
PROBAWLHI' 
A N D .  

MATHEMATICAL STATISTICS 

FROM THE LIKELIHOOD MAP 
TO EUCLIDEAN MINIMAL SUFFICIENCY 

D. A. S. FRASEW, PHILIP McDUNNOUGH (To~om), AMIR NADERI (TEHRAN) 
AND ANDWfi PLANTE (MONTREAL) 

Abstract. We use the minimal sufficiency of the likelihood map 
(Fraser et al. 1911 to show the existence of a minimal sufficient statistic 
with Euclidean range under weak regularity conditions, and to extend 
a well-known theorem due to Barndorff-Nielsen et al. [2]. Examples of 
minimal sdiicient statistics are given in problems having either a re- 
stricted parameter space or a truncated error distribution. 

1. Introduction. In [9] we have shown that a particular version of the 
likelihood function generalized statistic, the likelihood map, is minimally sufi- 
cient under very weak regularity conditions. In applications, however, one 
often wants a minimal sufficient statistic with Euclidean range - a Euclidean 
minimal sufficient statistic - in contrast to the complex function space range 
of the likelihood map. 

In this paper we show that, if both the sample space and the parameter 
space are Euclidean and the observation vector has a continuous distribution, 
there then exists a Euclidean minimal suflicient statistic under weak regularity 
conditions. Theorem 6.3 in [ll] has already proved the existence of a minimal 
sufficient staJistic, but the range of such a statistic is possibly non-Euclidean. 
Furthermore, the relationships between statistics with Euclidean range 
and statistics with extended range are complicated (Appendix 2D in 1121, 
p. 34 in €31). It is therefore necessary to consider separately the Euclidean range 
case. 

We also extend a welI-known theorem in [2] stating that a statistic 
with Euclidean range, determining the same partition of the sample space 
as the likelihood function does, is minimally sdicient provided the likelihood 
function is continuous. We give three easily checked weak regularity condi- 
tions any of which could replace the continuity assumption without affect- 
ing the validity of the conclusion. One of these conditions is essentially that 
of [13], 
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The theory is then used to find a Euclidean minimal smcient statistic in 
several examples having either a restricted parameter space or a truncated 
error distribution. 

We assume that the sample space X and the parameter space Q are Borel 
subsets of finite-dimensional vector spaces with the properties that X O  = 2 and 
- - 
a0 = 92, where O denotes the interior of a set, and - its closure. Let v be the 
Lebesgue measure restricted to the a-field A of Borel subsets of X, and assume 
that each distribution Po ( 0 ~ 6 2 )  on X is absolutely continuous with respect 
to v, and that X is such that v is absolutely continuous with respect to 
(Po: 0€  Q). 

The likelihood map approach to minimal sufficiency simplifies the tradi- 
tional approach by introducing at the start a unique definition of the likelihood 
function, thus avoiding the difficulty where different versions of Radon-Niko- 
dym families of derivatives generate different dields, some of which are mini- 
mally sufficient while others are not; see the counterexample in [2] .  Within our 
restricted framework, a measure derivative based on the Vitali covering theo- 
rem is always defined (Chapter 5 in [4]). The measure derivative DP, exists 
almost everywhere (v )  and we define a particular density function 

(DPe)(x) if Pe is differentiable at x, 
(1) f(x;B'=((D-P,)(x) otherwise, 

where (D- Pe)(x) is the lower derivate of Po at x; the probability density f (-; 0) 
is a Radon-Nikodym derivative. We use this expression (1) as the probability 
density at x. For some problems it is convenient to use the upper derivate at 
x in place of the lower derivate in (1). This definition formalizes what has been 
called the simplest and most natural determination of a Radon-Nikodym de- 
rivative ([Ill, p. 328), and the "regular" form of the density ([q, p. 16). 

Then, for a fixed x in X, the likelihood function is taken to be 

where c (.) is an arbitrary real-valued and positive function on X. An alternative 
and sometimes preferable form for the likelihood function is given by the 
equivalence class 

(3) L(X) = {a(x; -1: c > o}; 
see for example [6] ,  Chapter 4; [7], Chapter 8; [8], Chapter 9; and [9]. The 
likelihood function (3) is an orbit under the action of the multiplicative group 
on the space of real-valued nonnegative functions on 52; formula (2) means 
a generic point on the orbit (3). A unique but arbitrarily chosen point on each 
orbit (3) can serve as a maximal invariant under the group; for example, the 
standardized likelihood function 
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gives one such maximal invariant, where the countable set (€4) (i = 1, 2, . . .) is 
such that (Po: 6~ B) is dominated by the measure with density Ci oli f (x; Oi), 
where mi > 0 and z, a, = I. Definition (4) is based on Lemma 7 in [lo]. 

