A > 1 and 6 > 0 we have
shown that

0(0+n/1)" i

Furthermore, we have found its value in terms of u, 4 and 8, where
pe * = je?

4, GPD as a compound Poisson distribution. Now we are going to prove
that the GPD is a particular case of the compound Poisson distribution.
Let us define a function ¢(z) in the following way:

b = § 00

n=0

—nl—ozn’

where 0 is a nonnegative real number and A is in [0, 1]. This can be shown with
the help of Stirling’s formula [3] and the type of reasoning we did in proving
Lemma 1 that for all values of 4 (0 < 4 < 1) the function ¢, is analytic in
D ={z; |zl < e '/Ae”*} (being a uniform limit of analytic functions) and is
continuous on the closure of D.

It is known that GPD is infinitely divisible in parameter 6 with A fixed in
[0, 1] (Consul [1]). Consequently, ¢, has the following property:

do, (e") b, (eit) = g, +6, (")

for all ¢t in R. Since ¢, is analytic in D which contains the unit circle, we have

™ Po, (2) do, (2) = o, +6,(2)

for all z in D (for A =1, D does not contain the unit circle, but we avoid
this simple part of the proof for the sake of brevity). The property (7) states

- that ¢g(2) # O for all z in D. Indeed, if for some 68, ¢4(z) = 0 for some value of

z, then this will imply that ¢, (z) = 0 for that value of z, but ¢o(z) = e~ for
all values of z. Consequently, we have a nonvanishing analytic function ¢,
on a simply connected domain, so there exists an analytic function ¥, such
that ¢ (z) = exp {yo(2)}. Now, by using (7) it can easily be deduced that
the function Y, = 6y for some function ¥ (analytic in D). Thus we have
bo(2) = €.

Consider the mapping U (f) = te"**~V from [0, 1] to [0, 1], where 0 <
A < 1. Clearly, U'(t) = Ae™*~1(1/1—1) > 0 for t€(0, 1), so U (?) is strictly in-
creasing on (0, 1). Also U (0) =0, U (1) = 1, and hence U maps [0, 1] onto [0, 1]
in a one-to-one fashion. Now, for 0 < u < 1, ¢ (u) is real, and there exists a ¢ in
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[0, 1] such that u = te *¢~1), 50 we have

3] une 9+nﬂn—le—nl—6 -] = 11 . o 1
B0 § sy
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where
O Ote " (Ot+nit)t~le "M

)
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Therefore, do(u) = e®¢~ 1), where u = te *¢~1 but we also know that g (1)
= ¢™®, Thus, by comparing we get ¢ =y (W)+1, so u = (Y (u)+1) e *0®),
Now both sides are analytic in z (u replaced by z), so z = (Y (z)+ 1) e~V for
each z in D, Now for z = € we get

® = @+ 1)eHe

(for simplicity, we denote l//(ei“) by ¥ (). Now e*® and €™ are characteristic
functions, and so is e**® ¢ Therefore, from (8) we conclude that ¥ (@) +1 is
a characteristic function. Now put ¥ («x)+1 = u in (8) to get

= = 1.

— _1 —_ 1_
e e _ pMe—1) — 5= X #),

where pe™ ™ is the characteristic function of GPD (4, A), and p is the charac-
teristic function for GPD{(4, 1) *4,. Thus we have shown that GPD is a com-

_ pound Poisson distribution, where the compounding distribution is GPD (4, 1)

shifted one unit to the right.
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