Although expression (3) constitutes our definition of likelihood function, 
expression (2) is used in practice, and expression (4) can be used in the proof of 
theoretical results. 

The generalized statistic LC) is called the likeIihood map, and the general- 
ized statistic r(.) that maps x to a standardized likelihood function q ( x ;  .) is 
called a standardized likelihood map. The u-field generated by r(-) is 

where B ,  is the Bore1 s-field over R1. It can be shown using the technique of 
proof of Theorem 1 in 191 that u(r) = c (L), so that r (-) is a minimal sufficient 
statistic. This is consistent with Theorem 6.2 in 111. Part (i) of Theorem 1 in 
Section 2 proves the existence of a Euclidean minimal suficient statistic under 
weak regularity conditions. Part (ii) of the theorem concerns statistics that 
determine the same partition of the sample space as the likelihood function 
does. Examples are given in Section 3, 

2. Theory. The main result of this paper is Theorem 1 in this section. For 
this we need some notation and definitions concerning partitions; see [2], for 
example. 

Two functions g(-) and h (.) defined on X generate the same partition of X if, 
for any x and x' in X, g (x) = g (x') if and only if h (x) = h (x'). The partition 
a-field determined by g(*) is 

Two functions g( . )  and h ( - )  generate the same partition of X if and only if 
6 (g) = 6 (h). If g (-) is measurable, then a (g) c 6 (g). Furthermore, 6 (g) = a (g) if 
g(.) is measurable with a Polish range space, that is, a separable topological 
space that is metrizable by a complete metric; see, for example, [4], Chapter 8. 
A finite-dimensional vector space with the usual topology is Polish, and the 
product of a finite or infinite sequence of Polish spaces is Polish. 

The three weak regularity conditions (where 52, is a countable dense sub- 
set of Q) referred to in Theorem 1 are: 

(a) f(x; 8)= sup,inf,f(x,z)(~> 0,O< /Iz-BII < E ,  TEQ,-,) 
for every x in %. 

(b) f(x; O)=inf,sup,f(x,z)(~ > 0 ,  O <  11~-811 < E ,  ZEQ,) 
for every x in X. 

(c) (Sako [13]) There exists a sequence B,, 8,, . . . in IR, converging to 
0 such that f (x; 8) = limf (x; 8,) (i + co) for every x in X. 

TEEOREM 1. IJ; for each B in $ the probability density f (x, 8) satisfies at 
least one of the properties (a)-(c) above, then 
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(i) there exists a Euclidean minimal suflcient statistic and 
(ii) a statistic with Euclidean range that generates the same partition of X as 

L(.) does is minimally suficient. 

Proof. Let DO be a countable dense subset of a, and let r,(.) be the 
standardized likelihood map, where the domain of qjx; -) is restricted to Do. 
We first show that s(rd) = a (r). Because it is obvious that a (r,) c cr(r), we need 
to show only that a(r) c a(ro). Since, for any gven 8 and under any of the 
conditions (aHc), q (.; 8) is measurable with respect to a (r,), it follows that 
a (r) c o (ro),. and we may conclude that a(r) = a(rO). Furthermore, we have 

- 
cr(ro) = ((x: q (x; 0) < a):  a is rational 3 0 and 0 E QO). 

Consequently, a(r) is countably generated. Then from [12], p. 139, there exists 
a statistic TI.) with Euclidean range such that T-I ( B )  = a@), where B is the 
Bore1 o-field in the range space of T. This completes the proof of part (i). 

To prove part (ii), let T(-) be a statistic with Euclidean range that generates 
the same partition of X as L (-) does. As r (x) is a maximal invariant under the 
group for which L I.) is an orbit, r (a) generates the same partition of X as L(.), so 
that 6 (r) = 6 (L). The proof that n(T) = a (r) follows the same series of equali- 
ties as the proof of the theorem in [2 ] :  (i) a(T) = 6 (T), (ii) S (T)  = S(r), 
{iii) 6 ( r )  = 6 (rO), (iv) S (rO) = u(rO), and (v) a (ro) = a(r). The proof of (v) has 
already been given. Furthermore, (i) and (iv) hold because the range spaces of 
T(.)  and roc) are Polish spaces, while (ii) holds by assumption and because 
S(r) = 6(L). To prove (iii), it is sufficient to show that, for any x' and x" in X, 
ro (xu) = ro (x') implies that r(x") = r (x'), as it is obvious that r (x") = r(xr) im- 
plies that ro (xu) = ro (2). 

If ro (x") = ro (x'), then, for every z in a,, q(x"; z) = q (x'; z). If (a) holds, 
then, for any 8 in dZ, we have 

The proof that q (x"; 0) = q (x'; 0) in case (b) is similar, thus omitted. If (c) 
holds, then for any 8 in 8 ,  let el,  8,, . . . be a sequence in Q, converging to 0, 
with f (x; 8) = lim f (x; Oi) (i + m) for any x in X. Consequently, q(xU; 8) = 
lim q (x"; Bi) = limq (x'; Oi) = q (x'; 8) (i + a). We may therefore conclude that 
r (x") = r (x'). This completes the proof. 

3. Examp1es. Examples 1-4 below are modified versions of well-known 
elementary problems concerning a uniform or an exponential distribution. In 
each case, however, the parameter space is restricted, and this may modify the 
corresponding minimal sufficient statistic. Example 5 is a simple quality control 
problem with a parameter in R3 and a minimal sufficient statistic in R4. 

Two sample points x' and x" have the same likelihood function if and only 
if there exist two positive numbers cr and c" such that c'f (x'; .) = c"f (xu; -). 
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This is equivalent to the requirement that there exists a positive real-valued 
function k(xl; x") such that f (x"; -) = k(x', x") f (x'; .) used in [Ill. What is 
different here, however, is that the somewhat complicated Y" process of Leh- 
mann and Scheffk can be replaced by any of the conditions (a)-@) in Theorem 1. 
Also, implicit in Theorem 1 is the use of the probability density (1) instead of 
any Radon-Nikodym derivative, as used in [I 11. In the present approach, it is 
assumed that one may use the upper or the lower derivate in (1) so as to make 
it easy to apply Theorem I. 

In each of the following examples we have a sample x = ( x l ,  . . . , xn) from 
a univariate distribution with probability density f (x; 8) corresponding to a 
random variable X; assume that n > 1 and let (xcl,, . . . , x(,$ denote the ordered 
sample. 

EXAMPLE 1. Suppose X is uniformly distributed between 0 and 8, where 
B > 1. We can take f (x; 0) = 118, where 0 < x < 8, and f (x; 8) = 0 elsewhere. 
Consequently, the likelihood function (2) can be expressed as follows: 

c(x)(l/Bn) if 8 > r n a ~ ( 1 , x ~ ~ , ) ,  
L(e; X) = 

elsewhere. 

Theorem 1, with condition (a) or (c), implies that the statistic T (x) = max (1, x(,,] 
is minimally s&cient. 

EXAMPLE 2. Suppose X is uniformly distributed between 8- 112 and 
8+ 1/2, where 114 < 0 < 314. We can take 

1 if 6-1/2<x<8+1/2,  
0 otherwise, 

where 1/4 < 8 < 3/4; 

1 if 8-1/2<x<0+1/2,  
0 otherwise, 

where 8 = 114; 

1 if 6-1/2 < x < 8+1/2, 
0 otherwise, 

where 8 = 3/4. To describe the likelihood map, it is preferable to use 

Y (x) = ( ~ ( 1 )  + x(n))/2 and z (x) = (+I 1 + 1 - x{n))/2. 

The likelihood function is given by 

1 if rnax (114, y -2) < 8 < min (314, y + z) 

(6) L(0; x) = c(x)x and 114-2 < y <3/4+z, 

0 otherwise (114 < 6 d 314). 
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The likelihood map can be represented in the (y,  8)-plane. The region where 
the likelihood function is positive is an almost closed parallelogram formed by 
the intersection of the strip {( y, 8): 114 < 8 < 3/41 with the strip { ( y  , 0): y -2 < 
9 < y  +z}. The lower left corner of the parallelogram, (1/4-z, 1/4), and the 
upper right corner, (3/4+2, 3/41, are excluded from the region. For z < 112 
and either - 114 < y < 114-2 or 3/4+2 < y < 514, the likelihood function 
is given by L(0, x) = 0 (114 d 0 $ 314). Furthermore, for 114 < z < 112 and 
314 -2  d y < 1/4+ z, we have L(0; x) = c (x) (114 < 0 < 314). Elsewhere, the 
various likelihood functions described by (6) are all distinct from one another. 
Using-Theorem 1 with condition (b) or (c) we conclude that the statistic 
T given by 

- 1 / 4 0  if z<1/2 and either -114-<y g 114-2 or 
3/4+z 6 y < 5/4, 

T (x) = 
( 2  1 if 114 < z < 1/2 and 3/4- z < y < 114 +z, 

I(Y, 2) otherwise 

is minimally sufficient. 

EXAMPLE 3. Suppose X is uniformly distributed between p -a and p+ s, 
and that u/2 < p < 3~12.. We let 

where = {b, a): a12 < p < 3a/2 and a > 0). The likelihood function is 

1 if a x , ~ - x ( ~ ,  and a > x(,,-p, 
L(p,  a; x) = c(x)(l/a") x 

0 otherwise, 

with (ji, a) in Q. 
In the (p, a)-plane, 52 is an open convex cone A with its apex at the origin. 

The region of the plane where the likelihood function is positive is the inter- 
section- of A with a variable open convex cone B corresponding to the 
inequalities a > p-x(,, and a > x(,, -p. The apex of B is at the point 
((x(~, + ~ ( ~ ) ) / 2 ,  (X~.)-X(~))/~). The intersection of A and B is never void and is 
distinct for each value of (x(~,, x(,)). In this example, therefore, the minimal 
sufiicient statistic T(x) = (xcl), x(,,) is not modified by restricting the parameter 
space, as is implied by Theorem 1, with condition (a) or (c). 

EXAMPLE 4. Suppose X is distributed exponentially with unit variance and 
with mean p + 1, where p < p,. The constant p, is known. The density may be 
written as 

if x x p, 
otherwise. 
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The likelihood function is 

L@; X) = c Cx) 8' if p < min { p o ,  x{~) ) ,  
otherwise, 

where p < pa. Using Theorem 1, with condition (a) or (cj, we infer that T(x)  = 
min {p , ,  x ( ~ ) )  is minimally sufficient for p (p < po). 

The next example comes from the field of quality control. A certain 
rod, that is part of a mechanism, is supposed to have a length p, but its real 
length is between .p- a8 and p+ a7 as a result of a random error followed by 
a double-sieving process. A statistical model for estimating p, a and is as 
follows. 

EXAMPLE 5. Suppose that we have a sample x = ( x , ,  . . , x,) from the dis- 
tribution of p+aZ, constrained to JZI < z, where Z is standard normal; and 
the parameter 0 = (p, 0 ,  z) satisfies - cx, < p < oo, s > 0, and z > 0. The like- 
lihood function is L (0 ;  x) = c (x) l (0 ;  x),  where 

if T > rnax ( ( p  - ~ ( , ~ ) / s ,  (x(,, -p ) /a ) ,  and 1(0; x)  = 0 otherwise, where 

B (0) = An (z) (l/a)" exp ( - (n/2) ( p / ~ ) ~ } ,  1/A (T) = Pr (IZI < 4. 

Two sample points x' and x" are in the same class determined by L C )  if 
and only if there exist two positive constants c (x') and c (x") such that for any 0 

For (7) to hold, it is necessary that E(8, x') > 0 if and only if l (6,  xu) > 0, that is, 
if and only if 

(8 j max {(ji -xi ,))/a,  (xi,) - p ) / ~ )  = max { ( p  - x6  ,)/a,  (xi;, - P ) / ~ I  - 
For any fixed but arbitrary a, equation (8) holds for every - co :, p < 

if and only if 4,) = x&, and xi,, = x&,. To show this, let us consider a section 
of the parameter space determined by the condition a = const. A curve 
z = max ((p - X ( ~ ) ) / O ,  (x(,) - p)/a) in the resulting ( p ,  7)-plane is Vshaped with 
an apex at p = ( x f l ,  +xf, ,) /2 and z = (I/u) ( X ( , ) - X ( ~ ) ) / ~ .  Relation (8), therefore, 
holds if and only if xtl)  = x;'l, and x6, = xi;,, as stated. Consequently, (7) holds 
if and only if 

(9) x ; ~ )  = x&, xi,, = x;,, and 

1 
- - (C xIi" - C xy2) ((l/aj2 + (C x[i - C x;) (1/a) (p/cr) +In [c (xt)/c (x")] = 0 

2 j  j j j 

for each a > 0 and -co < p < m. 

3 - PAMS 17.2 
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From (9) we conclude that (7) holds if and only if 

and c (x') = c (x") . 
Consequently, the statistic 

is minimally s&cient for (p, rr, z), according to Theorem 1 with condition (a) 
or(c). > .- - 
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